Data Science \& Big Data for Actuaries
Arthur Charpentier (Université de Rennes $1 \&$ UQàM)

Universitat de Barcelona, April 2016.
http://freakonometrics.hypotheses.org

Data Science \& Big Data for Actuaries

Arthur Charpentier (Université de Rennes 1 \& UQàM)

Professor, Economics Department, Univ. Rennes 1
In charge of Data Science for Actuaries program, IA
Research Chair actinfo (Institut Louis Bachelier) (previously Actuarial Sciences at UQàM \& ENSAE Paristech actuary in Hong Kong, IT \& Stats FFSA)
PhD in Statistics (KU Leuven), Fellow Institute of Actuaries
MSc in Financial Mathematics (Paris Dauphine) \& ENSAE
Editor of the freakonometrics.hypotheses.org's blog

sonest
Arthur Charpentier

$6 \mathrm{oc} \operatorname{mox}$

Editor of Computational Actuarial Science, CRC

Data

"People use statistics as the drunken man uses lamp posts - for support rather than illumination",
Andrew Lang or not
see also Chris Anderson The End of Theory: The Data Deluge Makes the Scientific Method Obsolete, 2008

1. An Overview on (Big) Data
2. Big Data \& Statistical/Machine Learning
3. Classification Models
4. Small Data \& Bayesian Philosophy

5. Data, Models \& Actuarial Science

Part 1.
An Overview on (Big) Data

Historical Aspects of Data

Storing Data: Tally sticks, used starting in the Paleolithic area

A tally (or tally stick) was an ancient memory aid device used to record and document numbers, quantities, or even messages.

Historical Aspects of Data

Collecting Data: John Graunt conducted a statistical analysis to curb the spread of the plage, in Europe, in 1663

Historical Aspects of Data

Data Manipulation: Herman Hollerith created a Tabulating Machine that uses punch carts to reduce the workload of US Census, in 1881, see 1880 Census, $n=50$ million Americans.

Hollerith's Electric Sorting and Tabulating Machine.

Historical Aspects of Data

Survey and Polls: 1936 US elections
Literary Digest Poll based on 2.4 million readers
A. Landon: 57% vs. F.D. Roosevelt: 43%

George Gallup sample of about 50,000 people A. Landon: 44% vs. F.D. Roosevelt: 56%

Actual results

A. Landon: 38% vs. F.D. Roosevelt: 62%

Sampling techniques, polls, predictions based on small samples

Historical Aspects of Data

Allen-Scott Report

Data Center Plan Called Privacy Invasion

By RONFRT S. At TEN and PAIL SCOTT
WASHINGTON - A spectal White House task force is rec. ommending the creation of a enderal data center which eventually could have a comprehenslue file on every man, woman and child in the country
Now under study in inner ad. ministration circles. the stillseeret report advocates the gradual transfer of all governmental records and statistics to mannetic computer tape, which would be turned over to a new. ly-created agency that would function as a general data center.
The computerized information would be avallabie, at the push of a button, to a wide range of government authorities.
rietimatat anel of the nro.
cial Security, census data, med. ical, credit and oriminal re. ports.
"Comprehensive information of this kind, centralized in one agency." says Gallagher, "could constitute a highly dangerous dossier bank. Such an agency would be a distinct departure from our American tradition."

Subcommitiee investigators have ascertained that the lask force's report states that a vast accumtuation of government records already is on computer tape and could be turned over to the proposed general data center immediately. Listed as among these available files are:

Internal Revenue Service 742 million personal and corporate tax returns.

Defense Department - 14
the most intimate information, the investigators learned, ars treely passed around among agencies. Graphically illustratlve of this practice and its harsh consequences are the following two instances:
A teenager visiting Washing. ton stayed with an uncle, at his mother's suggestion. During the might the boy was sexually as. saulted by the uncle. Years la. ter, as a Phi Beta Kappa graduate from a leading Eastern university, the boy applied for a job with the National Security Agency. During a required lie detector test he told about the assault. His frank admission cost him the desired job.
But that wasn't all. This aftair. in which he was an innotair: in which heman him nonin

Data Center: The US Government plans the world's first data center to store 742 million tax returns and 175 million sets of fingerprints, in 1965.

Historical Aspects of Data

Historical Aspects of Data

Data Manipulation: Relational Database model developed by Edgar F. Codd
See Relational Model of Data for Large Shared Data
Banks, Codd (1970)

Considered as a major breakthrough for users and machine designers
Data or tables are thought as a matrix composted of intersecting rows and columns, each columns being attributes.
Tables are related to each other through a common attribute.
Concept of relational diagrams

The Two Cultures

'The Two Cultures', see Breiman (2001)

- Data Modeling (statistics, econometrics)
- Algorithmic Modeling (computational \& algorithmics)
'Big Data Dynamic Factor Models for Macroeconomic Measurementand Forecasting', Diebold (2000)

Statistical Modeling: The Two Cultures

The Data Modeling Culture

The Algorithmic Modeling Culture

And the XIXth Century...

Nature's special issue on Big Data, Nature (2008) and many of business journals

And the XIXth Century...

Techology changed, HDFS (Hadoop Distribution File System), MapReduce

Log In | Register Now

Bits

Big Data in More Hands
 By QUENTIN HARDY

f facebook

Business people, Big Data is coming for you.
v twitter
[7] GOogle +
[1. save
\triangle E-MAIL
T SHARE
吕 PRINT
Software that captures lots of data and uses it to make predictions has mostly been the province of engineers skilled in arcane databases and hope they will prove attractive to a broader population. Hadoop, released software on Wednesday that makes it possible to run statisticians capable of developing complex algorithms. As the business gets bigger, however, software makers are domesticating their products in the

Cloudera, which offers a popular version of the open source database called queries from a more mainstream SQL programming language interface. SQL, thanks to its adoption by Oracle, Microsoft and others, is known to millions of business analysts.
"This enables us to talk to a whole other class of customer," said Mike Olson, the chief executive of Cloudera. "The knock against Hadoop was that it is too complex."

There is a reason for that. Hadoop is one of several so-called unstructured databases that were created at Yahoo and Google, after those two companies found they had previously unimaginable amounts of data about Chromebooks

AROUND THE WEB »

THE NEXT WEB
Google says Maps redirect on
Windows Phone was a product decision,
and will be removed

\because

Google's Schmidt arrive in North Korea
REUTERS | From Mountain View to...errr, Pyongyang? Somini Sengupta
AP provides sponsored tweets during electronics show AP.ORG | The Associated Press is renting out its Twitter feed, with 1.5 million followers, to advertisers during C.E.S. Joshua Brustein
A history of griefing
EDCE-ONLINE.COM | Meet the cult of gamers who want to ruin your day --just for kicks. - Jerna Wortham
A Million First Dates
THE ATLANTIC | Is online romance threatening monogamy? -

And the XIXth Century...

Data changed, because of the digital/numeric revolution, see Gartner's 3V (Volume, Variety, Velocity), see Gartner.

And the XIXth Century...

Business Intelligence, transversal approach

Big Data \& (Health) Insurance

Example: popular application, Google Flu Trend

See also Lazer et al. (2014)

But much more can be done on an individual level.

Big Data \& Computational Issues

parallel computing is a necessity*
CPU Central Processing Unit, the heart of the computer RAM Random Access Memory non-persistent memory
HD Hard Drive persistent memory
Practical issues: CPU can be fast, but finite speed;
RAM is non persistent, fast but slow vs. HD is persistent, slow but big
How could we measure speed: Latency and performance
Latency is a time interval between the stimulation and response (e.g. 10 ms to read the first bit)

Performance is the number of operations per second (e.g. $100 \mathrm{Mb} / \mathrm{sec}$)
Example Read one file of $100 \mathrm{Mb} \sim 1.01 \mathrm{sec}$.
Example Read 150 files of $1 \mathrm{~b} \sim 0.9 \mathrm{sec}$.

* thanks to David Sibaï for this section.

Big Data \& Computational Issues

Standard PC:
CPU : 4 core, 1ns latenty
RAM : 32 or $64 \mathrm{~Gb}, 100 \mathrm{~ns}$ latency, $20 \mathrm{~Gb} / \mathrm{sec}$
HD : $1 \mathrm{~Tb}, 10 \mathrm{~ms}$ latency, $100 \mathrm{Mo} / \mathrm{sec}$

How long does it take ?
e.g. count spaces in a 2 Tb text file
about 2.10^{12} operations (comparaison)
File on the HD, $100 \mathrm{Mb} / \mathrm{sec} \sim 2.10^{4} \mathrm{sec} \sim 6$ hours

GOMPUIER SPEHILIST

DELLTT340 InTEL
Core 2 Duo 320GB HDD 4 gb ram
256мв GRAPHIC CARD

Windows Vistam

Big Data \& Computational Issues

Why not parallelize? between machines
Spread data on 10 blocks of 200 Gb , each machine count spaces, then sum the 10 totals... should be 10 times faster.

Many machines connected, in a datacenter
Alternative: use more cores in the CPU ($2,4,16$ cores, e.g.)
A CPU is multi-tasks, and it could be possible to vectorize. E.g. summing n numbers takes $O(n)$ operations,

Example $a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{n}+b_{n}$ takes n nsec.
But it is possible to use SIMD (single instruction multiple data)
Example $\boldsymbol{a}+\boldsymbol{b}=\left(a_{1}, \cdots, a_{n}\right)+\left(b_{1}, \cdots, b_{n}\right)$ take 1 nsec.

Big Data \& Computational Issues

Alternatives to standard PC material
Games from the 90s, more and more 3d viz, based on more and more computations
GPU Graphical Processing Unit that became GPGPU General Purpose GPU

Hundreds of small processors, slow, high specialized (and dedicated to simple computations)

Difficult to use (needs of computational skills) but more and more libraries
Complex and slow communication CPU - RAM - GPU
Sequential code is extremely slow, but highly parallelized
Interesting for Monte Carlo computations
E.g. pricing of Variable Annuities

Big Data \& Computational Issues

A parallel algorithm is a computational strategy which divide a target computation into independent part, and assemble them so as to obtain the target computation. E.g. Couting words with MapReduce

Data, (deep) Learning \& AI

What can we do with those data?

Part 2.
Big Data and Statistical/Machine Learning

Statistical Learning and Philosophical Issues

From Machine Learning and Econometrics, by Hal Varian :
"Machine learning use data to predict some variable as a function of other covariables,

- may, or may not, care about insight, importance, patterns
- may, or may not, care about inference (how y changes as some x change)

Econometrics use statistical methodes for prediction, inference and causal modeling of economic relationships

- hope for some sort of insight (inference is a goal)
- in particular, causal inference is goal for decision making."
\rightarrow machine learning, 'new tricks for econometrics'

Statistical Learning and Philosophical Issues

Remark machine learning can also learn from econometrics, especially with non i.i.d. data (time series and panel data)

Remark machine learning can help to get better predictive models, given good datasets. No use on several data science issues (e.g. selection bias).
non-supervised vs. supervised techniques

Non-Supervised and Supervised Techniques

Just \boldsymbol{x}_{i} 's, here, no y_{i} : unsupervised.
Use principal components to reduce dimension: we want d vectors $\boldsymbol{z}_{1}, \cdots, \boldsymbol{z}_{d}$ such that

$$
\boldsymbol{x}_{i} \sim \sum_{j=1}^{d} \omega_{i, j} \boldsymbol{z}_{j} \text { or } \boldsymbol{X} \sim \boldsymbol{Z} \boldsymbol{\Omega}^{\top}
$$

where $\boldsymbol{\Omega}$ is a $k \times d$ matrix, with $d<k$.

First Compoment is $\boldsymbol{z}_{1}=\boldsymbol{X} \boldsymbol{\omega}_{1}$ where

$$
\boldsymbol{\omega}_{1}=\underset{\|\boldsymbol{\omega}\|=1}{\operatorname{argmax}}\left\{\|\boldsymbol{X} \cdot \boldsymbol{\omega}\|^{2}\right\}=\underset{\|\boldsymbol{\omega}\|=1}{\operatorname{argmax}}\left\{\boldsymbol{\omega}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\omega}\right\}
$$

Second Compoment is $\boldsymbol{z}_{2}=\boldsymbol{X} \boldsymbol{\omega}_{2}$ where

$$
\boldsymbol{\omega}_{2}=\underset{\|\boldsymbol{\omega}\|=1}{\operatorname{argmax}}\left\{\left\|\widetilde{\boldsymbol{X}}^{(1)} \cdot \boldsymbol{\omega}\right\|^{2}\right\} \text { where } \widetilde{\boldsymbol{X}}^{(1)}=\boldsymbol{X}-\underbrace{\boldsymbol{X} \boldsymbol{\omega}_{1}}_{\boldsymbol{z}_{1}} \boldsymbol{\omega}_{1}^{\top}
$$

Unsupervised Techniques: Cluster Analysis

Data: $\left\{\boldsymbol{x}_{i}=\left(x_{1, i}, x_{2, i}\right), i=1, \cdots, n\right\}$
Distance matrix $D_{i, j}=D\left(\boldsymbol{x}_{\mathrm{c}_{i}}, \boldsymbol{x}_{\mathrm{c}_{j}}\right)$
the distance is between clusters, not (only) individuals,

$$
D\left(\boldsymbol{x}_{\mathrm{c}_{1}}, \boldsymbol{x}_{\mathrm{c}_{2}}\right)=\left\{\begin{array}{l}
\min _{i \in \mathrm{c}_{1}, j \in \mathrm{c}_{2}}\left\{d\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right\} \\
d\left(\overline{\boldsymbol{x}}_{\mathrm{c}_{1}}, \overline{\boldsymbol{x}}_{\mathrm{c}_{2}}\right) \\
\max _{i \in \mathrm{c}_{1}, j \in \mathrm{c}_{2}}\left\{d\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right\}
\end{array}\right.
$$

for some (standard) distance d, e.g. Euclidean $\left(\ell_{2}\right)$, Manhattan $\left(\ell_{1}\right)$, Jaccard, etc. See also Bertin (1967).

Unsupervised Techniques: Cluster Analysis

Data: $\left\{\boldsymbol{x}_{i}=\left(x_{1, i}, x_{2, i}\right), i=1, \cdots, n\right\}$
Distance matrix $D_{i, j}=D\left(\boldsymbol{x}_{\mathrm{c}_{i}}, \boldsymbol{x}_{\mathrm{c}_{j}}\right)$

The standard output is usually a dendrogram.

hclust ($*$, "complete")

Unsupervised Techniques

Data: $\left\{\boldsymbol{x}_{i}=\left(x_{1, i}, x_{2, i}\right), i=1, \cdots, n\right\}$
\boldsymbol{x}_{i} 's are observations from i.i.d random variables \boldsymbol{X}_{i} with distribution $F_{\boldsymbol{p}, \boldsymbol{\theta}}$,

$$
F_{\boldsymbol{p}, \boldsymbol{\theta}}(\boldsymbol{x})=\underbrace{p_{1} \cdot F_{\boldsymbol{\theta}_{1}}(\boldsymbol{x})}_{\text {Cluster } 1}+\underbrace{p_{2} \cdot F_{\boldsymbol{\theta}_{2}}(\boldsymbol{x})}_{\text {Cluster } 2}+\cdots
$$

E.g. $F_{\boldsymbol{\theta}_{k}}$ is the c.d.f. of a $\mathcal{N}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ distribution.

Unsupervised Techniques

Data : $\left\{\boldsymbol{x}_{i}=\left(x_{1, i}, x_{2, i}\right), i=1, \cdots, n\right\}$
iterative procedure:

1. start with k points $\boldsymbol{z}_{1}, \cdots \boldsymbol{z}_{k}$
2. cluster c_{j} are $\left\{d\left(\boldsymbol{x}_{i}, \boldsymbol{z}_{j}\right) \leq d\left(\boldsymbol{x}_{i}, \boldsymbol{z}_{j^{\prime}}\right), j^{\prime} \neq j\right\}$
3. $\boldsymbol{z}_{j}=\overline{\boldsymbol{x}}_{\mathrm{c}_{j}}$

See Steinhaus (1957)) or Lloyd (1957))
But curse of dimensionality, unhelpful in high dimension

Datamining, Explantory Analysis, Regression, Statistical Learning, Predictive Modeling, etc

In statistical learning, data are approched with little priori information.
In regression analysis, see Cook \& Weisberg (1999)
The primary goal in a regression analysis is to understand, as far as possible with the available data, how the conditional distribution of the response y varies across subpopulations determined by the possible values of the predictor or predictors. Since this is the central idea, it will be helpful to have a conve-
i.e. we would like to get the distribution of the response variable Y conditioning on one (or more) predictors \boldsymbol{X}.

Consider a regression model, $y_{i}=m\left(\boldsymbol{x}_{\boldsymbol{i}}\right)+\varepsilon_{i}$, where ε_{i} 's are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$, possibly linear $y_{i}=x_{i}^{\top} \beta+\varepsilon_{i}$, where ε_{i} 's are (somehow) unpredictible.

Machine Learning and 'Statistics'

Machine learning and statistics seem to be very similar, they share the same goals-they both focus on data modeling-but their methods are affected by their cultural differences.
"The goal for a statistician is to predict an interaction between variables with some degree of certainty (we are never 100% certain about anything). Machine learners, on the other hand, want to build algorithms that predict, classify, and cluster with the most accuracy, see Why a Mathematician, Statistician \& Machine Learner Solve the Same Problem Differently

Machine learning methods are about algorithms, more than about asymptotic statistical properties.

Validation is not based on mathematical properties, but on properties out of sample: we must use a training sample to train (estimate) model, and a testing sample to compare algorithms (hold out technique).

Goldilock Principle: the Mean-Variance Tradeoff

In statistics and in machine learning, there will be parameters and meta-parameters (or tunning parameters. The first ones are estimated, the second ones should be chosen.

See Hill estimator in extreme value theory. X has a Pareto distribution - with index ξ - above some threshold u if

$$
\mathbb{P}[X>x \mid X>u]=\left(\frac{u}{x}\right)^{\frac{1}{\xi}} \text { for } x>u
$$

Given a sample \boldsymbol{x}, consider the Pareto-QQ plot, i.e. the scatterplot

$$
\left\{-\log \left(1-\frac{i}{n+1}\right), \log x_{i: n}\right\}_{i=n-k, \cdots, n}
$$

for points exceeding $X_{n-k: n}$. The slope is ξ, i.e.

$$
\log X_{n-i+1: n} \approx \log X_{n-k: n}+\xi\left(-\log \frac{i}{n+1}-\log \frac{n+1}{k+1}\right)
$$

Goldilock Principle: the Mean-Variance Tradeoff

Hence, consider estimator

$$
\widehat{\xi}_{k}=\frac{1}{k} \sum_{i=0}^{k-1} \log x_{n-i: n}-\log x_{n-k: n}
$$

k is the number of large observations, in the upper tail.

Standard mean-variance tradeoff,

- k large: bias too large, variance too small
- k small: variance too large, bias too small

Goldilock Principle: the Mean-Variance Tradeoff

Same holds in kernel regression, with bandwidth h (length of neighborhood)

$$
\widehat{m}_{h}(x)=\frac{\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right) y_{i}}{\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)}
$$

since

$$
\mathbb{E}(Y \mid X=x)=\int \frac{f(x, y) \cdot y}{f(x)} d y
$$

Standard mean-variance tradeoff,

- h large: bias too large, variance too small
- h small: variance too large, bias too small

Goldilock Principle: the Mean-Variance Tradeoff

More generally, we estimate $\widehat{\boldsymbol{\theta}}_{h}$ or $\widehat{m}_{h}(\cdot)$
Use the mean squared error for $\widehat{\boldsymbol{\theta}}_{h}$

$$
\mathbb{E}\left[\left(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}}_{h}\right)^{2}\right]
$$

or mean integrated squared error $\widehat{m}_{h}(\cdot)$,

$$
\mathbb{E}\left[\int\left(m(\boldsymbol{x})-\widehat{m}_{h}(\boldsymbol{x})\right)^{2} d \boldsymbol{x}\right]
$$

In statistics, derive an asymptotic expression for these quantities, and find h^{\star} that minimizes those.

Goldilock Principle: the Mean-Variance Tradeoff

For kernel regression, the MISE can be approximated by
$\frac{h^{4}}{4}\left(\int \boldsymbol{x}^{\top} \boldsymbol{x} K(\boldsymbol{x}) d \boldsymbol{x}\right)^{2} \int\left(m^{\prime \prime}(\boldsymbol{x})+2 m^{\prime}(\boldsymbol{x}) \frac{f^{\prime}(\boldsymbol{x})}{f(\boldsymbol{x})}\right) d \boldsymbol{x}+\frac{1}{n h} \sigma^{2} \int K^{2}(\boldsymbol{x}) d \boldsymbol{x} \int \frac{d \boldsymbol{x}}{f(\boldsymbol{x})}$
where f is the density of \boldsymbol{x} 's. Thus the optimal h is

$$
h^{\star}=n^{-\frac{1}{5}}\left(\frac{\sigma^{2} \int K^{2}(\boldsymbol{x}) d \boldsymbol{x} \int \frac{d \boldsymbol{x}}{f(\boldsymbol{x})}}{\left(\int \boldsymbol{x}^{\top} \boldsymbol{x} K(\boldsymbol{x}) d \boldsymbol{x}\right)^{2} \int\left(\int m^{\prime \prime}(\boldsymbol{x})+2 m^{\prime}(\boldsymbol{x}) \frac{f^{\prime}(\boldsymbol{x})}{f(\boldsymbol{x})}\right)^{2} d \boldsymbol{x}}\right)^{\frac{1}{5}}
$$

(hard to get a simple rule of thumb... up to a constant, $h^{\star} \sim n^{-\frac{1}{5}}$)
Use bootstrap, or cross-validation to get an optimal h

Randomization is too important to be left to chance!

Bootstrap (resampling) algorithm is very important (nonparametric monte carlo)
\rightarrow data (and not model) driven algorithm

Randomization is too important to be left to chance!

Consider some sample $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ and some statistics $\widehat{\theta}$. Set $\widehat{\theta}_{n}=\widehat{\theta}(\boldsymbol{x})$ Jackknife used to reduce bias: set $\widehat{\theta}_{(-i)}=\widehat{\theta}\left(\boldsymbol{x}_{(-i)}\right)$, and $\tilde{\theta}=\frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{(-i)}$

$$
\text { If } \mathbb{E}\left(\widehat{\theta}_{n}\right)=\theta+O\left(n^{-1}\right) \text { then } \mathbb{E}\left(\tilde{\theta}_{n}\right)=\theta+O\left(n^{-2}\right) .
$$

See also leave-one-out cross validation, for $\widehat{m}(\cdot)$

$$
\text { mse }=\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\widehat{m}_{(-i)}\left(x_{i}\right)\right]^{2}
$$

Boostrap estimate is based on bootstrap samples: set $\widehat{\theta}_{(b)}=\widehat{\theta}\left(\boldsymbol{x}_{(b)}\right)$, and $\tilde{\theta}=\frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{(b)}$, where $\boldsymbol{x}_{(b)}$ is a vector of size n, where values are drawn from $\left\{x_{1}, \cdots, x_{n}\right\}$, with replacement. And then use the law of large numbers... See Efron (1979).

Hold-Out, Cross Validation, Bootstrap

Hold-out: Split $\{1, \cdots, n\}$ into T (training) and V (validation)
Train the model on $\left\{\left(y_{i}, \boldsymbol{x}_{i}\right), i \in T\right\}$ and compute

$$
\widehat{R}=\frac{1}{\#(V)} \sum_{i \in V} \ell\left(y_{i}, \widehat{m}\left(\boldsymbol{x}_{i}\right)\right.
$$

k-fold cross validation: Split $\{1, \cdots, n\}$ into I_{1}, \cdots, I_{k}. Set $I_{\bar{j}}=\{1, \cdots, n\} \backslash I_{j}$ Train model on $I_{\bar{j}}$ and compute

$$
\widehat{R}=\frac{1}{k} \sum_{j} R_{j} \text { where } R_{j}=\frac{k}{n} \sum_{i \in I_{j}} \ell\left(y_{i}, \widehat{m}_{\bar{j}}\left(\boldsymbol{x}_{i}\right)\right)
$$

Hold-Out, Cross Validation, Bootstrap

Leave-one-out bootstrap: generate I_{1}, \cdots, I_{B} bootstrapped samples from $\{1, \cdots, n\}$
set $n_{i}=\mathbf{1}_{i \notin I_{1}}+\cdots+\mathbf{1}_{i \notin I_{B}}$

$$
\widehat{R}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{b: i \notin I_{b}} \ell\left(y_{i}, \widehat{m}_{b}\left(\boldsymbol{x}_{i}\right)\right.
$$

Remark Probability that i th raw is not selection $\left(1-n^{-1}\right)^{n} \rightarrow e^{-1} \sim 36.8 \%$, cf training / validation samples $(2 / 3-1 / 3)$

Statistical Learning and Philosophical Issues

From $\left(y_{i}, \boldsymbol{x}_{i}\right)$, there are different stories behind, see Freedman (2005)

- the causal story : $x_{j, i}$ is usually considered as independent of the other covariates $x_{k, i}$. For all possible \boldsymbol{x}, that value is mapped to $m(\boldsymbol{x})$ and a noise is atatched, ε. The goal is to recover $m(\cdot)$, and the residuals are just the difference between the response value and $m(\boldsymbol{x})$.
- the conditional distribution story : for a linear model, we usually say that Y given $\boldsymbol{X}=\boldsymbol{x}$ is a $\mathcal{N}\left(m(\boldsymbol{x}), \sigma^{2}\right)$ distribution. $m(\boldsymbol{x})$ is then the conditional mean. Here $m(\cdot)$ is assumed to really exist, but no causal assumption is made, only a conditional one.
- the explanatory data story : there is no model, just data. We simply want to summarize information contained in \boldsymbol{x} 's to get an accurate summary, close to the response (i.e. $\left.\min \left\{\ell\left(\boldsymbol{y}_{i}, m\left(\boldsymbol{x}_{i}\right)\right)\right\}\right)$ for some loss function ℓ.

Machine Learning vs. Statistical Modeling

In machine learning, given some dataset $\left(\boldsymbol{x}_{i}, y_{i}\right)$, solve

$$
\widehat{m}(\cdot)=\underset{m(\cdot) \in \mathcal{F}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n} \ell\left(y_{i}, m\left(\boldsymbol{x}_{i}\right)\right)\right\}
$$

for some loss functions $\ell(\cdot, \cdot)$.
In statistical modeling, given some probability space $(\Omega, \mathcal{A}, \mathbb{P})$, assume that y_{i} are realization of i.i.d. variables $Y_{i}\left(\right.$ given $\left.\boldsymbol{X}_{i}=\boldsymbol{x}_{i}\right)$ with distribution F_{i}. Then solve

$$
\widehat{m}(\cdot)=\underset{m(\cdot) \in \mathcal{F}}{\operatorname{argmax}}\{\log \mathcal{L}(m(\boldsymbol{x}) ; \boldsymbol{y})\}=\underset{m(\cdot) \in \mathcal{F}}{\operatorname{argmax}}\left\{\sum_{i=1}^{n} \log f\left(y_{i} ; m\left(\boldsymbol{x}_{i}\right)\right)\right\}
$$

where $\log \mathcal{L}$ denotes the \log-likelihood.

Computational Aspects: Optimization

Econometrics, Statistics and Machine Learning rely on the same object: optimization routines.

A gradient descent/ascent algorithm A stochastic algorithm

Loss Functions

Fitting criteria are based on loss functions (also called cost functions). For a quantitative response, a popular one is the quadratic loss,
$\ell(y, m(\boldsymbol{x}))=[y-m(\boldsymbol{x})]^{2}$.
Recall that

$$
\left\{\begin{array}{l}
\mathbb{E}(Y)=\underset{m \in \mathbb{R}}{\operatorname{argmin}}\left\{\|Y-m\|_{\ell_{2}}^{2}\right\}=\underset{m \in \mathbb{R}}{\operatorname{argmin}}\left\{\mathbb{E}\left([Y-m]^{2}\right)\right\} \\
\operatorname{Var}(Y)=\min _{m \in \mathbb{R}}\left\{\mathbb{E}\left([Y-m]^{2}\right)\right\}=\mathbb{E}\left([Y-\mathbb{E}(Y)]^{2}\right)
\end{array}\right.
$$

The empirical version is

$$
\left\{\begin{array}{l}
\bar{y}=\underset{m \in \mathbb{R}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n} \frac{1}{n}\left[y_{i}-m\right]^{2}\right\} \\
s^{2}=\min _{m \in \mathbb{R}}\left\{\sum_{i=1}^{n} \frac{1}{n}\left[y_{i}-m\right]^{2}\right\}=\sum_{i=1}^{n} \frac{1}{n}\left[y_{i}-\bar{y}\right]^{2}
\end{array}\right.
$$

Loss Functions

$\boldsymbol{\operatorname { R e m a r k }} \operatorname{median}(\boldsymbol{y})=\underset{m \in \mathbb{R}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n} \frac{1}{n}\left|y_{i}-m\right|\right\}$
Quadratic loss function $\ell(a, b)^{2}=(a-b)^{2}$,

$$
\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}\right)^{2}=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}\|_{\ell_{2}}^{2}
$$

Absolute loss function $\ell(a, b)=|a-b|$

$$
\sum_{i=1}^{n}\left|y_{i}-\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}\right|=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}\|_{\ell_{1}}
$$

Loss Functions

Quadratic loss function $\ell_{2}(x, y)^{2}=(x-y)^{2}$,
Absolute loss function $\ell_{1}(x, y)=|x-y|$
Quantile loss function $\ell_{\tau}(x, y)=\left|(x-y)\left(\tau-\mathbf{1}_{x \leq y}\right)\right|$
Huber loss function

$$
\ell_{\tau}(x, y)= \begin{cases}\frac{1}{2}(x-x)^{2} & \text { for }|x-y| \leq \tau \\ \tau|x-y|-\frac{1}{2} \tau^{2} & \text { otherwise }\end{cases}
$$

i.e. quadratic when $|x-y| \leq \tau$ and linear otherwise.

Loss Functions

For classification: misclassification loss function

$$
\begin{gathered}
\ell(x, y)=\mathbf{1}_{x \neq y} \text { or } \ell(x, y)=\mathbf{1}_{\operatorname{sign}(x) \neq \operatorname{sign}(y)} \\
\ell_{\tau}(x, y)=\tau \mathbf{1}_{\operatorname{sign}(x)<0, \operatorname{sign}(y)>0}+[1-\tau] \mathbf{1}_{\operatorname{sign}(x)>0, \operatorname{sign}(y)<0}
\end{gathered}
$$

For $\{-1,+1\}$ classes,
Hinge loss ('maximum-margin' classification) $\ell(x, y)=(1-x y)_{+}$
Logistic $/ \log \operatorname{loss} \ell(x, y)=\log \left[1+e^{-x y}\right]$
Squared Loss $\ell(x, y)=[x-y]^{2}=[1-x y]^{2}$

Linear Predictors

In the linear model, least square estimator yields

$$
\widehat{\boldsymbol{y}}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}=\underbrace{\boldsymbol{X}\left[\boldsymbol{X}^{\top} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{\top}}_{\boldsymbol{H}} \boldsymbol{Y}
$$

We have a linear predictor if the fitted value \widehat{y} at point \boldsymbol{x} can be written

$$
\widehat{y}=\widehat{m}(\boldsymbol{x})=\sum_{i=1}^{n} \boldsymbol{S}_{\boldsymbol{x}, i} y_{i}=\boldsymbol{S}_{\boldsymbol{x}}^{\boldsymbol{\top}} \boldsymbol{y}
$$

where $\boldsymbol{S}_{\boldsymbol{x}}$ is some vector of weights (called smoother vector), related to a $n \times n$ smoother matrix,

$$
\widehat{y}=S y
$$

where prediction is done at points \boldsymbol{x}_{i} 's.

Degrees of Freedom and Model Complexity

E.g.

$$
\boldsymbol{S}_{\boldsymbol{x}}=\boldsymbol{X}\left[\boldsymbol{X}^{\top} \boldsymbol{X}\right]^{-1} \boldsymbol{x}
$$

that is related to the hat matrix, $\widehat{\boldsymbol{y}}=\boldsymbol{H} \boldsymbol{y}$.
Note that

$$
T=\frac{\|\boldsymbol{S} \boldsymbol{Y}-\boldsymbol{H} \boldsymbol{Y}\|}{\operatorname{trace}\left([\boldsymbol{S}-\boldsymbol{H}]^{\mathrm{\top}}[\boldsymbol{S}-\boldsymbol{H}]\right)}
$$

can be used to test a linear assumtion: if the model is linear, then T has a Fisher distribution.

In the context of linear predictors, $\operatorname{trace}(\boldsymbol{S})$ is usually called equivalent number of parameters and is related to n - effective degrees of freedom (as in Ruppert et al. (2003)).

Model Evaluation

In linear models, the R^{2} is defined as the proportion of the variance of the the response y that can be obtained using the predictors.

But maximizing the R^{2} usually yields overfit (or unjustified optimism in Berk (2008)).

In linear models, consider the adjusted R^{2},

$$
\bar{R}^{2}=1-\left[1-R^{2}\right] \frac{n-1}{n-p-1}
$$

where p is the number of parameters (or more generally trace (\boldsymbol{S})).

Model Evaluation

Alternatives are based on the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), based on a penalty imposed on some criteria (the logarithm of the variance of the residuals),

$$
\begin{gathered}
A I C=\log \left(\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\widehat{y}_{i}\right]^{2}\right)+\frac{2 p}{n} \\
B I C=\log \left(\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\widehat{y}_{i}\right]^{2}\right)+\frac{\log (n) p}{n}
\end{gathered}
$$

In a more general context, replace p by $\operatorname{trace}(\boldsymbol{S})$

Goodhart's Law

'when a measure becomes a target, it ceases to be a good measure', by Charles Goodhart

Occam's Razor

Between two models which explain as well the data, choose the simplest one

Machine Learning: usually need to tradeoff between the training error and model complexity

$$
\widehat{m}=\underset{m}{\operatorname{argmin}}\{\ell(Y, m(\boldsymbol{X}))+\Omega(m)\}
$$

Occam's Razor

$$
\widehat{m}=\underset{m}{\operatorname{argmin}}\{\ell(Y, m(\boldsymbol{X})+\Omega(m)\}
$$

where $\Omega(m)$ is a regularizer, that characterizes the complexity of the model.

Model Evaluation

One can also consider the expected prediction error (with a probabilistic model)

$$
\mathbb{E}[\ell(Y, \widehat{m}(\boldsymbol{X})]
$$

We cannot claim (using the law of large number) that

$$
\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \widehat{m}\left(\boldsymbol{x}_{i}\right)\right) \stackrel{\text { a.s. }}{\nrightarrow} \mathbb{E}[\ell(Y, m(\boldsymbol{X})]
$$

since \widehat{m} depends on $\left(y_{i}, \boldsymbol{x}_{i}\right)$'s.
Natural option : use two (random) samples, a training one and a validation one.
Alternative options, use cross-validation, leave-one-out or k-fold.

Underfit / Overfit and Variance - Mean Tradeoff

Goal in predictive modeling: reduce uncertainty in our predictions.
Need more data to get a better knowledge.
Unfortunately, reducing the error of the prediction on a dataset does not generally give a good generalization performance
\longrightarrow need a training and a validation dataset

Overfit, Training vs. Validation and Complexity

 complexity \longleftrightarrow polynomial degree
Overfit, Training vs. Validation and Complexity

 complexity \longleftrightarrow number of neighbors (k)
Themes in Data Science

Predictive Capability we want here to have a model that predict well for new observations

Bias-Variance Tradeoff A very smooth prediction has less variance, but a large bias. We need to find a good balance between the bias and the variance Loss Functions In machine learning, goodness of fit is discussed based on disparities between predicted values, and observed one, based on some loss function

Tuning or Meta Parameters Choice will be made in terms of tuning parameters Interpretability Does it matter to have a good model if we cannot interpret it ?

Coding Issues Most of the time, there are no analytical expression, just an alogrithm that should converge to some (possibly) optimal value

Data Data collection is a crucial issue (but will not be discussed here)

Scalability Issues

Dealing with big (or massive) datasets, large number of observations (n) and/or large number of predictors (features or covariates, k).

Ability to parallelize algorithms might be important (map-reduce).

n can be large, but limited (portfolio size)
large variety k large volume $n k$
\rightarrow Feature Engineering

Part 3.
Application to Classification

Econometric Based Models in Actuarial Science

Consider an i.i.d. sample $\left\{y_{1}, \cdots, y_{n}\right\}$ with $y_{i} \in\{0,1\}$,

$$
\mathbb{P}\left(Y_{i}=y_{i}\right)=\pi^{y_{i}}[1-\pi]^{1-y_{i}}, \text { with } y_{i} \in\{0,1\}
$$

where $\pi \in[0,1]$, so that $\mathbb{P}\left(Y_{i}=1\right)=\pi$ and $\mathbb{P}\left(Y_{i}=0\right)=1-\pi$.
The likelihood is

$$
\mathcal{L}(\pi ; \boldsymbol{y})=\prod_{i=1}^{n} \mathbb{P}\left(Y_{i}=y_{i}\right)=\prod_{i=1}^{n} \pi^{y_{i}}[1-\pi]^{1-y_{i}}
$$

and the log-likelihood is

$$
\log \mathcal{L}(\pi ; \boldsymbol{y})=\sum_{i=1}^{n} y_{i} \log [\pi]+\left(1-y_{i}\right) \log [1-\pi]
$$

The first order condition is

$$
\frac{\partial \log \mathcal{L}(\pi ; \boldsymbol{y})}{\partial \pi}=\sum_{i=1}^{n} \frac{y_{i}}{\pi}-\frac{1-y_{i}}{1-\pi}=0, \text { i.e. } \pi^{\star}=\bar{y}
$$

Econometric Based Models in Actuarial Science

Assume that $\mathbb{P}\left(Y_{i}=1\right)=\pi_{i}$,

$$
\operatorname{logit}\left(\pi_{i}\right)=\boldsymbol{X}_{i}^{\prime} \boldsymbol{\beta}, \text { where } \operatorname{logit}\left(\pi_{i}\right)=\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)
$$

or

$$
\pi_{i}=\operatorname{logit}^{-1}\left(\boldsymbol{X}_{i}^{\prime} \boldsymbol{\beta}\right)=\frac{\exp \left[\boldsymbol{X}_{i}^{\prime} \boldsymbol{\beta}\right]}{1+\exp \left[\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right]}
$$

The log-likelihood is
$\log \mathcal{L}(\boldsymbol{\beta})=\sum_{i=1}^{n} y_{i} \log \left(\pi_{i}\right)+\left(1-y_{i}\right) \log \left(1-\pi_{i}\right)=\sum_{i=1}^{n} y_{i} \log \left(\pi_{i}(\boldsymbol{\beta})\right)+\left(1-y_{i}\right) \log \left(1-\pi_{i}(\boldsymbol{\beta})\right)$
and the first order conditions are solved numerically

$$
\frac{\partial \log \mathcal{L}(\boldsymbol{\beta})}{\partial \beta_{k}}=\sum_{i=1}^{n} X_{k, i}\left[y_{i}-\pi_{i}(\boldsymbol{\beta})\right]=0
$$

Logistic Classification

It is a linear classifier since we have a linear separation between the \bullet 's and the \bullet 's.
Let $m(\boldsymbol{x})=\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})$.

With a logistic regression, we can get a prediction

$$
\widehat{m}(\boldsymbol{x})=\frac{\exp \left[\boldsymbol{x}^{\boldsymbol{\top}} \widehat{\boldsymbol{\beta}}\right]}{1+\exp \left[\boldsymbol{x}^{\boldsymbol{\top}} \widehat{\boldsymbol{\beta}}\right]}
$$

Is that the 'best' model we can get from the data? What if n and/or k are very large?

Why a Logistic and not a Probit Regression?

Bliss (1934) suggested a model such that

$$
\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=H\left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right) \text { where } H(\cdot)=\Phi(\cdot)
$$

the c.d.f. of the $\mathcal{N}(0,1)$ distribution. This is the probit model. This yields a latent model, $y_{i}=\mathbf{1}\left(y_{i}^{\star}>0\right)$ where

$$
y_{i}^{\star}=\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i} \text { is a nonobservable score. }
$$

In the logistic regression, we model the odds ratio,

$$
\begin{gathered}
\frac{\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})}{\mathbb{P}(Y \neq 1 \mid \boldsymbol{X}=\boldsymbol{x})}=\exp \left[\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}\right] \\
\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=H\left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right) \text { where } H(\cdot)=\frac{\exp [\cdot]}{1+\exp [\cdot]}
\end{gathered}
$$

Soit p la population : représentons par $d p$ l'accroissement infiniment petit qu'elle recoit pendant un temps infiniment court $d t$. Si la population croissait en progression géométrique, nous aurions l'équation $\frac{d p}{d t}=m p$. Mais comme la vitesse d'accroisse ment de la population est retardée par l'augmentation mème du ment de la population est retardee par laagmentation mème du
nombre des habitans, nous devrons retrancher de $m p$ une fonction inconnue de p; de manière que la formule à intégrer deviendra

$$
\frac{d p}{d t}=m p-\varphi(p)
$$

L'hypothèse la plus simple que l'on puisse faire sur la forme de la fonction ρ, est de supposer $\varphi(p)=n p^{3}$. On trouve alor pour intégrale de l'équation ci-dessus

$$
t=\frac{1}{m}[\log \cdot p-\log \cdot(m-n p)]+\text { constante },
$$

et il suffira de trois observations pour déterminer les deux coefficiens constans m et n et la constante arbitraire.
En résolvant la dernière équation par rapport à p, il vient

$$
\begin{equation*}
p=\frac{m p^{\prime} e^{m t}}{n p^{\prime} e^{m t}+m-n p^{\prime}} \tag{1}
\end{equation*}
$$

en désignant par p^{\prime} la population quir répond à $t=0$, et par e l base des logarithmes népériens. Si l'on fait $t=\infty$, on voit que la valeur de p correspondante est $\mathrm{P}=\frac{m}{n}$. Telle est donc la limite supérieure de la population.
which is the c.d.f. of the logistic variable, see Verhulst (1845)

Predictive Classifier

To go from a score to a class:
if $s(\boldsymbol{x})>s$, then $\widehat{Y}(\boldsymbol{x})=1$ and $s(\boldsymbol{x}) \leq s$, then $\widehat{Y}(\boldsymbol{x})=0$
Plot $T P(s)=\mathbb{P}[\widehat{Y}=1 \mid Y=1]$ against $F P(s)=\mathbb{P}[\widehat{Y}=1 \mid Y=0]$

Comparing Classifiers: Accuracy and Kappa

Kappa statistic κ compares an Observed Accuracy with an Expected Accuracy (random chance), see Landis \& Koch (1977).

	$Y=0$	$Y=1$	
$\widehat{Y}=0$	TN	FN	TN+FN
$\widehat{Y}=1$	FP	TP	FP+TP
	TN+FP	FN+TP	n

See also Observed and Random Confusion Tables

$$
\text { total accuracy }=\frac{T P+T N}{n} \sim 90.14 \%
$$

random accuracy $=\frac{[T N+F P] \cdot[T P+F N]+[T P+F P] \cdot[T N+F N]}{n^{2}} \sim 51.93 \%$

$$
\kappa=\frac{\text { total accuracy }- \text { random accuracy }}{1-\text { random accuracy }} \sim 79.48 \%
$$

On Model Selection

Consider predictions obtained from a linear model and a nonlinear model, either on the training sample, or on a validation sample,

Penalization and Support Vector Machines

SVMs were developed in the 90's based on previous work, from Vapnik \& Lerner (1963), see also Vailant (1984).

Assume that points are linearly separable, i.e. there is $\boldsymbol{\omega}$ and b such that

$$
Y=\left\{\begin{array}{l}
+1 \text { if } \boldsymbol{\omega}^{\top} \boldsymbol{x}+b>0 \\
-1 \text { if } \boldsymbol{\omega}^{\top} \boldsymbol{x}+b<0
\end{array}\right.
$$

Problem: infinite number of solutions, need a good one, that separate the data, (somehow) far from the data.
maximize the distance s.t. $H_{\omega, b}$ separates ± 1 points, i.e.

$$
\min \left\{\frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{\omega}\right\} \text { s.t. } Y_{i}\left(\boldsymbol{\omega}^{\top} \boldsymbol{x}_{i}+b\right) \geq 1, \forall i .
$$

Penalization and Support Vector Machines

Define support vectors as observations such that

$$
\left|\boldsymbol{\omega}^{\top} \boldsymbol{x}_{i}+b\right|=1
$$

The margin is the distance between hyperplanes defined by support vectors. The distance from support vectors to $H_{\boldsymbol{\omega}, b}$ is $\|\boldsymbol{\omega}\|^{-1}$

Now, what about the non-separable case?
Here, we cannot have $y_{i}\left(\boldsymbol{\omega}^{\top} \boldsymbol{x}_{i}+b\right) \geq 1 \forall i$.

Penalization and Support Vector Machines

Thus, introduce slack variables,

$$
\left\{\begin{array}{l}
\boldsymbol{\omega}^{\top} \boldsymbol{x}_{i}+b \geq+1-\xi_{i} \text { when } y_{i}=+1 \\
\boldsymbol{\omega}^{\top} \boldsymbol{x}_{i}+b \leq-1+\xi_{i} \text { when } y_{i}=-1
\end{array}\right.
$$

where $\xi_{i} \geq 0 \forall i$. There is a classification error when $\xi_{i}>1$.

The idea is then to solve

$$
\min \left\{\frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{\omega}+C \mathbf{1}^{\top} \mathbf{1}_{\boldsymbol{\xi}>1}\right\}, \text { instead of min }\left\{\frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{\omega}\right\}
$$

Support Vector Machines, with a Linear Kernel

So far,

$$
d\left(\boldsymbol{x}_{0}, H_{\boldsymbol{\omega}, b}\right)=\min _{\boldsymbol{x} \in H_{\boldsymbol{\omega}, b}}\left\{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}\right\|_{\ell_{2}}\right\}
$$

where $\|\cdot\|_{\ell_{2}}$ is the Euclidean $\left(\ell_{2}\right)$ norm,

$$
\left\|x_{0}-x\right\|_{\ell_{2}}=\sqrt{\left(\boldsymbol{x}_{0}-\boldsymbol{x}\right) \cdot\left(\boldsymbol{x}_{0}-\boldsymbol{x}\right)}=\sqrt{\boldsymbol{x}_{0} \cdot \boldsymbol{x}_{0}-2 \boldsymbol{x}_{0} \cdot \boldsymbol{x}+\boldsymbol{x} \cdot \boldsymbol{x}}
$$

More generally,

$$
d\left(\boldsymbol{x}_{0}, H_{\boldsymbol{\omega}, b}\right)=\min _{\boldsymbol{x} \in H_{\boldsymbol{\omega}, b}}\left\{\left\|\boldsymbol{x}_{0}-\boldsymbol{x}\right\|_{k}\right\}
$$

where $\|\cdot\|_{k}$ is some kernel-based norm,

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}\right\|_{k}=\sqrt{k\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{0}\right)-2 k\left(\boldsymbol{x}_{0}, \boldsymbol{x}\right)+k(\boldsymbol{x} \cdot \boldsymbol{x})}
$$

Support Vector Machines, with a Non Linear Kernel

Heuristics on SVMs

An interpretation is that data aren't linearly seperable in the original space, but might be separare by some kernel transformation,

Penalization and Mean Square Error

Consider the quadratic loss function, $\ell(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$, the risk function becomes the mean squared error of the estimate,

$$
R(\theta, \hat{\theta})=\mathbb{E}(\theta-\hat{\theta})^{2}=\underbrace{[\theta-\mathbb{E}(\hat{\theta})]^{2}}_{\text {bias }^{2}}+\underbrace{\mathbb{E}(\mathbb{E}[\hat{\theta}]-\hat{\theta})^{2}}_{\text {variance }}
$$

Get back to the intial example, $y_{i} \in\{0,1\}$, with $p=\mathbb{P}(Y=1)$.
Consider the estimate that minimizes the mse, that can be writen $\widehat{p}=(1-\alpha) \bar{y}$, then

$$
\operatorname{mse}(\widehat{p})=\alpha^{2} p^{2}+(1-\alpha)^{2} \frac{p(1-p)}{n}
$$

then $\alpha^{\star}=\frac{1-p}{1+(n-1) p}$.
i.e.unbiased estimators have nice mathematical properties, but can be improved.

Linear Model

Consider some linear model $y_{i}=\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}$ for all $i=1, \cdots, n$.
Assume that ε_{i} are i.i.d. with $\mathbb{E}(\varepsilon)=0$ (and finite variance). Write

$$
\underbrace{\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)}_{\boldsymbol{y}, n \times 1}=\underbrace{\left(\begin{array}{cccc}
1 & x_{1,1} & \cdots & x_{1, k} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n, 1} & \cdots & x_{n, k}
\end{array}\right)}_{\boldsymbol{X}, n \times(k+1)} \underbrace{\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right)}_{\boldsymbol{\beta},(k+1) \times 1}+\underbrace{\left(\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)}_{\varepsilon, n \times 1} .
$$

Assuming $\boldsymbol{\varepsilon} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbb{I}\right)$, the maximum likelihood estimator of $\boldsymbol{\beta}$ is

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}\left\{\left\|\boldsymbol{y}-\boldsymbol{X}^{\top} \boldsymbol{\beta}\right\|_{\ell_{2}}\right\}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

... under the assumtption that $\boldsymbol{X}^{\top} \boldsymbol{X}$ is a full-rank matrix.
What if $\boldsymbol{X}_{i}^{\top} \boldsymbol{X}$ cannot be inverted? Then $\widehat{\boldsymbol{\beta}}=\left[\boldsymbol{X}^{\top} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ does not exist, but $\widehat{\boldsymbol{\beta}}_{\lambda}=\left[\boldsymbol{X}^{\top} \boldsymbol{X}+\lambda \mathbb{I}\right]^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ always exist if $\lambda>0$.

Ridge Regression

The estimator $\widehat{\boldsymbol{\beta}}=\left[\boldsymbol{X}^{\top} \boldsymbol{X}+\lambda \mathbb{I}\right]^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ is the Ridge estimate obtained as solution of

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\{\sum_{i=1}^{n}\left[y_{i}-\beta_{0}-\boldsymbol{x}_{i}^{\boldsymbol{\top}} \boldsymbol{\beta}\right]^{2}+\lambda \underbrace{\|\boldsymbol{\beta}\|_{\ell_{2}}}_{\mathbf{1}^{\top} \boldsymbol{\beta}^{2}}\}
$$

for some tuning parameter λ. One can also write

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} ;\|\boldsymbol{\beta}\|_{\ell_{2}} \leq s}{\operatorname{argmin}}\left\{\left\|\boldsymbol{Y}-\boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{\beta}\right\|_{\ell_{2}}\right\}
$$

Remark Note that we solve $\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\{\operatorname{objective}(\boldsymbol{\beta})\}$ where

$$
\operatorname{objective}(\boldsymbol{\beta})=\underbrace{\mathcal{L}(\boldsymbol{\beta})}_{\text {training loss }}+\underbrace{\mathcal{R}(\boldsymbol{\beta})}_{\text {regularization }}
$$

Going further on sparcity issues

In severall applications, k can be (very) large, but a lot of features are just noise: $\beta_{j}=0$ for many j 's. Let s denote the number of relevent features, with $s \ll k$, cf Hastie, Tibshirani \& Wainwright (2015),

$$
s=\operatorname{card}\{\mathcal{S}\} \text { where } \mathcal{S}=\left\{j ; \beta_{j} \neq 0\right\}
$$

The model is now $y=\boldsymbol{X}_{\mathcal{S}}^{\top} \boldsymbol{\beta}_{\mathcal{S}}+\varepsilon$, where $\boldsymbol{X}_{\mathcal{S}}^{\top} \boldsymbol{X}_{\mathcal{S}}$ is a full rank matrix.

Going further on sparcity issues

Define $\|\boldsymbol{a}\|_{\ell_{0}}=\sum \mathbf{1}\left(\left|a_{i}\right|>0\right)$. Ici $\operatorname{dim}(\boldsymbol{\beta})=s$.
We wish we could solve

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} ;\|\boldsymbol{\beta}\|_{\ell_{0}} \leq s}{\operatorname{argmin}}\left\{\left\|\boldsymbol{Y}-\boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{\beta}\right\|_{\ell_{2}}\right\}
$$

Problem: it is usually not possible to describe all possible constraints, since $\binom{s}{k}$ coefficients should be chosen here (with k (very) large).
Idea: solve the dual problem

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} ;\left\|\boldsymbol{Y}-\boldsymbol{X}^{\top} \boldsymbol{\beta}\right\|_{\ell_{2}} \leq h}{\operatorname{argmin}}\left\{\|\boldsymbol{\beta}\|_{\ell_{0}}\right\}
$$

where we might convexify the ℓ_{0} norm, $\|\cdot\|_{\ell_{0}}$.

Regularization ℓ_{0}, ℓ_{1} and ℓ_{2}

$\min \left\{\|\boldsymbol{\beta}\|_{\ell_{\star}}\right\}$ subject to $\left\|\boldsymbol{Y}-\boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{\beta}\right\|_{\ell_{2}} \leq h$

Going further on sparcity issues

On $[-1,+1]^{k}$, the convex hull of $\|\boldsymbol{\beta}\|_{\ell_{0}}$ is $\|\boldsymbol{\beta}\|_{\ell_{1}}$
On $[-a,+a]^{k}$, the convex hull of $\|\boldsymbol{\beta}\|_{\ell_{0}}$ is $a^{-1}\|\boldsymbol{\beta}\|_{\ell_{1}}$
Hence,

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta} ;\|\boldsymbol{\beta}\|_{\ell_{1}} \leq \tilde{s}}{\operatorname{argmin}}\left\{\left\|\boldsymbol{Y}-\boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{\beta}\right\|_{\ell_{2}}\right\}
$$

is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization problem

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}\left\{\left\|\boldsymbol{Y}-\boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{\beta}\right\|_{\ell_{2}}+\lambda\|\boldsymbol{\beta}\|_{\ell_{1}}\right\}
$$

LASSO Least Absolute Shrinkage and Selection Operator

$$
\widehat{\boldsymbol{\beta}} \in \operatorname{argmin}\left\{\left\|\boldsymbol{Y}-\boldsymbol{X}^{\top} \boldsymbol{\beta}\right\|_{\ell_{2}}+\lambda\|\boldsymbol{\beta}\|_{\ell_{1}}\right\}
$$

is a convex problem (several algorithms ${ }^{\star}$), but not strictly convex (no unicity of the minimum). Nevertheless, predictions $\widehat{\boldsymbol{y}}=\boldsymbol{x}^{\boldsymbol{\top}} \widehat{\boldsymbol{\beta}}$ are unique

* MM, minimize majorization, coordinate descent Hunter (2003).

Optimal LASSO Penalty

Use cross validation, e.g. K-fold,

$$
\widehat{\boldsymbol{\beta}}_{(-k)}(\lambda)=\operatorname{argmin}\left\{\sum_{i \notin \mathcal{I}_{k}}\left[y_{i}-\boldsymbol{x}_{i}^{\boldsymbol{\top}} \boldsymbol{\beta}\right]^{2}+\lambda\|\boldsymbol{\beta}\|\right\}
$$

then compute the sum of the squared errors,

$$
Q_{k}(\lambda)=\sum_{i \in \mathcal{I}_{k}}\left[y_{i}-\boldsymbol{x}_{i}^{\boldsymbol{\top}} \widehat{\boldsymbol{\beta}}_{(-k)}(\lambda)\right]^{2}
$$

and finally solve

$$
\lambda^{\star}=\operatorname{argmin}\left\{\bar{Q}(\lambda)=\frac{1}{K} \sum_{k} Q_{k}(\lambda)\right\}
$$

Note that this might overfit, so Hastie, Tibshiriani \& Friedman (2009) suggest the largest λ such that

$$
\bar{Q}(\lambda) \leq \bar{Q}\left(\lambda^{\star}\right)+\operatorname{se}\left[\lambda^{\star}\right] \text { with } \operatorname{se}[\lambda]^{2}=\frac{1}{K^{2}} \sum_{k=1}^{K}\left[Q_{k}(\lambda)-\bar{Q}(\lambda)\right]^{2}
$$

LASSO

Penalization and GLM's

The logistic regression is based on empirical risk, when $y \in\{0,1\}$

$$
-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}-\log \left[1+\exp \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right]\right)
$$

or, if $y \in\{-1,+1\}$,

$$
\frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)\right] .
$$

A regularized version with the ℓ_{1} norm is the LASSO logistic regression

$$
\frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(y_{i} \boldsymbol{x}_{i}^{\boldsymbol{\top}} \boldsymbol{\beta}\right)\right]+\lambda\|\boldsymbol{\beta}\|_{1}
$$

or more generaly, with smoothing functions

$$
\frac{1}{n} \sum_{i=1}^{n} \log \left[1+\exp \left(y_{i} g\left(\boldsymbol{x}_{i}\right)\right)\right]+\lambda\|g\|
$$

Classification (and Regression) Trees, CART

one of the predictive modelling approaches used in statistics, data mining and machine learning [...] In tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. (Source: wikipedia).

Classification (and Regression) Trees, CART

To split N into two $\left\{N_{L}, N_{R}\right\}$, consider

$$
\mathcal{I}\left(N_{L}, N_{R}\right)=\sum_{x \in\{L, R\}} \frac{n_{x}}{n} \mathcal{I}\left(N_{x}\right)
$$

e.g. Gini index (used originally in CART, see Breiman et al. (1984))

$$
\operatorname{gini}\left(N_{L}, N_{R}\right)=-\sum_{x \in\{L, R\}} \frac{n_{x}}{n} \sum_{y \in\{0,1\}} \frac{n_{x, y}}{n_{x}}\left(1-\frac{n_{x, y}}{n_{x}}\right)
$$

and the cross-entropy (used in C 4.5 and C5.0)

$$
\operatorname{entropy}\left(N_{L}, N_{R}\right)=-\sum_{x \in\{L, R\}} \frac{n_{x}}{n} \sum_{y \in\{0,1\}} \frac{n_{x, y}}{n_{x}} \log \left(\frac{n_{x, y}}{n_{x}}\right)
$$

Classification (and Regression) Trees, CART

Pruning Trees

One can grow a big tree, until leaves have a (preset) small number of observations, and then possibly go back and prune branches (or leaves) that do not improve gains on good classification sufficiently.

Or we can decide, at each node, whether we split, or not.
In trees, overfitting increases with the number of steps, and leaves. Drop in impurity at node N is defined as

$$
\Delta \mathcal{I}\left(N_{L}, N_{R}\right)=\mathcal{I}(N)-\mathcal{I}\left(N_{L}, N_{R}\right)=\mathcal{I}(N)-\left(\frac{n_{L}}{n} \mathcal{I}\left(N_{L}\right)-\frac{n_{R}}{n} \mathcal{I}\left(N_{R}\right)\right)
$$

(Fast) Trees with Categorical Features

Consider some simple categorical covariate, $x \in\{A, B, C, \cdots, Y, Z\}$, defined from a continuous latent variable $\widetilde{x} \sim \mathcal{U}([0,1])$.

Compute $\bar{y}(x)=\frac{1}{n_{x}} \sum_{i: x_{i}=x} y_{i} \approx \mathbb{E}[Y \mid X=x]$ and sort them

$$
\bar{y}\left(x_{1: 26}\right) \leq \bar{y}\left(x_{2: 26}\right) \leq \cdots \leq \bar{y}\left(x_{25: 26}\right) \leq \bar{y}\left(x_{26: 26}\right) .
$$

(Fast) Trees with Categorical Features

Then the split is done base on sample

$$
x \in\left\{x_{1: 26}, \cdots, x_{j: 26}\right\}
$$

vs. $x \in\left\{x_{j+1: 26}, \cdots, x_{26: 26}\right\}$

Bagging

Bootstrapped Aggregation (Bagging), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification (Source: wikipedia).

It is an ensemble method that creates multiple models of the same type from different sub-samples of the same dataset [boostrap]. The predictions from each separate model are combined together to provide a superior result [aggregation].
\rightarrow can be used on any kind of model, but interesting for trees, see Breiman (1996)
Boostrap can be used to define the concept of margin,

$$
\operatorname{margin}_{i}=\frac{1}{B} \sum_{b=1}^{B} \mathbf{1}\left(\widehat{y}_{i}=y_{i}\right)-\frac{1}{B} \sum_{b=1}^{B} \mathbf{1}\left(\widehat{y}_{i} \neq y_{i}\right)
$$

Remark Probability that i th raw is not selection $\left(1-n^{-1}\right)^{n} \rightarrow e^{-1} \sim 36.8 \%$, cf training / validation samples $(2 / 3-1 / 3)$

Bagging : Bootstrap Aggregation

For classes, $\tilde{m}(\boldsymbol{x})=\underset{y}{\operatorname{argmax}} \sum_{b=1}^{B} \mathbf{1}\left(y=\widehat{m}^{(b)}\right)$.
For probabilities,
$\tilde{m}(\boldsymbol{x})=\frac{1}{n} \sum_{b=1}^{B} \widehat{m}^{(b)}(\boldsymbol{x})=\frac{1}{n} \sum_{b=1}^{B} \sum_{j=1}^{k_{b}} y_{i} \mathbf{1}\left(\boldsymbol{x}_{i} \in C_{j}\right)$.

Model Selection and Gini/Lorentz (on incomes)

Consider an ordered sample $\left\{y_{1}, \cdots, y_{n}\right\}$, then Lorenz curve is

$$
\left\{F_{i}, L_{i}\right\} \text { with } F_{i}=\frac{i}{n} \text { and } L_{i}=\frac{\sum_{j=1}^{i} y_{j}}{\sum_{j=1}^{n} y_{j}}
$$

The theoretical curve, given a distribution F, is

$$
u \mapsto L(u)=\frac{\int_{-\infty}^{F^{-1}(u)} t d F(t)}{\int_{-\infty}^{+\infty} t d F(t)}
$$

see Gastwirth (1972)

Model Selection and Gini/Lorentz
Gini index is the ratio of the areas $\frac{A}{A+B}$. Thus,

$$
\begin{aligned}
G & =\frac{2}{n(n-1) \bar{x}} \sum_{i=1}^{n} i \cdot x_{i: n}-\frac{n+1}{n-1} \\
& =\frac{1}{\mathbb{E}(Y)} \int_{0}^{\infty} F(y)(1-F(y)) d y
\end{aligned}
$$

Model Selection

Consider an ordered sample $\left\{y_{1}, \cdots, y_{n}\right\}$ of incomes, with $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$, then Lorenz curve is

$$
\left\{F_{i}, L_{i}\right\} \text { with } F_{i}=\frac{i}{n} \text { and } L_{i}=\frac{\sum_{j=1}^{i} y_{j}}{\sum_{j=1}^{n} y_{j}}
$$

We have observed losses y_{i} and premiums $\widehat{\pi}\left(\boldsymbol{x}_{i}\right)$. Consider an ordered sample by the model, see Frees, Meyers \& Cummins (2014), $\widehat{\pi}\left(\boldsymbol{x}_{1}\right) \geq \widehat{\pi}\left(\boldsymbol{x}_{2}\right) \geq \cdots \geq \widehat{\pi}\left(\boldsymbol{x}_{n}\right)$, then plot

$$
\left\{F_{i}, L_{i}\right\} \text { with } F_{i}=\frac{i}{n} \text { and } L_{i}=\frac{\sum_{j=1}^{i} y_{j}}{\sum_{j=1}^{n} y_{j}}
$$

Model Selection

A HISTORY OF IMPROVING SEGMENTATION

See Frees et al. (2010) or Tevet (2013).

Part 4.
Small Data and Bayesian Philosophy
"it's time to adopt modern Bayesian data analysis as standard procedure in our scientific practice and in our educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian analysis. We should be leaders of the move, not followers.
2. Modern Bayesian methods provide richer information, with greater flexibility and broader applicability than 20th century methods. Bayesian methods are intellectually coherent and intuitive.

Bayesian analyses are readily computed with modern software and hardware.
3. Null-hypothesis significance testing (NHST), with its reliance on p values, has many problems.

There is little reason to persist with NHST now that Bayesian methods are accessible to everyone.

My conclusion from those points is that we should do whatever we can to encourage the move to Bayesian data analysis." John Kruschke,
(quoted in Meyers \& Guszcza (2013))

Bayes vs. Frequentist, inference on heads/tails

Consider some Bernoulli sample $\boldsymbol{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, where $x_{i} \in\{0,1\}$.
X_{i} 's are i.i.d. $\mathcal{B}(p)$ variables, $f_{X}(x)=p^{x}[1-p]^{1-x}, x \in\{0,1\}$.
Standard frequentist approach

$$
\widehat{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\underset{p \in(0,1)}{\operatorname{argmax}}\{\underbrace{\prod_{i=1}^{n} f_{X}\left(x_{i}\right)}_{\mathcal{L}(p ; \boldsymbol{x})}\}
$$

From the central limit theorem

$$
\sqrt{n} \frac{\widehat{p}-p}{\sqrt{p(1-p)}} \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}(0,1) \text { as } n \rightarrow \infty
$$

we can derive an approximated 95% confidence interval

$$
\left[\widehat{p} \pm \frac{1.96}{\sqrt{n}} \sqrt{\widehat{p}(1-\widehat{p})}\right]
$$

Bayes vs. Frequentist, inference on heads/tails

Example out of 1,047 contracts, 159 claimed a loss

Small Data and Black Swans

Example [Operational risk] What if our sample is $\boldsymbol{x}=\{0,0,0,0,0\}$?
How would we derive a confidence interval for p ?
"INA's chief executive officer, dressed as Santa Claus, asked an unthinkable question: Could anyone predict the probability of two planes colliding in midair? Santa was asking his chief actuary, L. H. LongleyCook, to make a prediction based on no experience at all. There had never been a serious midair collision of commercial planes. Without any past experience or repetitive experimentation, any orthodox statistician had to answer Santa's question with a resounding no."

the theory
 $\xrightarrow{4}$ that would not die

 how bayes' rule cracked * the enigma code, hunted down russian submarines \& emerged triumphant from two centuries of controversy sharon bertsch mcgrayne
Bayes, the theory that would not die

Liu et al. (1996) claim that " Statistical methods with a Bayesian flavor [...] have long been used in the insurance industry".

History of Bayesian statistics, the theory that would not die by Sharon Bertsch McGrayne
"[Arthur] Bailey spent his first year in New York [in 1918] trying to prove to himself that 'all of the fancy actuarial [Bayesian] procedures of the casualty business were mathematically unsound.' After a year of intense mental struggle, however, realized to his consternation that actuarial sledgehammering worked" [...]

Bayes, the theory that would not die

[...] " He even preferred it to the elegance of frequentism. He positively liked formulae that described 'actual data . . . I realized that the hard-shelled underwriters were recognizing certain facts of life neglected by the statistical theorists.' He wanted to give more weight to a large volume of data than to the frequentists small sample; doing so felt surprisingly 'logical and reasonable'. He concluded that only a 'suicidal' actuary would use Fishers method of maximum likelihood, which assigned a zero probability to nonevents. Since many businesses file no insurance claims at all, Fishers method would produce premiums too low to cover future losses."

Bayes's theorem

Consider some hypothesis H and some evidence E, then

$$
\mathbb{P}_{E}(H)=\mathbb{P}(H \mid E)=\frac{\mathbb{P}(H \cap E)}{\mathbb{P}(E)}=\frac{\mathbb{P}(H) \cdot \mathbb{P}(E \mid H)}{\mathbb{P}(E)}
$$

Bayes rule,
$\{$ prior probability $\mathbb{P}(H)$
versus posterior probability after receiving evidence $E, \mathbb{P}_{E}(H)=\mathbb{P}(H \mid E)$.

In Bayesian (parametric) statistics, $H=\{\theta \in \Theta\}$ and $E=\{\boldsymbol{X}=\boldsymbol{x}\}$.
Bayes' Theorem,

$$
\pi(\theta \mid \boldsymbol{x})=\frac{\pi(\theta) \cdot f(\boldsymbol{x} \mid \theta)}{f(\boldsymbol{x})}=\frac{\pi(\theta) \cdot f(\boldsymbol{x} \mid \theta)}{\int f(\boldsymbol{x} \mid \theta) \pi(\theta) d \theta} \propto \pi(\theta) \cdot f(\boldsymbol{x} \mid \theta)
$$

Small Data and Black Swans

Consider sample $\boldsymbol{x}=\{0,0,0,0,0\}$.
Here the likelihood is

$$
\left\{\begin{array}{l}
f\left(x_{i} \mid \theta\right)=\theta^{x_{i}}[1-\theta]^{1-x_{i}} \\
f(\boldsymbol{x} \mid \theta)=\theta^{\boldsymbol{x}^{\top} \mathbf{1}}[1-\theta]^{n-\boldsymbol{x}^{\top} \mathbf{1}}
\end{array}\right.
$$

and we need a priori distribution $\pi(\cdot)$ e.g.
a beta distribution

$$
\begin{gathered}
\pi(\theta)=\frac{\theta^{\alpha}[1-\theta]^{\beta}}{B(\alpha, \beta)} \\
\pi(\theta \mid \boldsymbol{x})=\frac{\theta^{\alpha+\boldsymbol{x}^{\top} \mathbf{1}}[1-\theta]^{\beta+n-\boldsymbol{x}^{\top} \mathbf{1}}}{B\left(\alpha+\boldsymbol{x}^{\top} \mathbf{1}, \beta+n-\boldsymbol{x}^{\top} \mathbf{1}\right)}
\end{gathered}
$$

On Bayesian Philosophy, Confidence vs. Credibility

for frequentists, a probability is a measure of the the frequency of repeated events \rightarrow parameters are fixed (but unknown), and data are random
for Bayesians, a probability is a measure of the degree of certainty about values
\rightarrow parameters are random and data are fixed
"Bayesians: Given our observed data, there is a 95% probability that the true value of θ falls within the credible region
vs. Frequentists : There is a 95% probability that when I compute a confidence interval from data of this sort, the true value of θ will fall within it." in Vanderplas (2014)

Example see Jaynes (1976), e.g. the truncated exponential

On Bayesian Philosophy, Confidence vs. Credibility

Example What is a 95% confidence interval of a proportion? Here $\bar{x}=159$ and $n=1047$.

1. draw sets $\left(\tilde{x}_{1}, \cdots, \tilde{x}_{n}\right)_{k}$ with $X_{i} \sim \mathcal{B}(\bar{x} / n)$
2. compute for each set of values confidence intervals
3. determine the fraction of these confidence interval that contain \bar{x}
\rightarrow the parameter is fixed, and we guarantee that 95% of the confidence intervals will contain it.

On Bayesian Philosophy, Confidence vs. Credibility

Example What is 95% credible region of a proportion ? Here $\bar{x}=159$ and $n=1047$.

1. draw random parameters p_{k} with from the posterior distribution, $\pi(\cdot \mid \boldsymbol{x})$
2. sample sets $\left(\tilde{x}_{1}, \cdots, \tilde{x}_{n}\right)_{k}$ with $X_{i, k} \sim \mathcal{B}\left(p_{k}\right)$
3. compute for each set of values means \bar{x}_{k}
4. look at the proportion of those \bar{x}_{k} that are within this credible region $\left[\Pi^{-1}(.025 \mid \boldsymbol{x}) ; \Pi^{-1}(.975 \mid \boldsymbol{x})\right]$
\rightarrow the credible region is fixed, and we guarantee that 95% of possible values of \bar{x} will fall within it it.

Difficult concepts ? Difficult computations ?

We have a sample $\boldsymbol{x}=\left\{x_{1}, \cdots, x_{n}\right\}$ i.i.d. from distribution $f_{\theta}(\cdot)$.
In predictive modeling, we need $\mathbb{E}(g(X) \mid \boldsymbol{x})=\int g(x) f_{\theta \mid \boldsymbol{x}}(x) d x$ where

$$
f_{\theta \mid \boldsymbol{x}}(x)=\int f_{\theta}(x) \cdot \pi(\theta \mid x) d \theta
$$

while prior density (without information \boldsymbol{x}) was

$$
f_{\theta}(x)=\int f_{\theta}(x) \cdot \pi(\theta) d \theta
$$

How can we derive $\pi(\theta \mid \boldsymbol{x})$?
Can we sample from $\pi(\theta \mid \boldsymbol{x})$ (use monte carlo technique to approximate the integral)?

Computations not that simple... until the 90's : MCMC

Markov Chain

Stochastic process, $\left(X_{t}\right)_{t \in \mathbb{N}_{\star}}$, on some discrete space Ω

$$
\mathbb{P}\left(X_{t+1}=y \mid X_{t}=x, \underline{\boldsymbol{X}}_{t-1}=\underline{\boldsymbol{x}}_{t-1}\right)=\mathbb{P}\left(X_{t+1}=y \mid X_{t}=x\right)=P(x, y)
$$

where P is a transition probability, that can be stored in a transition matrix, $\boldsymbol{P}=\left[P_{x, y}\right]=[P(x, y)]$.
Observe that $\mathbb{P}\left(X_{t+k}=y \mid X_{t}=x\right)=P_{k}(x, y)$ where $\boldsymbol{P}^{k}=\left[P_{k}(x, y)\right]$.
Under some condition, $\lim _{n \rightarrow \infty} \boldsymbol{P}^{n}=\boldsymbol{\Lambda}=\left[\boldsymbol{\lambda}^{\top}\right]$,
Problem given a distribution $\boldsymbol{\lambda}$, is it possible to generate a Markov Chain that converges to this distribution?

Bonus Malus and Markov Chains

Ex no-claim bonus, see Lemaire (1995).

HONG KONG
Table B-9. Hong Kong System

Class	Premium	0	Class After 1 Claims	≥ 2
6	100	5	6	6
5	80	4	6	6
4	70	3	6	6
3	60	2	6	6
2	50	1	4	6
1	40	1	3	6

Starting class: 6.
Assume that the number of claims is
$N \sim \mathcal{P}(21.7 \%)$, so that $\mathbb{P}(N=0)=$ 80%.

Hastings-Metropolis

Back to our problem, we want to sample from $\pi(\theta \mid \boldsymbol{x})$
i.e. generate $\theta_{1}, \cdots, \theta_{n}, \cdots$ from $\pi(\theta \mid \boldsymbol{x})$.

Hastings-Metropolis sampler will generate a Markov Chain $\left(\theta_{t}\right)$ as follows,

- generate θ_{1}
- generate θ^{\star} and $U \sim \mathcal{U}([0,1])$,

$$
\begin{aligned}
& \text { compute } R=\frac{\pi\left(\theta^{\star} \mid \boldsymbol{x}\right)}{\pi\left(\theta_{t} \mid \boldsymbol{x}\right)} \frac{P\left(\theta_{t} \mid \theta^{\star}\right)}{P\left(\theta^{\star} \mid \theta_{t-1}\right)} \\
& \text { if } U<R \operatorname{set} \theta_{t+1}=\theta^{\star} \\
& \text { if } U \geq R \operatorname{set} \theta_{t+1}=\theta_{t}
\end{aligned}
$$

R is the acceptance ratio, we accept the new state θ^{\star} with probability $\min \{1, R\}$.

Hastings-Metropolis

Observe that

$$
R=\frac{\pi\left(\theta^{\star}\right) \cdot f\left(\boldsymbol{x} \mid \theta^{\star}\right)}{\pi\left(\theta_{t}\right) \cdot f\left(\boldsymbol{x} \mid \theta_{t}\right)} \frac{P\left(\theta_{t} \mid \theta^{\star}\right)}{P\left(\theta^{\star} \mid \theta_{t-1}\right)}
$$

In a more general case, we can have a Markov process, not a Markov chain.
E.g. $P\left(\theta^{\star} \mid \theta_{t}\right) \sim \mathcal{N}\left(\theta_{t}, 1\right)$

Using MCMC to generate Gaussian values

Heuristics on Hastings-Metropolis

In standard Monte Carlo, generate θ_{i} 's i.i.d., then

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(\theta_{i}\right) \rightarrow \mathbb{E}[g(\theta)]=\int g(\theta) \pi(\theta) d \theta
$$

(strong law of large numbers).
Well-behaved Markov Chains (\boldsymbol{P} aperiodic, irreducible, positive recurrent) can satisfy some ergodic property, similar to that LLN. More precisely,

- \boldsymbol{P} has a unique stationary distribution λ, i.e. $\lambda=\lambda \times \boldsymbol{P}$
- ergodic theorem

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(\theta_{i}\right) \rightarrow \int g(\theta) \lambda(\theta) d \theta
$$

even if θ_{i} 's are not independent.

Heuristics on Hastings-Metropolis

Remark The conditions mentioned above are

- aperiodic, the chain does not regularly return to any state in multiples of some k.
- irreducible, the state can go from any state to any other state in some finite number of steps
- positively recurrent, the chain will return to any particular state with probability 1 , and finite expected return time

Gibbs Sampler

For a multivariate problem, it is possible to use Gibbs sampler.
Example Assume that the loss ratio of a company has a lognormal distribution, $L N\left(\mu, \sigma^{2}\right)$, .e.g

Example Assume that we have a sample \boldsymbol{x} from a $\mathcal{N}\left(\mu, \sigma^{2}\right)$. We want the posterior distribution of $\boldsymbol{\theta}=\left(\mu, \sigma^{2}\right)$ given \boldsymbol{x}. Observe here that if priors are Gaussian $\mathcal{N}\left(\mu_{0}, \tau^{2}\right)$ and the inverse Gamma distribution $\operatorname{IG}(a, b)$, them

$$
\left\{\begin{aligned}
\mu \mid \sigma^{2}, \boldsymbol{x} & \sim \mathcal{N}\left(\frac{\sigma^{2}}{\sigma^{2}+n \tau^{2}} \mu_{0}+\frac{n \tau^{2}}{\sigma^{2}+n \tau^{2}} \bar{x}, \frac{\sigma^{2} \tau^{2}}{\sigma^{2}+n \tau^{2}}\right) \\
\sigma^{2} \mid \mu, \boldsymbol{x} & \sim I G\left(\frac{n}{2}+a, \frac{1}{2} \sum_{i=1}^{n}\left[x_{i}-\mu\right]^{2}+b\right)
\end{aligned}\right.
$$

More generally, we need the conditional distribution of $\theta_{k} \mid \boldsymbol{\theta}_{-k}, \boldsymbol{x}$, for all k.

Gibbs Sampler

Gibbs Sampler

Example Consider some vector $\boldsymbol{X}=\left(X_{1}, \cdots, X_{d}\right)$ with indépendent components, $X_{i} \sim \mathcal{E}\left(\lambda_{i}\right)$. To sample from \boldsymbol{X} given $\boldsymbol{X}^{\top} \mathbf{1}>s$ for some $s>0$:
start with some starting point \boldsymbol{x}_{0} such
that $\boldsymbol{x}_{0}^{\top} \mathbf{1}>s$
pick up (randomly) $i \in\{1, \cdots, d\}$
X_{i} given $X_{i}>s-\boldsymbol{x}_{(-i)}^{\top} \mathbf{1}$ has an Exponential distribution $\mathcal{E}\left(\lambda_{i}\right)$
draw $Y \sim \mathcal{E}\left(\lambda_{i}\right)$ and set $x_{i}=y+(s-$
$\left.\boldsymbol{x}_{(-i)}^{\top} \mathbf{1}\right)_{+}$until $\boldsymbol{x}_{(-i)}^{\top} \mathbf{1}+x_{i}>s$

JAGS and STAN

Martyn Plummer developed JAGS Just another Gibbs sampler in 2007 (stable since 2013). It is an open-source, enhanced, cross-platform version of an earlier engine BUGS (Bayesian inference Using Gibbs Sampling).

STAN is a newer tool that uses the Hamiltonian Monte Carlo (HMC) sampler. HMC uses information about the derivative of the posterior probability density to improve the algorithm. These derivatives are supplied by algorithm differentiation in $\mathrm{C} / \mathrm{C}++$ codes.

MCMC and Claims Reserving

Consider the following (cumulated) triangle, $\left\{C_{i, j}\right\}$,

	0	1	2	3	4	5
0	3209	4372	4411	4428	4435	4456
1	3367	4659	4696	4720	4730	4752.4
2	3871	5345	5398	5420	5430.1	5455.8
3	4239	5917	6020	6046.1	6057.4	6086.1
4	4929	6794	6871.7	6901.5	6914.3	6947.1
5	5217	7204.3	7286.7	7318.3	7331.9	7366.7
λ_{j}		1.3809	1.0114	1.0043	1.0018	1.0047
σ_{j}		0.7248	0.3203	0.04587	0.02570	0.02570

A Bayesian version of Chain Ladder

Assume that $\lambda_{i, j} \sim \mathcal{N}\left(\mu_{j}, \frac{\tau_{j}}{C_{i, j}}\right)$.
We can use Gibbs sampler to get the distribution of the transition factors, as well as a distribution for the reserves,

A Bayesian version of Chain Ladder

A Bayesian analysis of the Poisson Regression Model

In a Poisson regression model, we have a sample
$(\boldsymbol{x}, \boldsymbol{y})=\left\{\left(x_{i}, y_{i}\right)\right\}$,

$$
y_{i} \sim \mathcal{P}\left(\mu_{i}\right) \text { with } \log \mu_{i}=\beta_{0}+\beta_{1} x_{i} .
$$

In the Bayesian framework, β_{0} and β_{1} are random variables.

Other alternatives to classical statistics

Consider a regression problem, $\mu(x)=\mathbb{E}(Y \mid X=x)$, and assume that smoothed splines are used,

$$
\mu(x)=\sum_{i=1}^{k} \beta_{j} h_{j}(x)
$$

Let \boldsymbol{H} be the $n \times k$ matrix, $\boldsymbol{H}=\left[h_{j}\left(x_{i}\right)\right]=$ $\left[\boldsymbol{h}\left(x_{i}\right)\right]$, then $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{H}^{\top} \boldsymbol{H}\right)^{-1} \boldsymbol{H}^{\top} \boldsymbol{y}$, and

$$
\widehat{\operatorname{se}}(\widehat{\mu}(x))=\left[\boldsymbol{h}(x)^{\top}\left(\boldsymbol{H}^{\top} \boldsymbol{H}\right)^{-1} \boldsymbol{h}(x)\right]^{\frac{1}{2}} \widehat{\sigma}
$$

With a Gaussian assumption on the residuals, we can derive (approximated) confidence bands for predictions $\widehat{\mu}(x)$.

Bayesian interpretation of the regression problem

Assume here that $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, \tau \boldsymbol{\Sigma})$ as the priori distribution for $\boldsymbol{\beta}$.
Then, if $(\boldsymbol{x}, \boldsymbol{y})=\left\{\left(x_{i}, y_{i}\right), i=1, \cdots, n\right\}$, the posterior distribution of $\mu(x)$ will be Gaussian, with

$$
\begin{aligned}
& \mathbb{E}(\mu(x) \mid \boldsymbol{x}, \boldsymbol{y})=\boldsymbol{h}(x)^{\top}\left(\boldsymbol{H}^{\top} \boldsymbol{H}+\frac{\sigma^{2}}{\tau} \boldsymbol{\Sigma}^{-1}\right)^{-1} \boldsymbol{H}^{\top} \boldsymbol{y} \\
& \operatorname{cov}\left(\mu(x), \mu\left(x^{\prime}\right) \mid \boldsymbol{x}, \boldsymbol{y}\right) \\
& \quad=\boldsymbol{h}(x)^{\top}\left(\boldsymbol{H}^{\top} \boldsymbol{H}+\frac{\sigma^{2}}{\tau} \boldsymbol{\Sigma}^{-1}\right)^{-1} \boldsymbol{h}\left(x^{\prime}\right) \sigma^{2}
\end{aligned}
$$

Example $\boldsymbol{\Sigma}=\mathbb{I}$

Bootstrap strategy

Assume that $Y=\mu(x)+\varepsilon$, and based on the estimated model, generate pseudo observations, $y_{i}^{\star}=\widehat{\mu}\left(x_{i}\right)+\widehat{\varepsilon}_{i}^{\star}$.
Based on $\left(\boldsymbol{x}, \boldsymbol{y}^{\star}\right)=\left\{\left(x_{i}, y_{i}^{\star}\right), i=1, \cdots, n\right\}$, derive the estimator $\widehat{\mu}^{\star}(\cdot)$
(and repeat)

Observe that the bootstrap is the Bayesian case, when $\tau \rightarrow \infty$.

Part 5.
Data, Models \& Actuarial Science (some sort of conclusion)

The Privacy-Utility Trade-Off

In Massachusetts, the Group Insurance Commission (GIC) is responsible for purchasing health insurance for state employees

GIC has to publish the data: GIC(zip, date of birth, sex, diagnosis, procedure, ...)
Sweeney paid $\$ 20$ and bought the voter registration list for Cambridge Massachusetts, VOTER(name, party, ..., zip, date of birth, sex)

William Weld (former governor) lives in Cambridge, hence is in VOTER

Figure 1 Linking to re-identify data

The Privacy-Utility Trade-Off

- 6 people in VOTER share his date of birth
- only 3 of them were man (same sex)
- Weld was the only one in that zip
- Sweeney learned Weld's medical records

All systems worked as specified, yet an important data was leaked.
" 87% of Americans are uniquely identified by their zip code, gender and birth date", see Sweeney (2000).

A dataset is considered k-anonymous if the information for each person contained in the release cannot be distinguished from at least $k-1$ individuals whose information also appear in the release

176

Chapitre 3. La prime pure
manière des caractéristiques Ω de l'assuré, et lui réclame donc une prime pure de montant $\mathbb{E}[S]$, la même que celle qu'il réclame à tous les assurés du portefeuille. Dans ce cas, la situation est telle que présentée au Tableau 3.7.

	Assurés	Assureur
Dépense	$\mathbb{E}[S]$	$S-\mathbb{E}[S]$
Dépense moyenne	$\mathbb{E}[S]$	0
Variance	0	$\mathbb{V}[S]$

TAB. 3.7 - Situation des assurés et de l'assureur en l'absence de segmentation.

L'assureur prend donc l'entièreté de la variance des sinistres $\mathbb{V}[S]$ à sa charge, que celle-ci soit due à l'hétérogénéité du portefeuille, ou à la variabilité intrinsèque des montants des sinistres.

Transfert de risque en information complète
A l'autre extrême, supposons que l'assureur incorpore toute l'information Ω dans la tarification. On serait alors dans la situation décrite au Tableau 3.8.

	Assurés	Assureur
Dépense	$\mathbb{E}[S \mid \Omega]$	$S-\mathbb{E}[S \mid \Omega]$
Dépense moyenne	$\mathbb{E}[S]$	0
Variance	$\mathbb{V}[\mathbb{E}[S \mid \Omega]$	$\mathbb{V}[S-\mathbb{E}[S \mid \Omega]]$

TAB. 3.8 - Situation des assurés et de l'assureur dans le cas où la segmentation est opérée sur base de Ω.

Contrairement au cas précédent, la prime payée par un assuré prélevé au hasard dans le portefeuille est à présent une variable aléatoire: $\mathbb{E}[S \mid \Omega]$ dépend des caractéristiques $\boldsymbol{\Omega}$ de cet assuré. Comme la variable aléatoire $S-\mathbb{E}[S \mid \Omega]$ est centrée, le risque assumé par l'assureur la variance du résultat financier de l'opération d'assurance, i.e.

$$
\mathbb{V}[S-\mathbb{E}[S \mid \Omega]]=\mathbb{E}\left[(S-\mathbb{E}[S \mid \Omega])^{2}\right]
$$

No segmentation

	Insured	Insurer
Loss	$\mathbb{E}[S]$	$S-\mathbb{E}[S]$
Average Loss	$\mathbb{E}[S]$	0
Variance	0	$\operatorname{Var}[S]$

Perfect Information: $\boldsymbol{\Omega}$ observable

	Insured	Insurer
Loss	$\mathbb{E}[S \mid \boldsymbol{\Omega}]$	$S-\mathbb{E}[S \mid \boldsymbol{\Omega}]$
Average Loss	$\mathbb{E}[S]$	0
Variance	$\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}]$	$\operatorname{Var}[S-\mathbb{E}[S \mid \boldsymbol{\Omega}]]$

$$
\operatorname{Var}[S]=\underbrace{\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{\Omega}]]}_{\rightarrow \text { insurer }}+\underbrace{\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}]]}_{\rightarrow \text { insured }}
$$

3.8. La prime pure en univers segmenté

On assiste dans ce cas à un partage de la variance totale de S (c'est-à-dire du risque) entre les assurés et l'assureur, matérialisé par la formule

$$
\mathbb{V}[S]=\underbrace{\mathbb{E}[\mathbb{V}[S \mid \boldsymbol{\Omega}]]}_{\rightarrow \text { assureur }}+\underbrace{\mathbb{V}[\mathbb{E}[S \mid \boldsymbol{\Omega}]]}_{\rightarrow \text { assurés }}
$$

Ainsi, lorsque toutes les variables pertinentes $\boldsymbol{\Omega}$ ont été prises en compte, l'intervention de l'assureur se limite à la part des sinistres due exclusivement au hasard; en effet, $\mathbb{V}[S \mid \Omega]$ représente les fluctuations de S dues au seul hasard. Dans cette situation idéale, l'assureur mutualise le risque et il n'y a donc aucune solidarité induite entre les assurés du portefeuille: chacun paie en fonction de son propre risque.

Transfert des risques en information partielle
Bien entendu, la situation décrite au paragraphe précédent est purement théorique puisque parmi les variables explicatives $\boldsymbol{\Omega}$ nombreuses sont celles qui ne peuvent pas être observées par l'assureur. En assurance automobile par exemple, l'assureur ne peut pas observer la vitesse à laquelle roule l'assuré, son agressivité au volant, ni le nombre de kilomètres qu'il parcourt chaque année ${ }^{2}$. Dès lors, l'assureur ne peut utiliser qu'un sous-ensemble \boldsymbol{X} des variables explicatives contenues dans $\boldsymbol{\Omega}$, i.e. $\boldsymbol{X} \subset \boldsymbol{\Omega}$. La situation est alors semblable à celle décrite au Tableau 3.9.

	Assuré	Assureur
Dépense	$\mathbb{E}[S \mid \boldsymbol{X}]$	$S-\mathbb{E}[S \mid \boldsymbol{X}]$
Dépense moyenne	$\mathbb{E}[S]$	0
Variance	$\mathbb{V}[\mathbb{E}[S \mid \boldsymbol{X}]]$	$\mathbb{E}[\mathbb{V}[S \mid \boldsymbol{X}]]$

TAB. 3.9 - Situation de l'assuré et de l'assureut dans le cas où la segmentation est opérée sur base de $\boldsymbol{X} \subset \boldsymbol{\Omega}$.

Il est intéressant de constater que

$$
\begin{aligned}
\mathbb{E}[\mathbb{V}[S \mid \boldsymbol{X}]] & =\mathbb{E}[\mathbb{E}[\mathbb{V}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]]+\mathbb{E}[\mathbb{V}[\mathbb{E}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]] \\
& =\underbrace{\mathbb{E}[\mathbb{V}[S \mid \boldsymbol{\Omega}]]}_{\text {mutualisation }}+\underbrace{\mathbb{E}\{\mathbb{V}[\mathbb{E}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]\}}_{\text {solidarité }}
\end{aligned}
$$

Non-Perfect Information: $\boldsymbol{X} \subset \boldsymbol{\Omega}$ is observable

	Insured	Insurer
Loss	$\mathbb{E}[S \mid \boldsymbol{X}]$	$S-\mathbb{E}[S \mid \boldsymbol{X}]$
Average Loss	$\mathbb{E}[S]$	0
Variance	$\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{X}]]$	$\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{X}]]$

$$
\begin{aligned}
\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{X}]] & =\mathbb{E}[\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]] \\
& +\mathbb{E}[\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]] \\
& =\underbrace{\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{\Omega}]]}_{\text {pooling }} \\
& +\underbrace{\mathbb{E}\{\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]\}}_{\text {solidarity }}
\end{aligned}
$$

Segmentation et mutualisation LES DEUX FACES D'UNE MÊME PIÈCE ?

Arthur Charpentier

Professeur à l'Université du Québec, Montréal

Michel Denuit

Professeur à l'Universitt catholique de Louvain

Romuald Elie

Professeur àl'Université de Marne-la-Vallée

L'assurance repose fondamentalement sur l'idée que la mutualisation des risques entre des assurés est possible. Cette mutualisation, qui peut être vue comme une relecture actuarielle de la loi des grands nombres, n'a de sens qu'au sein d'une population de risques « homogènes "[Charpentier, 2011]. Cette condition (actuarielle) impose aux assureurs de segmenter, ce que confirment plusieur travaux économiques (1). Avec l'explosion du nombre de données, et donc de variables tarifaires possibles, certains assureurn évoquent l'idée d'un tarif individuel, semblant remettre en cause lidée même de mutualisation des risques. Entre cette force qui pousse à segmenter et la force de rappel qui tend (pour des raisons sociales mais aussi actuarielles, ou au moins de robustesse statistique (2)) à imposer une solidarité minimale entre les assurés, quel équilibre va en résulter dans un contexte de forte concurrence entre les société d'assurance?

Tarification sans segmentation

\bigcircans segmentation, le " prix juste d'un risque
est lespérance mathémaique de la charge annuelle. Cest lidée du theorème fondamenal de la valorision acuuridle : en moyenne, la somme des primes doit permetre d'indemniser l'intúgralité des sinistres survenus dans
'année. Afin dillustrer les différents aspects de b construcion du tarif et ses conséquences, on construction du tarif et ses consequuences, on px xx) qui indique la fréquence annuelle de sinistres

Les faceurs de risque sont ia le lieu dhabitation ell'age de l'asuré, et on obsarve la fríquence de sinistre par dasee Le œût uniaire, supposé fixe, équivautà a 1000 euros La prime pure est alors $\mathrm{E}[S]=1000 \times \mathrm{E}[N]$. Dans cet exemple, la prime pure sans segmentation sera de 82,30 auros.

Market Competition

Decision Rule: the insured selects the cheapeast premium,

A	B	C	D	E	F

787.93	706.97	1032.62	907.64	822.58	603.83
170.04	197.81	285.99	212.71	177.87	265.13
473.15	447.58	343.64	410.76	414.23	425.23
337.98	336.20	468.45	339.33	383.55	672.91

Market Competition

Decision Rule: the insured selects randomly from the three cheapeast premium

A	B	C	D	E	F

787.93	706.97	1032.62	907.64	822.58	603.83

$\begin{array}{llllll}170.04 & 197.81 & 285.99 & 212.71 & 177.87 & 265.13\end{array}$
$473.15 \quad 447.58 \quad 343.64 \quad 410.76 \quad 414.23 \quad 425.23$
$337.98 \quad 336.20 \quad 468.45 \quad 339.33 \quad 383.55 \quad 672.91$

Market Competition

Decision Rule: the insured were assigned randomly to some insurance company for year $n-1$. For year n, they stay with their company if the premium is one of the three cheapeast premium, if not, random choice among the four

	A	B	C	D	E	F
con	787.93	706.97	1032.62	907.64	822.58	603.83
	170.04	197.81	285.99	212.71	177.87	265.13
0	473.15	447.58	343.64	410.76	414.23	425.23
	337.98	336.20	468.45	339.33	383.55	672.91

Market Shares (rule 2)

Market Shares (rule 3)

Loss Ratio, Loss / Premium (rule 2)

Market Loss Ratio $\sim 154 \%$.

Insurer A2

No segmentation, unique premium
Remark on normalized premiums,

$$
\pi_{2}=m_{2}\left(\boldsymbol{x}_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} m_{j}\left(\boldsymbol{x}_{i}\right) \forall j
$$

Insured A1

GLM, frequency material / bodily injury, individual losses material Ages in classes [18-30], [30-45], [45-60] and [60+], crossed with occupation Manual smoothing, SAS and Excel Actuaries in a Mutual Fund (in France)

Insurer A8/A9

GLM, frequency and losses, without major losses ($>15 \mathrm{k}$)
Age-gender interaction
Use of a commercial pricing software
Actuary in a French Mutual Fund

Insurer A11

All features, but one XGBoost (gradient boosting)
Correction for negative premiums
Coded in Python actuary in an insurance company.

Insurer A12

All features, use of two XGBoost (gradient boosting) models
Correction for negative premiums
Coded in R by an actuary in an Insurance company.

Back on the Pricing Game

Take-Away Conclusion

"People rarely succeed unless they have fun in what they are doing" D. Carnegie

- on very small datasets, it is possible to use Bayesian technique to derive robust predictions,
- on extremely large datasets, it is possible to use ideas developed in machine learning, on regression models (e.g. boostraping and aggregating)
- all those techniques require computational skills
the signal and the noise
why so many predictions fan't
but some bu
"the numbers have no way of speaking for themselves. We speak for them. ... Before we demand more of our data, we need to demand more of ourselves "N. Silver, in Silver (2012).

