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Exemples of Actuarial Problems: Ratemaking and Pricing

N

E[S|X] = E |3 7| x| = - Bz
. Rﬂ
=1 annual frequency individual cost

e censoring / incomplete datasets (exposure + delay to report claims)

0 1

We observe Y and E, but the variable of interest is V.

Y; ~ P(E; - \;) with \; = exp[Bo + x, B + Z,].
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Exemples of Actuarial Problems: Pricing and Classification

Econometric models on classes

exp[Bo + @, B]
1+ exp[fo + =/ B]

Y; ~ B(p;) with p; =

Oor on counts

Y; ~ P(N\;) with \; = exp|[Bo + ] ]

e (too) large datasets X can be large (or com-

plex)

factors with a lot of modalities, spatial data,

text information, etc.

¥ ©freakonometrics 6
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Exemples of Actuarial Problems: Pricing and Classification

How to avoid overfit? How to group modalities?

How to choose between (very) correlated features? | o |88 S .. 5nE

o |top_speed_C(12) 14% 18% 12% 19% 24%  52%

@ |weight_C(20) 17% 15% 24% 20% 23% 41% 2!

S [length_C(12) 13% 20% 20% 25% 18% 49% 24% 37%

width_C (13) 14% 2 28% 25% 22% 46% 25% M1% 53%
height_C (12) 17% 21% 24% 24% 16% 33% 23% 29% 34% 34%

e model selection issues

Factor (#Levels)

Historically Bailey (1963) ‘margin method’ n = re',

with row (7) and column (¢) effects, and constraints

E ni,j: E 'rz--cjand E ni,j:E Ti'Cj
i J

i J

Related to Poisson regression,

N ~ P(exp[Bo + 7' Br +c'Bc))



https://www.casact.org/pubs/proceed/proceed63/63004.pdf
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Exemples of Actuarial Problems: Claims Reserving and Predictive Models

e predictive modeling issues Obecvd It n Cornc U

AY/DY

In all those cases, the goal is to get a predictive |

model, ¥ = m(x) given some features . i

2007

Recall that the main interest in insurance is either

Observed Comulative
AY/DY

1993

r4 >
27 275 |1 2915 3107 | 3157 343
2000 233 W 2977 3167 | 3333 3513
b b'l' _ ]P) Y _ 1 X _ 2001 2% 2493 815 2962 3129 3270 | 3422 [ 3858
® 4 pI'O aDl1 lty m — — = 2002 EN 2839 309 3322 66 | 3846 4111
2003 527 3259 3555 3753 4175 4380 4681
2004 655 3599 3759 | 3948 4103 4304 4601
2005 753 3587 36T 3915 4107 4390

e an expected value m(w) = IE[Y| X = :13] S T e s s e om

3725 4133 4344 4562 4741 4973 53la

Development Factors

1.9603 11093 10511 1050z 10393 L(4%1 10689  1.0620 1

but Somet imes , We need t he ( Condit iondal) dist ribu_ Source: Swedish data—Data from: Swedish Financial Supervisory Authority.

Mote: The figures in gray are estimated using an ordinary development approach. AY: Accident year; DY
AN
t1 tY
1011 O .

Development year. Carrency in 1000 units.
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History of Actuarial Models (in one slide)

Bailey (1963) or Taylor (1977) considered deterministic models, n; ; = r;-¢c; or

ni ; = ri-d;4+;. Some additional constraints are given to get an identifiable model.

Then some stochastic version of those models were introduced, see Hachemeister
(1975) or de Vylder (1985), e.g.

N;.; ~ P(exp|P(exp|Bo + R'Br+C'B¢))

log Nz’,j ~J N(@o + RTBR + CT,BC, 0'2)

All those techniques are econometric-based techniques. Why not consider some

statistical learning techniques?



https://www.casact.org/pubs/proceed/proceed63/63004.pdf
https://www.casact.org/library/astin/vol9no1and2/vol9no1and2.pdf
https://www.casact.org/pubs/forum/92spforum/92sp307.pdf
https://www.casact.org/pubs/forum/92spforum/92sp307.pdf
http://www.sciencedirect.com/science/article/pii/0167668785900125
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Statistical Learning and Philosophical Issues
From Machine Learning and Econometrics, by Hal Varian :

“Machine learning use data to predict some variable as a function of other

covariables,

e may, or may not, care about insight, importance, patterns

e may, or may not, care about inference (how y changes as some & change)

Econometrics use statistical methodes for prediction, inference and causal

modeling of economic relationships

e hope for some sort of insight (inference is a goal)

e in particular, causal inference is goal for decision making.”

— machine learning, ‘new tricks for econometrics’

¥ Ofreakonometrics 10


http://web.stanford.edu/class/ee380/Abstracts/140129-slides-Machine-Learning-and-Econometrics.pdf
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Statistical Learning and Philosophical Issues

Remark machine learning can also learn from econometrics, especially with non

i.i.d. data (time series and panel data)

Remark machine learning can help to get better predictive models, given good

datasets. No use on several data science issues (e.g. selection bias).
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Machine Learning and ‘Statistics’

Machine learning and statistics seem to be very similar, they share the same
goals—they both focus on data modeling—but their methods are affected by

their cultural differences.

“The goal for a statistician is to predict an interaction between variables with

some degree of certainty (we are never 100% certain about anything). Machine

learners, on the other hand, want to build algorithms that predict, classify, and
cluster with the most accuracy, see Why a Mathematician, Statistician & Machine

Learner Solve the Same Problem Differently

Machine learning methods are about algorithms, more than about asymptotic

statistical properties.



http://www.galvanize.com/blog/2015/08/26/why-a-mathematician-statistician-machine-learner-solve-the-same-problem-differently-2/
http://www.galvanize.com/blog/2015/08/26/why-a-mathematician-statistician-machine-learner-solve-the-same-problem-differently-2/
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Machine Learning and ‘Statistics’

See also nonparametric inference: “Note that the non-parametric model is not

none-parametric: parameters are determined by the training data, not the model.

[...] non-parametric covers techniques that do not assume that the structure of a

model is fixed. Typically, the model grows in size to accommodate the

Y

complexity of the data.” see wikipedia

Validation is not based on mathematical properties, but on properties out of
sample: we must use a training sample to train (estimate) model, and a testing

sample to compare algorithms.



https://en.wikipedia.org/wiki/Nonparametric_statistics
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Goldilock Principle: the Mean-Variance Tradeoff

In statistics and in machine learning, there will be parameters and
meta-parameters (or tunning parameters. The first ones are estimated, the

second ones should be chosen.

See Hill estimator in extreme value theory. X has a Pareto distribution above

some threshold u if

u

PIX > x| X > u] = (;)g for z > wu.

Given a sample x, consider the Pareto-QQ plot, i.e. the scatterplot

i ) log }
) Li:n
n+ 1 i=n—=k,--.,n

Y Y

for points exceeding X,, _1.,,.
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Goldilock Principle: the Mean-Variance Tradeoff

The slope is &, i.e.

) n-+1
log X, _it1.m ~2log X, 1o 1 1]
og 1 og k +€( T ogk+1>

k—1
Hence, consider estimator &, = = E logx,,_in —logx)_1.p,-
i=0

Standard mean-variance tradeoff,

e L large: bias too large, variance too small

e Lk small: variance too large, bias too small
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Goldilock Principle: the Mean-Variance Tradeoff

Same holds in kernel regression, with bandwidth h (length of neighborhood)

i=1

(x) = —F
ZKh(:U — x;)

for some kernel K (-).

Standard mean-variance tradeoff,

e ) large: bias too large, variance too small

e )/ small: variance too large, bias too small
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Goldilock Principle: the Mean-Variance Tradeoff

More generally, we estimate 6, or mp(+)

Use the mean squared error for 0y,

5|(6-8,)

or mean integrated squared error imy,(+)

5| [ (m(e) - s (@)* do

In statistics, derive an asymptotic expression for these quantities, and find h*

that minimizes those.

¥ @freakonometrics 17



ArRTHUR CHARPENTIER - PREDICTIVE MODELING IN INSURANCE, IN THE CONTEXT OF (POSSIBLY) BIG DATA

Goldilock Principle: the Mean-Variance Tradeoff

In classical statistics, the MISE can be approximated by

}f(/xQK(w)dw>2/ (m”(w)+2m’(az) J;(({f))) da + —a /K2 )dz Céw)

where f is the density of &#’s. Thus the optimal 5 is

( 52 2xxd_w \
L J K a)da | £

=N

()

2K (2)dx)” m (x m’wf 2:1;
| a2 @)dn)’ [ ([ @) + 20 @) ) e

(hard to get a simple rule of thumb... up to a constant, h* ~ n_%)

In statistics learning, use bootstrap, or cross-validation to get an optimal hA...




ArRTHUR CHARPENTIER - PREDICTIVE MODELING IN INSURANCE, IN THE CONTEXT OF (POSSIBLY) BIG DATA

Randomization is too important to be left to chance!

AN

Consider some sample & = (21, ,z,) and some statistics 6. Set 6,, = ()

~ ~ 1 -~
Jackknife used to reduce bias: set 9( i) = 0(x_;), and 0 = — Z 0—i
n

1=1
If E(6,) = 6 4+ O(n~ ") then E(6,) = 6 + O(n"?).

See also leave-one-out cross validation, for m(-)

n

mse = l Z[yz — 7/7\1(—7;) (-Tz)]Q

n -
1=1

Boostrap estimate is based on bootstrap samples: set g(b) — 5(:13(5)), and

1 =~

— Z 0 (1), where @) is a vector of size n, where values are drawn from
i=1

{x1, -+ ,x,}, with replacement. And then use the law of large numbers...

See Efron (1979).

0 —



http://www.stat.cmu.edu/~fienberg/Statistics36-756/Efron1979.pdf
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Statistical Learning and Philosophical Issues

From (y;,x;), there are different stories behind, see Freedman (2005)

e the causal story : x;; is usually considered as independent of the other
covariates xy ;. For all possible &, that value is mapped to m(x) and a noise
is atatched, . The goal is to recover m(-), and the residuals are just the

difference between the response value and m(x).

the conditional distribution story : for a linear model, we usually say that Y

given X = x is a N (m(x), 0?) distribution. m(x) is then the conditional

mean. Here m(-) is assumed to really exist, but no causal assumption is

made, only a conditional one.

the explanatory data story : there is no model, just data. We simply want to
summarize information contained in x’s to get an accurate summary, close to

the response (i.e. min{/(y,, m(x;))}) for some loss function /.



http://www.cambridge.org/us/academic/subjects/statistics-probability/statistical-theory-and-methods/statistical-models-theory-and-practice-2nd-edition
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Machine Learning vs. Statistical Modeling

In machine learning, given some dataset (x;,y;), solve

m(-) = argmin {Z€ Yiy M ))}

m(-)eF

for some loss functions £(-,-).

In statistical modeling, given some probability space (€2, A4, P), assume that y; are
realization of i.i.d. variables Y; (given X; = «;) with distribution F;. Then solve

m(-) = argmax {log L(m(x); y)} = argmax {Zlogf yis m(@ ))}

m(-)EF m(-)eEF | ;=1

where log £ denotes the log-likelihood.
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Loss Functions

Fitting criteria are based on loss functions (also called cost functions). For a

quantitative response, a popular one is the quadratic loss,

Ly, m(x)) = [y — m(x)]?.

Recall that

(

E(Y) = argmin{||Y — m||¢, } = argmin{E ([Y — m]Q)}

meR meR

Var(Y) = min{E ([Y —m]*)} = E ([Y ~ E(Y)]*)

\

The empirical version is
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Model Evaluation

In linear models, the R? is defined as the proportion of the variance of the the

response y that can be obtained using the predictors.

But maximizing the R? usually yields overfit (or unjustified optimism in Berk
(2008)).
In linear models, consider the adjusted R?,

n—1

R =1-[1-R?

n—p—1
where p is the number of parameters, or more generally trace(S) when some

smoothing matrix is considered

y=m(x)= Z Sax,ilYi = Sly
i=1

where S is some vector of weights (called smoother vector), related to a n x n

smoother matrix, y = Sy where prediction is done at points x;’s.



http://www.springer.com/us/book/9780387775005
http://www.springer.com/us/book/9780387775005
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Model Evaluation

Alternatives are based on the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC), based on a penalty imposed on some

criteria (the logarithm of the variance of the residuals),

n

1 . 2p
AIC =log (n > lyi - 3/7;]2> +

1=1
n

BIC = log (i Z[y@ _ /y\z]z> n log(n)p

5 n
1=1

In a more general context, replace p by trace(.S).
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Model Evaluation

One can also consider the expected prediction error (with a probabilistic model)
E[((Y, m(X)]

We cannot claim (using the law of large number) that

3 i ) LY, m(X)

since m depends on (y;, x;)’s.
Natural option : use two (random) samples, a training one and a validation one.

Alternative options, use cross-validation, leave-one-out or k-fold.
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Underfit / Overfit and Variance - Mean Tradeoff

Goal in predictive modeling: reduce uncertainty in our predictions.

Need more data to get a better knowledge.

Unfortunately, reducing the error of the prediction on a dataset does not

generally give a good generalization performance

— need a training and a validation dataset
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Overfit, Training vs. Validation and Complexity (Vapnik Dimension)

complexity <— polynomial degree
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Overfit, Training vs. Validation and Complexity (Vapnik Dimension)

complexity <— number of neighbors (k)
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Logistic Regression
Assume that P(Y; = 1) = 7,

logit(m;) =, B, where logit(m;) = log ( i ) ,

1—7'('7;

or
explz; B]

= logit ' (x] B) = T+ explzTB]°

The log-likelihood is

10g£<6) — Zyz log(ﬂ-z’) 1 yz) log 1 7Tz Zyz 10g 7Tz (1_yz’) log(l_ﬂ-i<6>)

and the first order conditions are solved numerically
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Predictive Classifier

To go from a score
explz' B]

s(x) =

14+ exp[a:TB]

to a class:
if 5(z) > s, then Y(z) = 1 (or o) and $(x) < s, then Y (z) = 0 (or o).
Plot TP(s) = P[Y = 1|Y = 1] against FP(s) =P[Y = 1|V = 0]
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Why a Logistic and not a Probit Regression?
Bliss (1934) suggested a model such that

P(Y =1|X =z) = H(z"3) where H(")

the c.d.f. of the N (0, 1) distribution. This is the probit model.
This yields a latent model, y; = 1(y; > 0) where

y; = fBiT,B + ¢, is a nonobservable score.

In the logistic regression, we model the odds ratio,

PY =1X =) ;
PY Z1X =) Pl Al

P(Y = 11X = ) = H(x"B) where H() = - fijg[.]

which is the c.d.f. of the logistic variable, see Verhulst (1845)

Table 3.2 'Transformation of percentages to probits

0 1 2 3 4 6 (] 7 8 9

—_ 3.12 3.26 3.3 3.46 3.62 3.59
3.77 3.82 3.87 3.02 3.06 4.01 4.06 4.08
4.20 4.20 4.33 4.30 4.39 4.42

4.56 4.69 4.01 "4.064 4.07 4.09

4.80 4.82 4.85 4.87 4.90 4.92 4.95

5.06 65.08 5.20

5.31 . 5.33 5.47

6.74 5.77

6.13 6.18

7.06

0.7 0.8
7.88

Soit p la poy
finiment petit qu’elle recoit p
8i la population croissait en progression géométrique, nous au-
rions l'égquation g’;’ == mp. Mais comme la vitesse d'accroisse-
ment de Ja population est retardée par 'augmentation méme da
nombre des habitans , nous devrons retrancher de mp une fonc-
tion inconnue de p; de maniére que la formule a intégrer de-
viendra

tion : représentons par dp I'accroi it in-
dant un terps infini courtdt,

d;
f = mp —5(p).

L’hypothése la plus simple que l'on puisse faire sur la forme
de la fonction p, est de supposer ¢ (p)==np”. On trouve alors
pour intégrale de P'équation ci-dessus

t= 1 [log. p —log. (m—np)] + constante,
m

et il suffira de trois observations pour déterminer les deux
coefficiens constans m et n et la constante arbitraire.
En résolvant la dernidre équation par rapport i p , il vient

mp’ emt

en désignant par p’ la population qui répond 4 =10, et parela
base des logarithmes népériens. Si l'on faitt=-¢o , on voit quela
valeur de p correspondante est P= ? Telle est donc la limite
supérieure de la population.



http://www.sciencemag.org/content/79/2037/38
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN129323640_0018&DMDID=dmdlog7
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k-Nearest Neighbors (a.k.a. £-NN)
In pattern recognition, the k-Nearest Neighbors algorithm (or k-NN for short) is a

non-parametric method used for classification and regression. (Source: wikipedia).

1
EYIX =a]~7 >

d(x;,z) small

For k-Nearest Neighbors, the class is usually the majority vote of the k£ closest

neighbors of .

Distance d(-, -) should not be sensitive to units:

normalize by standard deviation

¥ ©freakonometrics 32


https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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k-Nearest Neighbors and Curse of Dimensionality

The higher the dimension, the larger the distance to the closest neigbbor

min {d(a,z;)},z; € R".
ie{l,---,n}

T T T T T
dim3 dim4 dim5 dim3 dim4

n =10 100
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SURVIE
29 42

[yes ] REPUL >=1094 o

DECES SURVIE
26 6 3 36

REPUL »= 1585

Classification (and Regression) Trees, CART

REPUL < 1497

DECES SURVIE
94 12

one of the predictive modelling approaches used in
statistics, data mining and machine learning |...]
In tree structures, leaves represent class labels and
branches represent conjunctions of features that lead

to those class labels. (Source: wikipedia).

¥ Ofreakonometrics 34:


https://en.wikipedia.org/wiki/Decision_tree_learning
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Bagging
Bootstrapped Aggregation (Bagging) , is a machine learning ensemble

meta-algorithm designed to improve the stability and accuracy of machine

learning algorithms used in statistical classification (Source: wikipedia).

It is an ensemble method that creates multiple models of the same type from
different sub-samples of the same dataset [boostrap|. The predictions from each

separate model are combined together to provide a superior result |aggregation].
— can be used on any kind of model, but interesting for trees, see Breiman (1996)

Boostrap can be used to define the concept of margin,

B
margin, = Z 1(y; = y;) 2 Z 1(ys # yi)
B S

Remark Probability that ith raw is not selection (1 —n=1)" — e ~ 36.8%, cf
training / validation samples (2/3-1/3)



https://en.wikipedia.org/wiki/Bootstrap_aggregating
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Random Forests

Strictly speaking, when boostrapping among observations,

and aggregating, we use a bagging algorithm.

In the random forest algorithm, we combine Breiman’s bag-i

ging idea and the random selection of features, introduced
independently by Ho (1995) and Amit & Geman (1997).

¥ Ofreakonometrics 36


http://cm.bell-labs.com/cm/cs/who/tkh/papers/odt.pdf
http://www.cis.jhu.edu/publications/papers_in_database/GEMAN/shape.pdf
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Bagging, Forests, and Variable Importance

Given some random forest with M trees, set

VI(X) = % > ; %Az’(t)

where the first sum is over all trees, and the second one is
over all nodes where the split is done based on variable X;..

But difficult to interprete with correlated features. Con-
sidere model y = By + B1x1 + B3xs + ¢, and we consider

a model based on * = (x1,x2,x3) where x; and xo are

correlated.

Compare AIC vs. Variable Importance as a function of r
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Support Vector Machine

SVMs were developed in the 90’s based on previous work, from Vapnik & Lerner
(1963), see Vailant (1984)

Assume that points are linearly separable, i.e. there is w
and b such that

+lifwTz+b>0
1lifwlz+b<0

Problem: infinite number of solutions, need a good one,

that separate the data, (somehow) far from the data.

The distance from o to the hyperplane w'x + b is

wlaxy+ b

Il

d(iE(), Hw,b) —



http://www.cs.iastate.edu/~cs573x/vapnik-portraits1963.pdf
http://www.cs.iastate.edu/~cs573x/vapnik-portraits1963.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf
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Support Vector Machine

Define support vectors as observations such that
wla; +b =1

The margin is the distance between hyperplanes defined by
support vectors.

The distance from support vectors to H, p is ||w| ™!, and the margin is then
2w~

— the algorithm is to minimize the inverse of the margins s.t. H,,; separates
+1 points, i.e.

} S.t. yi(wTwi + b) > 1, Vi.
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Support Vector Machine
Now, what about the non-separable case?
Here, we cannot have y;(w'x; +b) > 1 Vi.

— introduce slack variables,

wlx; +b>+1—§ when y; = +1
wle;, +b< —1+¢; when y; = —1

where & > 0 Vi. There is a classification error when &; > 1.

The idea is then to solve

1
min {ﬁwTw -+ C’lT1£>1} , instead of min {5
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Support Vector Machines, with a Linear Kernel

So far, d(xo, Hy, p) = mglhl[n {lleo — x|e, }
w,b

where || - ||¢, is the Euclidean (¢3) norm,

lzo — x|e, V(@o — ) - (0 — )

Vo Ty — 2o + T

More generally, d(xo, H, p) = ménhl[n {lleo — ||}
w,b

where || - ||x is some kernel-based norm,

o — x| = VE(xo,20) — 2k(x0,2) + k(x-2)

¥ ©freakonometrics 4:1
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Regression?

In statistics, regression analysis is a statistical process for estimating the
relationships among variables [...] In a narrower sense, regression may refer
specifically to the estimation of continuous response variables, as opposed to the

discrete response variables used in classification. (Source: wikipedia).

Here regression is opposed to classification (as in the CART algorithm). y is

either a continuous variable y € R or a counting variable y € N .

In many cases in econometric and actuarial literature we simply want a good fit

for the conditional expectation, E[Y|X = x].



https://en.wikipedia.org/wiki/Regression_analysis
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Linear, Non-Linear and Generalized Linear

Y|X =x) ~ N(0z,0%) (Y[|X =x)~N(lz,07%) (V[X =)~ L(0z,¢)
EY|X =z]=x"p ElY|X = x| = h(x) ElY|X = x| = h(x)
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Regression Smoothers, natura non facit saltus

In statistical learning procedures, a key role is played by basis functions. We will

see that it is common to assume that
m(x)

where hg is usually a constant function and h; defined basis functions.

For instance, h,,(x) = 27 for a polynomial expansion with

a single predictor, or h;(z) = (x —s;)+ for some knots s;’s
(for linear splines, but one can consider quadratic or cubic

ones).
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Regression Smoothers: Polynomial or Spline

Stone-Weiestrass theorem every continuous func-
tion defined on a closed interval [a,b] can be uni-
formly approximated as closely as desired by a poly-

nomial function

Use also spline functions, e.g. piecewise linear

k
h(z) = Bo + Zﬁj(iﬂ — Sj)+
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Linear Model
Consider some linear model y; = ] B +¢; foralli=1,--- ,n.

Assume that ¢; are i.i.d. with E(¢) = 0 (and finite variance). Write

(6o
AN RN
\vn) - \L 2 =)

e,nxl1

xn,k}
ol X ) g,
y,nxl X nx(k+1) N——

B,(k+1)x1
Assuming € ~ N(0, 0°T), the maximum likelihood estimator of 3 is
B = argmin{lly — X "B} = (XTX) ' X Ty
. under the assumtption that X TX is a full-rank matrix.

What if X X cannot be inverted? Then B = (X T X]~1X "y does not exist, but
B, =[X"X + \[]"' X"y always exist if A > 0.
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Ridge Regression

The estimator E = | X X + M|t X Ty is the Ridge estimate obtained as solution
of

( )
n

B =argmin{ » [y; — Bo — = B> + A ||Blle,
B i—1 N——
\ 1782

for some tuning parameter A. One can also write

B = argmin {|Y — X" 8]s,)}
IB;HIBHEQSS

Remark Note that we solve 8 = argmin {objective(8)} where
B

objective(3) = i(/ﬂ) +  R(B)

training loss  regularization
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Going further on sparcity issues

In severall applications, k can be (very) large, but a lot of features are just noise:
B; = 0 for many j’s. Let s denote the number of relevent features, with s << k,

cf Hastie, Tibshirani & Wainwright (2015),

s = card{S} where S = {j; 3; # 0}

The model is now y = X £ B + €, where X &t X s is a full rank matrix.



https://www.crcpress.com/Statistical-Learning-with-Sparsity-The-Lasso-and-Generalizations/Hastie-Tibshirani-Wainwright/9781498712163
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Going further on sparcity issues
Define |lal|l¢, = D 1(]a;| > 0). Ici dim(B) = s.

We wish we could solve

B = argmin {||[Y — X '8|,}
BillBlleg <s

Problem: it is usually not possible to describe all possible constraints, since

(Z) coefficients should be chosen here (with k£ (very) large).

Idea: solve the dual problem

B=  argmin  {||Bls}

B;llY =X T B¢, <h

where we might convexify the ¢y norm, || - ||,
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Regularization 7y, /1 et /5




ARTHUR CHARPENTIER - PREDICTIVE MODELING IN INSURANCE, IN THE CONTEXT OF (POSSIBLY) BIG DATA

Going further on sparcity issues
On [—1,+1]*, the convex hull of ||B]|¢, is || 8]l
On [—a, +a]®, the convex hull of ||B||¢, is a=1||B]e,

Hence,

B = argmin {|Y — X 'B|s,}
BillBlley <8

is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization problem

B = argmin{||Y" — X7 B]|s,+ (|8, }
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LASSO Least Absolute Shrinkage and Selection Operator

B € argmin{||Y — X8, + M8/, }

is a convex problem (several algorithms*), but not strictly convex (no unicity of

the minimum). Nevertheless, predictions y = :ch are unique

* MM, minimize majorization, coordinate descent Hunter (2003).



http://sites.stat.psu.edu/~dhunter/papers/mmtutorial.pdf
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Optimal LASSO Penalty
Use cross validation, e.g. K-fold,

B_py(N) = argmin ¢ > " [y; — a] B + A 8]

i@ s,
then compute the sum of the squared errors,
Qr(N) = > i — ] B_iy(N]°
1€LL

and finally solve

A" = argmin {Qm - =3 Qm}

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009) suggest the
largest A such that

Q(N) < Q(\*) + se[A\*] with se[\ Z QX



http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Boosting

Boosting is a machine learning ensemble meta-algorithm for reducing bias
primarily and also variance in supervised learning, and a family of machine
learning algorithms which convert weak learners to strong ones. (Source:
wikipedia)

The heuristics is simple: we consider an iterative process where we keep modeling

the errors.

Fit model for y, m1(-) from y and X, and compute the error, e, =y — m1(X).

Fit model for €1, mo(-) from e; and X, and compute the error,
g0 = €1 — my(X), etc. Then set

m(-) = ma(-) +ma() + ms(-) + -+ my(")
M—— —— —— ——

~Y ~Eq ~E2



https://en.wikipedia.org/wiki/Boosting_(machine_learning) 
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Boosting

With (very) general notations, we want to solve
m”* = argmin{E[/(Y, m(X))]}

for some loss function /.

It is an iterative procedure: assume that at some step £ we have an estimator

mi(X). Why not constructing a new model that might improve our model,

mi11(X) = mg(X) + h(X).

What h(-) could be?
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Boosting
In a perfect world, h(X) =y — my(X), which can be interpreted as a residual.

1
Note that this residual is the gradient of §[y — m(:z:)]2

A gradient descent is based on Taylor expansion

flxr) ~ f(xr—1)+ () — K1) Vf(2)—1)
——  N———— ~ N
<f7wk> <f7wk:—1> o <vf7wk—1>

But here, it is different. We claim we can write

fr(x) ~ fk_i(wz+£fk _vfk—lz 7
(fr,x) (fr—1,x) 3 (f—1,Va)

where 7 is interpreted as a ‘gradient’.
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Boosting

Here, f;, is a R — R function, so the gradient should be in such a (big)
functional space — want to approximate that function.

my(x) = my_1(xz) + argmin Zz(m, mi_1(x) + f(x))

fer

where f € F means that we seek in a class of weak learner functions.

If learner are two strong, the first loop leads to some fixed point, and there is no
learning procedure, see linear regression y = ' 3 + . Since € L & we cannot

learn from the residuals.

In order to make sure that we learn weakly, we can use some shrinkage

parameter v (or collection of parameters v;).




ArRTHUR CHARPENTIER - PREDICTIVE MODELING IN INSURANCE, IN THE CONTEXT OF (POSSIBLY) BIG DATA

Boosting with Piecewise Linear Spline & Stump Functions
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Take Home Message

e Similar goal: getting a predictive model, m(x)

e Different/Similar tools: minimize loss/maximize likelihood

m(-) = argmin {ZE Ui, M ))} vs. m(-) = argmax {Zlogf yi; m(x ))}

m(-)EF m(-)EF

1=1

e Try to remove the noise and avoid overfit using cross-validation,
C(yi, M=y (i)

Use computational tricks (bootstrap) to increase robustness

Nice tools to select interesting features (LASSO, variable importance)
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