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Age n d a Statistical Science

2001, Vol. 16, No. 3, 199-231

“the numbers have no way of speaking for them-

Statistical Modeling:

selves. We speak for them. |[---] Before we de-
mand more of our data, we need to demand more The Two Cultures

of ourselves ” from Silver (2012).

nature

(big) data

. eve 1 . The Data Modeling Culture
econometrics & probabilistic modeling

v linear regression
. . o L . Y4 logistic regression
algorithmics & statistical learning Cox model

different perspectives on classification The Algorithmic Modeling Culture

y —— unknown

boostrapping, PCA & variable section

see Berk (2008), Hastie, Tibshirani & Friedman Zecision traes
(2009), but also Breiman (2001) neural nets



https://en.wikipedia.org/wiki/The_Signal_and_the_Noise
http://www.springer.com/us/book/9780387775005
http://www.springer.com/us/book/9780387848570
http://www.springer.com/us/book/9780387848570
https://projecteuclid.org/euclid.ss/1009213726
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Data and Models
From {(y;,«;)}, there are different stories behind, see Freedman (2005)

e the causal story : z,; is usually considered as independent of the other
covariates zy ;. For all possible &, that value is mapped to m(x) and a noise
is attached, €. The goal is to recover m(-), and the residuals are just the
difference between the response value and m(x).

the conditional distribution story : for a linear model, we usually say

that Y given X = x is a M (m(x), 0?) distribution. m(z) is then the

conditional mean. Here m(-) is assumed to really exist, but no causal

assumption is made, only a conditional one.

the explanatory data story : there is no model, just data. We simply
want to summarize information contained in x’s to get an accurate summary,

close to the response (i.e. min{¢(y, m(x))}) for some loss function ¢.

See also Varian (2014)



http://www.cambridge.org/us/academic/subjects/statistics-probability/statistical-theory-and-methods/statistical-models-theory-and-practice-2nd-edition
https://www.aeaweb.org/articles?id=10.1257/jep.28.2.3
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Data, Models & Causal Inference
We cannot differentiate data and model that easily..

After an operation, should I stay at hospital, or go back home 7

as in Angrist & Pischke (2008),

(health | hospital) — (health | stayed home) [observed]

should be written

(health | hospital) — (health | had stayed home) [treatment effect]

+ (health | had stayed home) — (health | stayed home) selection bias]

Need randomization to solve selection bias.



http://press.princeton.edu/titles/8769.html
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Econometric Modeling
Data {(y;,x;)}, fori=1,--- . n, with &; € X CRP and y; € V.

A model is a m : X — )V mapping
- regression, ) = R (but also ) = N)

- classification, Y = {0, 1}, {—1,+1}, {e, e}

(binary, or more)
Classification models are based on two steps,

e score function, s(x) =P(Y =1|X =x) € [0, 1]

0000000 OCOCOOLOOOO0C000S

e classifier s(x) — y € {0, 1}.
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High Dimensional Data (not to say ‘Big Data’)

See BiihImann & van de Geer (2011) or Koch (2013), X is a n X p matrix

Portnoy (1988) proved that maximum likelihood estimators are asymptotically

normal when p?/n — 0 as n,p — oo. Hence, massive data, when p > \/n.

More intersting is the sparcity concept, based not on p, but on the effective size.

Hence one can have p > n and convergent estimators.

High dimension might be scary because of curse of dimensionality, see
Bellman (1957). The volume of the unit sphere in R? tends to 0 as p — oo,

l.e.space 1s sparse.



http://www.springer.com/us/book/9783642201912
http://www.cambridge.org/us/academic/subjects/statistics-probability/statistical-theory-and-methods/analysis-multivariate-and-high-dimensional-data
https://projecteuclid.org/euclid.aos/1176350710
http://press.princeton.edu/titles/9234.html
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Computational & Nonparametric Econometrics
Linear Econometrics: estimate g : « — E[Y|X = ] by a linear function.

Nonlinear Econometrics: consider the approximation for some functional basis

oo

g(x) = ijg]( ) and g(z ijgj

j=0

or consider a local model, on the neighborhood of

Z y;, with Z, ={x € R? : ||x;—x|| < h},
T €Ty

see Nadaraya (1964) and Watson (1964).

Here h is some tunning parameter: not estimated, but chosen (optimaly).



https://dx.doi.org/10.1137%2F1109020
https://www.jstor.org/stable/25049340
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Econometrics & Probabilistic Model

The primary goal in a regression analysis is to understand, as far as possi-
ble with the available data, how the conditional distribution of the response y
varies across subpopulations determined by the possible values of the predictor
or predictors. Since this is the central idea, it will be helpful to have a conve-

from Cook & Weisberg (1999), see also Haavelmo (1965).

(Y|X =) ~ N(u(x),0?) with u(x) = B+ ' B, and B € RP.

Linear Model: E[Y|X =z] = 5y + z'3

Homoscedasticity: Var[Y|X = z] = o2



http://www.stat.umn.edu/arc/
http://www.uio.no/studier/emner/sv/oekonomi/ECON5101/v11/undervisningsmateriale/probability%20approach.pdf
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Conditional Distribution and Likelihood

(Y|X =) ~ N(u(x),o?) with u(x) = o+ x' B, et B € RP
The log-likelihood is

n 1
lOgL(ﬁo,/B,Oj‘y,iE) — _5 10g[27‘(‘0‘2] o ﬁ

1=
N

Set

(B\O? //B\a 82) — argimax {log ﬁ(ﬁ()? 167 0-2|y7 .’E)} :
First order condition X '[y — X B] = 0. If matrix X is a full rank matrix

B=(X"X)'XTy =8+ (X"X)1Xe.
Asymptotic properties of [A‘i,
V(B —B) 5 N(0,%) as n — oo
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Geometric Perspective

Define the orthogonal projection on X,

Ix = X[X'X] !XT

51 Xa

Pythagoras’ theorem can be writen

lyll” = xyl® + |Hxryl® = |Ixy|® + |ly — OIxy|”

which can be expressed as

>y YU+ D) wi—w)’
1=1 =1 =1

~—— ~—— ~~ -~

n Xtotal variance n Xexplained variance nXresidual variance
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Geometric Perspective

Define the angle 6 between y and Ilyy,

_ MTxyl®

II 2
R2 _ 1 — H leH _ COS2(9)

lyl> lyll®
see Davidson & MacKinnon (2003)

Yy =Po+ X18; + X28, +¢

If y; =lUy1y and X5 = Ilx1 X, then

B, =[X3"X3 7" X5y

X5 =X,if X1 1L Xo,
Frisch-Waugh theorem.



http://qed.econ.queensu.ca/ETM/
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From Linear to Non-Linear

with - for the linear regression - hy = X[ X' X]| .

One can consider some smoothed regression, see Nadaraya (1964) and Watson

(1964), with some smoothing matrix S

& Kp(x — x;)
~ T . h (]
mp(r) = 8,Y = g Sgz.ilYi Withs s, ; =
(@) J — i v Ky —x)+ -+ Kp(z — )

for some kernel K (-) and some bandwidth h > 0.



https://dx.doi.org/10.1137%2F1109020
https://www.jstor.org/stable/25049340
https://www.jstor.org/stable/25049340
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From Linear to Non-Linear

Sy—H
T | Sy Y|

 trace([S — H|T[S — H))

can be used to test for linearity, Simonoff (1996). trace(S) is the equivalent
number of parameters, and n — trace(.S) the degrees of freedom, Ruppert et al.
(2003).

Nonlinear Model, but Homoscedastic - Gaussian
o (YIX =z)~N(u(z),0?)

o ElY|X =2x] = u(x)



http://link.springer.com/book/10.1007%2F978-1-4612-4026-6
http://www.stat.tamu.edu/~carroll/semiregbook/
http://www.stat.tamu.edu/~carroll/semiregbook/
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Conditional Expectation
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from Angrist & Pischke (2008), = — E|Y|X = x|.



http://press.princeton.edu/titles/8769.html
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Exponential Distributions and Linear Models

sl ) = exp (P20 () ) with 6, = hial B

Log likelihood is expressed as

1Yl —
log L(0, ¢ly) = Zlogf yil0i, @) = 21 a(q%:" . +Zc Yis )

and first order conditions

dlog L(0,9|y)
0B

as in Miiller (2001), where W is a weight matrix, function of 3.

= X'W i y—p]=0

We usually specify the link function g(-) defined as

j=m(z)=E[Y|X =a] =g (@' B).



http://www.marlenemueller.de/publications/HandbookCS.pdf
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Exponential Distributions and Linear Models

Note that W = diag(Vg(y) - Var[y]), and set

z=9Y)+ W —-y) V)

the the maximum likelihood estimator is obtained iteratively

Brar = [ XWX ' XTW, 12,

Set E = B, so that

V(B — B) 5 N(0,1(8)71)
with I(8) = ¢ - [ X W X].
Note that [X'W; ' X] is a p x p matrix.
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Exponential Distributions and Linear Models

Generalized Linear Model:
o Y|X ==x)~ L(0z )
o EY|X =x]=h"' () =g ' (z'B)

e.g. (Y|X =)~ Plexplz'A]).

Use of maximum likelihood techniques for inference.

Actually, more a moment condition than a distribution assumption.
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Goodness of Fit & Model Choice

From the variance decomposition

1 n
E;(yz_

total variance residual variance explained variance

and define N . N
R? — Zi:1(yi — y) - Zz 1(19 yz)
Z?:l(yi 3/)2

More generally

Deviance(3) = —2log[L] = 2 Z — 7;)? = Deviance(y)

The null deviance is obtained using y; = 7, so that

R2 _ Deviance(y) — Deviance(y) - Deviance(y)

Deviance(7) Deviance(7)
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Goodness of Fit & Model Choice

One usually prefers a penalized version

n—1 B
n—p

R*=1-(1-R?

See also Akaike criteria AIC' = Deviance + 2 - p
or Schwarz, BIC = Deviance + log(n) - p

In high dimension, consider a corrected version

n

AICc = Deviance+ 2 - p -
n—p—1
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Stepwise Procedures

Forward algorithm

1. set j7 = argmin {AIC({j})}
je{@’l,...,n}

2. set j3 = argmin {AIC({s7,7})}
JE{Q)vlaan}\{Jf}

.. until j* =0
Backward algorithm

1. set j7 = argmin {AIC({1,--- ,n}\{j})}
je{@,l,...,n}

2. set j3 = argmin {AIC({1,--- ,n ]\ {47, 7})}

.. until 7* =0
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Econometrics & Statistical Testing

Standard test for Hg : B = 0 against Hy : Bx # 0 is Student-t est t, = Bk/segk,

Use the p-value P[|T| > |tx|] with T ~ t, (and v = trace(H)).
In high dimension, consider the FDR (False Discovery Ratio).
With o = 5%, 5% variables are wrongly significant.

If p = 100 with only 5 significant variables, one should expect also 5 false positive,
i.e. 50% FDR, see Benjamini & Hochberg (1995) and Andrew Gelman’s talk.



https://www.jstor.org/stable/2346101
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Under & Over-ldentification

Under-identification is obtained when the true model is
y = Bo +x{ B, +x) By + ¢, but we estimate y = By + x{ by + 1.

Maximum likelihood estimator for b; is

AN

by = (XX 'X]y
(X X)X {[X1:8, + X208, +¢]
,81 _I_SX/le)_lXIXQBQJ_I_SXIX )_1XI€

NV TV
B> Vi

so that E[Bl] = B, + B4, and the bias is null when X] Xy =01ie X; L Xo,
see Frisch-Waugh).

Over-identification is obtained when the true model is y = By + x| B¢, but we
fit y = By + £B-1rb1 + w;bg + 7.

Inference is unbiased since [E(b;) = B, but the estimator is not efficient.
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Statistical Learning & Loss Function

Here, no probabilistic model, but a loss function, ¢. For some set of functions

M, X — ), define

argmm{ZE i, M ))}

meM i—1

Quadratic loss functions are interesting since

Y = argmin
mek - Li=1

which can be writen, with some underlying probabilistic model

E(Y) = argmin{HY — mH%Q} = al;q%g;&in {E ([Y — m]Z)}

meR

For 7 € (0,1), we obtain the quantile regression (see Koenker (2005))

—argmm{ZE Yi, m(x ))} avec ff(xay):‘(x_y)(T_lxéy)‘

meMyg

’l:_



http://www.cambridge.org/at/academic/subjects/economics/econometrics-statistics-and-mathematical-economics/quantile-regression

Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Boosting & Weak Learning

m* = argmin {Zf(yi, m(:l:@))}

meM i—1
is hard to solve for some very large and general space M of X — ) functions.

Consider some iterative procedure, where we learn from the errors,

mF) () :w+w+w+...+w: mF=D () + my ().

Formely € can be seen as V/, the gradient of the loss.




Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Boosting & Weak Learning

It is possible to see this algorithm as a gradient descent. Not

flxr) ~ f(ep—1) + (xr — 1) Vf(Tr_1)
—— N — N —~ —
<f,(13k;> <f7mk—1> g (Vf,:ck,_1>

but some kind of dual version

M Nf —i@frffk _jk—lz <
(fk,x) (f—1,T) ag (frk—1,Vx)

where % is a gradient is some functional space.

m® (z) = m*~Y(x) + argmin {Z (y;, m* D (x) + f(w))}

ferF

for some simple space F so that we define some weak learner, e.g. step

functions (so called stumps)
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Boosting & Weak Learning

Standard set F are stumps functions but one can also consider splines (with
non-fixed knots).

One might add a shrinkage parameter to learn even more weakly, i.e. set

e1 =y —a-mi(x) with a € (0,1), etc.
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Big Data & Linear Model

Consider some linear model y; = ! 8 +¢; foralli=1,--- ,n.

Assume that ¢; are i.i.d. with E(¢) = 0 (and finite variance). Write

(60 )
(yl\ (1 3711 «flp\ 8, (5:1\

_|_

\yn) \1 len,l e an,p) : Kgn)
\w—/ . - y \519) R/_/
y,nxl X nx(p+1) N—— e,nx1

B,(p+1)x1
Assuming € ~ N(0, 0°T), the maximum likelihood estimator of 3 is
B = argmin{[ly — X" 8]l,} = (X X)Xy
. under the assumtption that X TX is a full-rank matrix.

What if X' X cannot be inverted? Then 8 = (X T X]~1X "y does not exist, but
B, =[X"X + M| ' X"y always exist if A > 0.
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Ridge Regression & Regularization

The estimator 8 = [X "X + AI]"! X "y is the Ridge estimate obtained as

solution of
4 N

B =argmin{ Y [yi — Bo — = B> + ) ||BIIZ,
N——

B i=1
\ 1732 )

for some tuning parameter \. One can also write

B = argmin {|Y — X785}
B;llBlleg <s

There is a Bayesian interpretation of that regularization, when 8 has some prior

N (B, rI).
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Over-Fitting & Penalization

Solve here, for some norm || - ||,

min {Zf(yi, Bo+x'B) + )\B|} = min{objective(ﬁ) + penality(ﬂ)}.

i=1
Estimators are no longer unbiased, but might have a smaller mse.

Consider some i.id. sample {y1,- - ,y,} from N (0, 0?), and consider some

AN

estimator proportional to 7, i.e. 8 = ay. o = 1 is the maximum likelihood

estimator.

Note that

a’o?

mse[d] = (o — 1)%p% +
N V/\ J/ n
bias[0]? /9\]
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(B\Ov //B\) — argmin {ZEQJ’L)ﬁO + wTIB) =+ )\IB} 9

1=1

can be seen as a Lagrangian minimization problem

(//8\0713> - argmm {Zg yuﬁO + mT/B)}

BilIBlI<s

,1;_
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LASSO & Sparcity

In severall applications, p can be (very) large, but a lot of features are just noise:
B; = 0 for many j’s. Let s denote the number of relevent features, with

s << p, cf Hastie, Tibshirani & Wainwright (2015),

s = card{S} where S = {j; 3; # 0}

The true model is now y = X LB + ¢, where X £ X s is a full rank matrix.



https://www.crcpress.com/Statistical-Learning-with-Sparsity-The-Lasso-and-Generalizations/Hastie-Tibshirani-Wainwright/9781498712163
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LASSO & Sparcity

Evoluation of E \ as a function of log A in various applications

0.00 0.05 0.10

Coefficients
Coefficients

-0.20 -0.15 -0.10 -0.05

Log Lambda Log Lambda
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In-Sample & Out-Sample
Write 8 = B((:Bl, Y1), (Tn,Yn)). Then (for the linear model)

n

AN AN

Deviance |5(B) = Z[yz — a:Z-Tﬂ((wl, yl)a B (wn, yn))]2

1=1

Withe this “in-sample” deviance, we cannot use the central limit theorem

AN

Deviance 5(3)

AE(Y - x78)

n

Hence, we can compute some “out-of-sample” deviance

m-+n

Deviance 05(,/3\) = Z [yz — m;r,/B\((ml, yl)) SR (mna yn)]2
1=n—+1
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In-Sample & Out-Sample

Observe that there are connexions with Akaike penaly function

AN

Deviance |S(3) — Deviance os(8) =~ 2 - degrees of freedom

small variance large variance
large bias small bias

‘under-ﬁt over-fit

From Stone (1977), minimizing AIC is

closed to cross validation,

From Shao (1997) minimizing BIC is
closed to k-fold cross validation with

validation error

prediction error

training error

k =n/logn.

model complexity



http://www.jstor.org/stable/2984877
http://www3.stat.sinica.edu.tw/statistica/oldpdf/A7n21.pdf
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Overfit, Generalization & Model Complexity

Complexity of the model is the degree of the polynomial function
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Cross-Validation
See Jacknife technique Quenouille (1956) or Tukey (1958) to reduce the bias.

If {y1,--+ ,yn} is an i.id. sample from Fy, with estimator T,,(y) = T, (Y1, , Yn),
such that E[T,,(Y)] =6 + O (n™!), consider

1 mn
T,(y) = - > Tuo1(ye) avec yuy = (Y1, Y1, Yit1s "+ Yn)-
1 =1

~

Then E[T,,(Y)] =60+ O (n™?).

Similar idea in leave-one-out cross validation

1 mn
Risk = — » £(y;, mi)(x;
is nz (Y, Miy (x4))

1=1



https://www.jstor.org/stable/2332914
https://dx.doi.org/10.1214%2Faoms%2F1177706647
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Rule of Thumb vs. Cross Validation

A1) = BT+ B with (57, 517 = argin {Z Wi lys = (Bo + 51%)12}
Bo,B1 i—1
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Exponential Smoothing for Time Series

Consider some exponential smoothing filter, on a

time series (x;), ¥r11 = oy + (1 —a)y;, then consider

T
Oé* — argmin Z g(gh yt) )
t=2

see Hyndman et al. (2003).



http://www.springer.com/us/book/9783540719168
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Cross-Validation

Consider a partition of {1,--- ,n} in k groups with the same size, 77, -- ,Zj, and
set Iz = {1,--- ,n}\Z;. Fit m(; on I, and

k
1 k
Risk = = E Risk; where Risk; = - E C(yi, My ()
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Randomization is too important to be left to chance!
Consider some bootstraped sample, Z, = {%14, - ,inp}, With ixp € {1,--- ,n}

Set n; = 1,¢7, + -+ 1,¢,,, and fit m; on 7,

Risk = % > ni > Uy iy ()

i=1 """ biigl,

Probability that ith obs. is not selection (1 —n~1)" — e~ ! ~ 36.8%,

see training / validation samples (2/3-1/3).
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Bootstrap
From Efron (1987), generate samples from (€2, F,P,,)

rank(y;)

~ 1 <& ~
Fo(y) = - Z L(y; < y) and Fy(y;) =
1=1

If U ~U([0,1)), F-Y(U) ~ F

n

If U ~U([0,1]), F-1(U) is uniform

1 —1
on {2 Pt
n n

Consider some boostraped sample,
- either (y;,,x;, ), ix € {1,--- ,n}
- Or (Z/J\k —|—é\7;k,$k), 1 € {17 7n}



http://www-rohan.sdsu.edu/~babailey/stat672/BCa.pdf
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Classification & Logistic Regression

Generalized Linear Model when Y has a Bernoulli distribution, y; € {0, 1},

eﬁo—i—wTIB
1+ eBo+x’ B -

m(z) =E[Y|X = x| = H(fo +z'B)

Estimate (Bp, 8) using maximum likelihood techniques

1 )1%

Deviance o Z [log(l + em}ﬁ) — %3335}
i=1

Observe that

Do ox Z [y; log(y) + (1 — y;) log(1 — 7]
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Classification Trees

Surwval
29 42

(ves] INSYS <19

To split {N} into two { N, Nr}, consider

n Survival
_ L 5 39
I(Np,Ngr) = - x

REPUL >= 1094

Death Survival
1 36

e.g. Gini index (used originally in CART, see Breiman et al. (1984))

Ny Ny Ny
A S Dl ()
ze{L,R} yE{O 1} Nz v
and the cross-entropy (used in C4.5 and C5.0)

entropy (N, Ng) = Z e Z nxylog ("%;,y)

ze{L,R} ye{o 1} Nz



https://books.google.ca/books?id=JwQx-WOmSyQC&hl=fr
https://en.wikipedia.org/wiki/C4.5_algorithm

Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Classification Trees

Ny : {.”JSZ',]' < S} Ng: {xz’,j > S}

1 I(N., N
solve jé{gaj}’ck},s{ (Nr,NRr)}

+— first split

T T T T T T T T T T T T T
12 14 16 18 20 22 16 18 20 22 24 26 28

second split —

T T

L— T L— T T T T T T T T T
8 10 12 14 16 500 1000 1500 2000 500 700 900 1100
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Trees & Forests

Boostrap can be used to define the concept of margin,

B
1
margin; = Z 17" = u) oz > 1y 0" % i)
b=1

Subsampling of variable, at each knot (e.g. vk out of k)

Concept of variable importance: given some random forest with M trees,

1 N,
importance of variable £  I(X}y) = i Nt ATZ(t)

m t

where the first sum is over all trees, and the second one is over all nodes where

the split is done based on variable X.




Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Trees & Forests

See also discriminant analysis, SVM, neural networks, etc.
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https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Artificial_neural_network

Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Model Selection & ROC Curves

Given a scoring function m(-), with m(x) = E[Y|X = x|, and a threshold
s € (0,1), set
1if m(x) > s

v = 1m(@) > 5] = 0if m(x) <s

Define the confusion matrix as IN = [N, ]

Y

NG =D 1@ = u,y; =) for (u,v) € {0,1}.
=1

TN;+FP, FN;+TP,




Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Model Selection & ROC Curves
ROC curve is

FPg TP,
FP, + TN, TP, + FN,

ROC; = (

) with s € (0, 1)




Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Model Selection & ROC Curves

In machine learning, the most popular measure is k, see Landis & Koch (1977).

Define N+ from N as in the chi-square independence test. Set

TP + TN
n

total accuracy =

TP+ + TN+  [IN+FP]-[TP+FN] + [TP+FP] - [TN+FN]

random accuracy = = 5
n n

and

total accuracy — random accuracy

K =
1 — random accuracy

See Kaggle competitions.



http://www.dentalage.co.uk/wp-content/uploads/2014/09/landis_jr__koch_gg_1977_kappa_and_observer_agreement.pdf
http://xxx

Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Reducing Dimension with PCA

Use principal components to reduce dimension (on centered and scaled

variables): we want d vectors z1,--- , z4 such that

First Compoment is z; = Xw; where

wy = argmax {|| X - w||*} = argmax {wTXTXw}

Jewll=1 Jewll=1

Second Compoment is z9 = Xwsy where

)
- wl|?

~—(1
Wy = argmax ||X(
lwll=1

. (1) T
with X =X — Xwjw;.
N——

Z1




Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Reducing Dimension with PCA

A regression on (the d) principal components, y = z'b + 1 could be an
interesting idea, unfortunatley, principal components have no reason to be

correlated with y. First compoment was z; = Xw; where

wq = argmax { || X - w||”} = argmax {wTXTXw}

Jewll=1 lewll=1

It is a non-supervised technique.

Instead, use partial least squares, introduced in Wold (1966). First

compoment is z; = Xw; where

wp = argmax {< y, X - w >} = argmax {wTXTnyXw}
|wl]=1 |w||=1



http://www.citeulike.org/user/konradkryba/article/8609111

Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Instrumental Variables

Consider some instrumental variable model, y; = ] 8 + &; such that
E[Y:|Z] = E[X;|Z]' B + E[s;] Z]

The estimator of B is
By=1[Z2"X]"'Z"y

If dim(Z) > dim(X) use the Generalized Method of Moments,

BGMM = [ X'HzX] 'X'Mzy withTlz = Z[Z'Z]'Z"




Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Instrumental Variables

Consider a standard two step procedure

—

1) regress colums of X on Z, X = Za + 7, and derive predictions X =11z X

2) regress Y on X y; =&, B+ ¢, ie.

BN =(Z'X]"'Z"y

See Angrist & Krueger (1991) with 3 up to 1530 instruments : 12 instruments

seem to contain all necessary information.

Use LASSO to select necessary instruments, see Belloni, Chernozhukov & Hansen
(2010)



http://www.jstor.org/stable/2937954
https://arxiv.org/pdf/1201.0220.pdf
https://arxiv.org/pdf/1201.0220.pdf

Arthur Charpentier Chief Economists’ workshop: what can central bank policymakers learn from other disciplines?

Take Away Conclusion

Big data mythology

- n — oo: 0/1 law, everything is simplified (either true or false)

- p — oo: higher algorithmic complexity, need variable selection tools

Econometrics vs. Machine Learning

- probabilistic interpretation of econometric models
(unfortunately sometimes misleading, e.g. p-value)
can deal with non-i.id data (time series, panel, etc)

- machine learning is about predictive modeling and generalization

algorithmic tools, based on bootstrap (sampling and sub-sampling),

cross-validation, variable selection, nonlinearities, cross effects, etc

Importance of visualization techniques (forgotten in econometrics publications)
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