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Actuarial Science, an ‘American Perspective’

Source: Trowbridge (1989) Fundamental Concepts of Actuarial Science.
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Actuarial Science, a ‘European Perspective’

Source: Dhaene et al. (2004) Modern Actuarial Risk Theory.
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Exemples of Actuarial Problems: Ratemaking and Pricing

E[S|X] = E

[
N∑
i=1

Zi

∣∣∣∣∣X
]

= E[N |X]︸ ︷︷ ︸
annual frequency

· E[Zi|X]︸ ︷︷ ︸
individual cost

• censoring / incomplete datasets (exposure + delay to report claims)

We observe Y and E, but the variable of interest is N .

Yi ∼ P(Ei · λi) with λi = exp[β0 + xT
i β + Zi].
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Exemples of Actuarial Problems: Pricing and Classification

Econometric models on classes

Yi ∼ B(pi) with pi = exp[β0 + xT
i β]

1 + exp[β0 + xT
i β]

or on counts

Yi ∼ P(λi) with λi = exp[β0 + xT
i β]

• (too) large datasets X can be large (or com-
plex)

factors with a lot of modalities, spatial data,
text information, etc.
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Exemples of Actuarial Problems: Pricing and Classification
How to avoid overfit? How to group modalities?
How to choose between (very) correlated features?

• model selection issues

Historically Bailey (1963) ‘margin method’ n̂ = rcT,

with row (r) and column (c) effects, and constraints∑
i

ni,j =
∑
i

ri · cj and
∑
j

ni,j =
∑
j

ri · cj

Related to Poisson regression,

N ∼ P(exp[β0 + rTβR + cTβC ])

@freakonometrics 7
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Exemples of Actuarial Problems: Claims Reserving and Predictive Models

• predictive modeling issues

In all those cases, the goal is to get a predictive
model, ŷ = m̂(x) given some features x.
Recall that the main interest in insurance is either

• a probability m(x) = P[Y = 1|X = x]

• an expected value m(x) = E[Y |X = x]

but sometimes, we need the (conditiondal) distribu-
tion of Ŷ .
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History of Actuarial Models (in one slide)

Bailey (1963) or Taylor (1977) considered deterministic models, ni,j = ri·cj or
ni,j = ri·di+j . Some additional constraints are given to get an identifiable model.

Then some stochastic version of those models were introduced, see Hachemeister
(1975) or de Vylder (1985), e.g.

Ni,j ∼ P(exp[P(exp[β0 +RTβR +CTβC ])

or
logNi,j ∼ N (β0 +RTβR +CTβC , σ

2)

All those techniques are econometric-based techniques. Why not consider some
statistical learning techniques?
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Statistical Learning and Philosophical Issues

From Machine Learning and Econometrics, by Hal Varian :

“Machine learning use data to predict some variable as a function of other
covariables,

• may, or may not, care about insight, importance, patterns

• may, or may not, care about inference (how y changes as some x change)

Econometrics use statistical methodes for prediction, inference and causal
modeling of economic relationships

• hope for some sort of insight (inference is a goal)

• in particular, causal inference is goal for decision making.”

→ machine learning, ‘new tricks for econometrics’

@freakonometrics 10
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Statistical Learning and Philosophical Issues

Remark machine learning can also learn from econometrics, especially with non
i.i.d. data (time series and panel data)

Remark machine learning can help to get better predictive models, given good
datasets. No use on several data science issues (e.g. selection bias).
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Machine Learning and ‘Statistics’

Machine learning and statistics seem to be very similar, they share the same
goals—they both focus on data modeling—but their methods are affected by
their cultural differences.

“The goal for a statistician is to predict an interaction between variables with
some degree of certainty (we are never 100% certain about anything). Machine
learners, on the other hand, want to build algorithms that predict, classify, and
cluster with the most accuracy, see Why a Mathematician, Statistician & Machine
Learner Solve the Same Problem Differently

Machine learning methods are about algorithms, more than about asymptotic
statistical properties.
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Machine Learning and ‘Statistics’

See also nonparametric inference: “Note that the non-parametric model is not
none-parametric: parameters are determined by the training data, not the model.
[...] non-parametric covers techniques that do not assume that the structure of a
model is fixed. Typically, the model grows in size to accommodate the
complexity of the data.” see wikipedia

Validation is not based on mathematical properties, but on properties out of
sample: we must use a training sample to train (estimate) model, and a testing
sample to compare algorithms.

@freakonometrics 13
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Goldilock Principle: the Mean-Variance Tradeoff

In statistics and in machine learning, there will be parameters and
meta-parameters (or tunning parameters. The first ones are estimated, the
second ones should be chosen.

See Hill estimator in extreme value theory. X has a Pareto distribution above
some threshold u if

P[X > x|X > u] =
(u
x

) 1
ξ for x > u.

Given a sample x, consider the Pareto-QQ plot, i.e. the scatterplot{
− log

(
1− i

n+ 1

)
, log xi:n

}
i=n−k,··· ,n

for points exceeding Xn−k:n.
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Goldilock Principle: the Mean-Variance Tradeoff

The slope is ξ, i.e.

logXn−i+1:n ≈ logXn−k:n + ξ

(
− log i

n+ 1 − log n+ 1
k + 1

)

Hence, consider estimator ξ̂k = 1
k

k−1∑
i=0

log xn−i:n − log xn−k:n.

Standard mean-variance tradeoff,

• k large: bias too large, variance too small

• k small: variance too large, bias too small
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Goldilock Principle: the Mean-Variance Tradeoff

Same holds in kernel regression, with bandwidth h (length of neighborhood)

m̂h(x) =

n∑
i=1

Kh(x− xi) · yi

n∑
i=1

Kh(x− xi)

for some kernel K(·).

Standard mean-variance tradeoff,

• h large: bias too large, variance too small

• h small: variance too large, bias too small
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Goldilock Principle: the Mean-Variance Tradeoff

More generally, we estimate θ̂h or m̂h(·)
Use the mean squared error for θ̂h

E
[(
θ − θ̂h

)2
]

or mean integrated squared error m̂h(·),

E
[∫

(m(x)− m̂h(x))2
dx

]
In statistics, derive an asymptotic expression for these quantities, and find h?

that minimizes those.
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Goldilock Principle: the Mean-Variance Tradeoff

In classical statistics, the MISE can be approximated by

h4

4

(∫
x2K(x)dx

)2 ∫ (
m′′(x) + 2m′(x)f

′(x)
f(x)

)
dx+ 1

nh
σ2
∫
K2(x)dx

∫
dx

f(x)

where f is the density of x’s. Thus the optimal h is

h? = n−
1
5


σ2 ∫ K2(x)dx

∫ dx

f(x)(∫
x2K(x)dx

)2 ∫ (∫
m′′(x) + 2m′(x)f

′(x)
f(x)

)2
dx


1
5

(hard to get a simple rule of thumb... up to a constant, h? ∼ n− 1
5 )

In statistics learning, use bootstrap, or cross-validation to get an optimal h...
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Randomization is too important to be left to chance!

Consider some sample x = (x1, · · · , xn) and some statistics θ̂. Set θ̂n = θ̂(x)

Jackknife used to reduce bias: set θ̂(−i) = θ̂(x(−i)), and θ̃ = 1
n

n∑
i=1

θ̂(−i)

If E(θ̂n) = θ +O(n−1) then E(θ̃n) = θ +O(n−2).

See also leave-one-out cross validation, for m̂(·)

mse = 1
n

n∑
i=1

[yi − m̂(−i)(xi)]2

Boostrap estimate is based on bootstrap samples: set θ̂(b) = θ̂(x(b)), and

θ̃ = 1
n

n∑
i=1

θ̂(b), where x(b) is a vector of size n, where values are drawn from

{x1, · · · , xn}, with replacement. And then use the law of large numbers...

See Efron (1979).

@freakonometrics 19

http://www.stat.cmu.edu/~fienberg/Statistics36-756/Efron1979.pdf
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Statistical Learning and Philosophical Issues

From (yi,xi), there are different stories behind, see Freedman (2005)

• the causal story : xj,i is usually considered as independent of the other
covariates xk,i. For all possible x, that value is mapped to m(x) and a noise
is atatched, ε. The goal is to recover m(·), and the residuals are just the
difference between the response value and m(x).

• the conditional distribution story : for a linear model, we usually say that Y
given X = x is a N (m(x), σ2) distribution. m(x) is then the conditional
mean. Here m(·) is assumed to really exist, but no causal assumption is
made, only a conditional one.

• the explanatory data story : there is no model, just data. We simply want to
summarize information contained in x’s to get an accurate summary, close to
the response (i.e. min{`(yi,m(xi))}) for some loss function `.

@freakonometrics 20

http://www.cambridge.org/us/academic/subjects/statistics-probability/statistical-theory-and-methods/statistical-models-theory-and-practice-2nd-edition
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Machine Learning vs. Statistical Modeling

In machine learning, given some dataset (xi, yi), solve

m̂(·) = argmin
m(·)∈F

{
n∑
i=1

`(yi,m(xi))
}

for some loss functions `(·, ·).

In statistical modeling, given some probability space (Ω,A,P), assume that yi are
realization of i.i.d. variables Yi (given Xi = xi) with distribution Fi. Then solve

m̂(·) = argmax
m(·)∈F

{logL(m(x);y)} = argmax
m(·)∈F

{
n∑
i=1

log f(yi;m(xi))
}

where logL denotes the log-likelihood.
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Loss Functions

Fitting criteria are based on loss functions (also called cost functions). For a
quantitative response, a popular one is the quadratic loss,
`(y,m(x)) = [y −m(x)]2.

Recall that 
E(Y ) = argmin

m∈R
{‖Y −m‖`2} = argmin

m∈R
{E
(
[Y −m]2

)
}

Var(Y ) = min
m∈R
{E
(
[Y −m]2

)
} = E

(
[Y − E(Y )]2

)
The empirical version is

y = argmin
m∈R

{
n∑
i=1

1
n

[yi −m]2}

s2 = min
m∈R
{
n∑
i=1

1
n

[yi −m]2} =
n∑
i=1

1
n

[yi − y]2
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Model Evaluation

In linear models, the R2 is defined as the proportion of the variance of the the
response y that can be obtained using the predictors.

But maximizing the R2 usually yields overfit (or unjustified optimism in Berk
(2008)).

In linear models, consider the adjusted R2,

R
2 = 1− [1−R2] n− 1

n− p− 1

where p is the number of parameters, or more generally trace(S) when some
smoothing matrix is considered

ŷ = m̂(x) =
n∑
i=1

Sx,iyi = ST
xy

where Sx is some vector of weights (called smoother vector), related to a n× n
smoother matrix, ŷ = Sy where prediction is done at points xi’s.

@freakonometrics 23

http://www.springer.com/us/book/9780387775005
http://www.springer.com/us/book/9780387775005
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Model Evaluation

Alternatives are based on the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC), based on a penalty imposed on some
criteria (the logarithm of the variance of the residuals),

AIC = log
(

1
n

n∑
i=1

[yi − ŷi]2
)

+ 2p
n

BIC = log
(

1
n

n∑
i=1

[yi − ŷi]2
)

+ log(n)p
n

In a more general context, replace p by trace(S).

@freakonometrics 24
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Model Evaluation

One can also consider the expected prediction error (with a probabilistic model)

E[`(Y, m̂(X)]

We cannot claim (using the law of large number) that

1
n

n∑
i=1

`(yi, m̂(xi))
a.s.9 E[`(Y,m(X)]

since m̂ depends on (yi,xi)’s.

Natural option : use two (random) samples, a training one and a validation one.

Alternative options, use cross-validation, leave-one-out or k-fold.
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Underfit / Overfit and Variance - Mean Tradeoff

Goal in predictive modeling: reduce uncertainty in our predictions.

Need more data to get a better knowledge.

Unfortunately, reducing the error of the prediction on a dataset does not
generally give a good generalization performance

−→ need a training and a validation dataset

@freakonometrics 26
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Overfit, Training vs. Validation and Complexity (Vapnik Dimension)

complexity ←→ polynomial degree

@freakonometrics 27
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Overfit, Training vs. Validation and Complexity (Vapnik Dimension)

complexity ←→ number of neighbors (k)

@freakonometrics 28
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Logistic Regression
Assume that P(Yi = 1) = πi,

logit(πi) = xT
i β, where logit(πi) = log

(
πi

1− πi

)
,

or
πi = logit−1(xT

i β) = exp[xT
i β]

1 + exp[xT
i β]

.

The log-likelihood is

logL(β) =
n∑
i=1

yi log(πi)+(1−yi) log(1−πi) =
n∑
i=1

yi log(πi(β))+(1−yi) log(1−πi(β))

and the first order conditions are solved numerically

∂ logL(β)
∂βk

=
n∑
i=1

Xk,i[yi − πi(β)] = 0.

@freakonometrics 29



Arthur CHARPENTIER - Predictive Modeling in Insurance, in the context of (possibly) Big Data

Predictive Classifier

To go from a score

ŝ(x) = exp[xTβ̂]
1 + exp[xTβ̂]

to a class:

if ŝ(x) > s, then Ŷ (x) = 1 (or •) and ŝ(x) ≤ s, then Ŷ (x) = 0 (or •).

Plot TP (s) = P[Ŷ = 1|Y = 1] against FP (s) = P[Ŷ = 1|Y = 0]

@freakonometrics 30
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Why a Logistic and not a Probit Regression?
Bliss (1934) suggested a model such that

P(Y = 1|X = x) = H(xTβ) where H(·) = Φ(·)

the c.d.f. of the N (0, 1) distribution. This is the probit model.
This yields a latent model, yi = 1(y?i > 0) where

y?i = xT
i β + εi is a nonobservable score.

In the logistic regression, we model the odds ratio,

P(Y = 1|X = x)
P(Y 6= 1|X = x) = exp[xTβ]

P(Y = 1|X = x) = H(xTβ) where H(·) = exp[·]
1 + exp[·]

which is the c.d.f. of the logistic variable, see Verhulst (1845)

@freakonometrics 31

http://www.sciencemag.org/content/79/2037/38
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k-Nearest Neighbors (a.k.a. k-NN)

In pattern recognition, the k-Nearest Neighbors algorithm (or k-NN for short) is a
non-parametric method used for classification and regression. (Source: wikipedia).

E[Y |X = x] ∼ 1
k

∑
d(xi,x) small

yi

For k-Nearest Neighbors, the class is usually the majority vote of the k closest
neighbors of x.

Distance d(·, ·) should not be sensitive to units:
normalize by standard deviation
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k-Nearest Neighbors and Curse of Dimensionality

The higher the dimension, the larger the distance to the closest neigbbor

min
i∈{1,··· ,n}

{d(a,xi)},xi ∈ Rd.

●
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Classification (and Regression) Trees, CART

one of the predictive modelling approaches used in
statistics, data mining and machine learning [...]
In tree structures, leaves represent class labels and
branches represent conjunctions of features that lead
to those class labels. (Source: wikipedia).
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Bagging

Bootstrapped Aggregation (Bagging) , is a machine learning ensemble
meta-algorithm designed to improve the stability and accuracy of machine
learning algorithms used in statistical classification (Source: wikipedia).

It is an ensemble method that creates multiple models of the same type from
different sub-samples of the same dataset [boostrap]. The predictions from each
separate model are combined together to provide a superior result [aggregation].

→ can be used on any kind of model, but interesting for trees, see Breiman (1996)

Boostrap can be used to define the concept of margin,

margini = 1
B

B∑
b=1

1(ŷi = yi)−
1
B

B∑
b=1

1(ŷi 6= yi)

Remark Probability that ith raw is not selection (1− n−1)n → e−1 ∼ 36.8%, cf
training / validation samples (2/3-1/3)
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https://en.wikipedia.org/wiki/Bootstrap_aggregating
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Random Forests

Strictly speaking, when boostrapping among observations,
and aggregating, we use a bagging algorithm.
In the random forest algorithm, we combine Breiman’s bag-
ging idea and the random selection of features, introduced
independently by Ho (1995) and Amit & Geman (1997).
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Bagging, Forests, and Variable Importance
Given some random forest with M trees, set

V I(Xk) = 1
M

∑
m

∑
t

Nt
N

∆i(t)

where the first sum is over all trees, and the second one is
over all nodes where the split is done based on variable Xk.
But difficult to interprete with correlated features. Con-
sidere model y = β0 + β1x1 + β3x3 + ε, and we consider
a model based on x = (x1, x2, x3) where x1 and x2 are
correlated.
Compare AIC vs. Variable Importance as a function of r
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Support Vector Machine

SVMs were developed in the 90’s based on previous work, from Vapnik & Lerner
(1963), see Vailant (1984)
Assume that points are linearly separable, i.e. there is ω
and b such that

Y =

 +1 if ωTx+ b > 0
−1 if ωTx+ b < 0

Problem: infinite number of solutions, need a good one,
that separate the data, (somehow) far from the data.

The distance from x0 to the hyperplane ωTx+ b is

d(x0, Hω,b) = ωTx0 + b

‖ω‖
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Support Vector Machine

Define support vectors as observations such that

|ωTxi + b| = 1

The margin is the distance between hyperplanes defined by
support vectors.

The distance from support vectors to Hω,b is ‖ω‖−1, and the margin is then
2‖ω‖−1.

−→ the algorithm is to minimize the inverse of the margins s.t. Hω,b separates
±1 points, i.e.

min
{

1
2ω

Tω

}
s.t. yi(ωTxi + b) ≥ 1, ∀i.
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Support Vector Machine

Now, what about the non-separable case?

Here, we cannot have yi(ωTxi + b) ≥ 1 ∀i.

−→ introduce slack variables, ωTxi + b ≥ +1− ξi when yi = +1
ωTxi + b ≤ −1 + ξi when yi = −1

where ξi ≥ 0 ∀i. There is a classification error when ξi > 1.

The idea is then to solve

min
{

1
2ω

Tω + C1T1ξ>1

}
, instead ofmin

{
1
2ω

Tω

}

@freakonometrics 40



Arthur CHARPENTIER - Predictive Modeling in Insurance, in the context of (possibly) Big Data

Support Vector Machines, with a Linear Kernel

So far, d(x0, Hω,b) = min
x∈Hω,b

{‖x0 − x‖`2}

where ‖ · ‖`2 is the Euclidean (`2) norm,

‖x0 − x‖`2 =
√

(x0 − x) · (x0 − x)
=
√
x0·x0 − 2x0·x+ x·x

More generally, d(x0, Hω,b) = min
x∈Hω,b

{‖x0 − x‖k}

where ‖ · ‖k is some kernel-based norm,

‖x0 − x‖k =
√
k(x0,x0)− 2k(x0,x) + k(x·x)
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Regression?

In statistics, regression analysis is a statistical process for estimating the
relationships among variables [...] In a narrower sense, regression may refer
specifically to the estimation of continuous response variables, as opposed to the
discrete response variables used in classification. (Source: wikipedia).

Here regression is opposed to classification (as in the CART algorithm). y is
either a continuous variable y ∈ R or a counting variable y ∈ N .

In many cases in econometric and actuarial literature we simply want a good fit
for the conditional expectation, E[Y |X = x].
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Linear, Non-Linear and Generalized Linear

(Y |X = x) ∼ N (θx, σ2) (Y |X = x) ∼ N (θx, σ2) (Y |X = x) ∼ L(θx, ϕ)

E[Y |X = x] = xTβ E[Y |X = x] = h(x) E[Y |X = x] = h(x)
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Regression Smoothers, natura non facit saltus

In statistical learning procedures, a key role is played by basis functions. We will
see that it is common to assume that

m(x) =
k∑
j=0

βjhj(x),

where h0 is usually a constant function and hj defined basis functions.

For instance, hm(x) = xj for a polynomial expansion with
a single predictor, or hj(x) = (x−sj)+ for some knots sj ’s
(for linear splines, but one can consider quadratic or cubic
ones).
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Regression Smoothers: Polynomial or Spline

Stone-Weiestrass theorem every continuous func-
tion defined on a closed interval [a, b] can be uni-
formly approximated as closely as desired by a poly-
nomial function

Use also spline functions, e.g. piecewise linear

h(x) = β0 +
k∑
j=1

βj(x− sj)+
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Linear Model

Consider some linear model yi = xT
i β + εi for all i = 1, · · · , n.

Assume that εi are i.i.d. with E(ε) = 0 (and finite variance). Write
y1
...
yn


︸ ︷︷ ︸
y,n×1

=


1 x1,1 · · · x1,k
...

...
. . .

...
1 xn,1 · · · xn,k


︸ ︷︷ ︸

X,n×(k+1)


β0

β1
...
βk


︸ ︷︷ ︸
β,(k+1)×1

+


ε1
...
εn


︸ ︷︷ ︸
ε,n×1

.

Assuming ε ∼ N (0, σ2I), the maximum likelihood estimator of β is

β̂ = argmin{‖y −XTβ‖`2} = (XTX)−1XTy

... under the assumtption that XTX is a full-rank matrix.

What if XT
iX cannot be inverted? Then β̂ = [XTX]−1XTy does not exist, but

β̂λ = [XTX + λI]−1XTy always exist if λ > 0.
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Ridge Regression

The estimator β̂ = [XTX + λI]−1XTy is the Ridge estimate obtained as solution
of

β̂ = argmin
β


n∑
i=1

[yi − β0 − xT
i β]2 + λ ‖β‖`2︸ ︷︷ ︸

1Tβ2


for some tuning parameter λ. One can also write

β̂ = argmin
β;‖β‖`2≤s

{‖Y −XTβ‖`2}

Remark Note that we solve β̂ = argmin
β
{objective(β)} where

objective(β) = L(β)︸ ︷︷ ︸
training loss

+ R(β)︸ ︷︷ ︸
regularization
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Going further on sparcity issues

In severall applications, k can be (very) large, but a lot of features are just noise:
βj = 0 for many j’s. Let s denote the number of relevent features, with s << k,
cf Hastie, Tibshirani & Wainwright (2015),

s = card{S} where S = {j;βj 6= 0}

The model is now y = XT
SβS + ε, where XT

SXS is a full rank matrix.
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Going further on sparcity issues

Define ‖a‖`0 =
∑

1(|ai| > 0). Ici dim(β) = s.

We wish we could solve

β̂ = argmin
β;‖β‖`0≤s

{‖Y −XTβ‖`2}

Problem: it is usually not possible to describe all possible constraints, since(
s

k

)
coefficients should be chosen here (with k (very) large).

Idea: solve the dual problem

β̂ = argmin
β;‖Y −XTβ‖`2≤h

{‖β‖`0}

where we might convexify the `0 norm, ‖ · ‖`0 .
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Regularization `0, `1 et `2
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Going further on sparcity issues

On [−1,+1]k, the convex hull of ‖β‖`0 is ‖β‖`1

On [−a,+a]k, the convex hull of ‖β‖`0 is a−1‖β‖`1

Hence,
β̂ = argmin

β;‖β‖`1≤s̃
{‖Y −XTβ‖`2}

is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization problem

β̂ = argmin{‖Y −XTβ‖`2+λ‖β‖`1}
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LASSO Least Absolute Shrinkage and Selection Operator

β̂ ∈ argmin{‖Y −XTβ‖`2+λ‖β‖`1}

is a convex problem (several algorithms?), but not strictly convex (no unicity of
the minimum). Nevertheless, predictions ŷ = xTβ̂ are unique

? MM, minimize majorization, coordinate descent Hunter (2003).
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Optimal LASSO Penalty

Use cross validation, e.g. K-fold,

β̂(−k)(λ) = argmin

∑
i6∈Ik

[yi − xT
i β]2 + λ‖β‖


then compute the sum of the squared errors,

Qk(λ) =
∑
i∈Ik

[yi − xT
i β̂(−k)(λ)]2

and finally solve

λ? = argmin
{
Q(λ) = 1

K

∑
k

Qk(λ)
}

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009) suggest the
largest λ such that

Q(λ) ≤ Q(λ?) + se[λ?] with se[λ]2 = 1
K2

K∑
k=1

[Qk(λ)−Q(λ)]2
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Boosting

Boosting is a machine learning ensemble meta-algorithm for reducing bias
primarily and also variance in supervised learning, and a family of machine
learning algorithms which convert weak learners to strong ones. (Source:
wikipedia)

The heuristics is simple: we consider an iterative process where we keep modeling
the errors.

Fit model for y, m1(·) from y and X, and compute the error, ε1 = y −m1(X).

Fit model for ε1, m2(·) from ε1 and X, and compute the error,
ε2 = ε1 −m2(X), etc. Then set

m(·) = m1(·)︸ ︷︷ ︸
∼y

+m2(·)︸ ︷︷ ︸
∼ε1

+m3(·)︸ ︷︷ ︸
∼ε2

+ · · ·+mk(·)︸ ︷︷ ︸
∼εk−1
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Boosting

With (very) general notations, we want to solve

m? = argmin{E[`(Y,m(X))]}

for some loss function `.

It is an iterative procedure: assume that at some step k we have an estimator
mk(X). Why not constructing a new model that might improve our model,

mk+1(X) = mk(X) + h(X).

What h(·) could be?
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Boosting

In a perfect world, h(X) = y −mk(X), which can be interpreted as a residual.

Note that this residual is the gradient of 1
2 [y −m(x)]2

A gradient descent is based on Taylor expansion

f(xk)︸ ︷︷ ︸
〈f,xk〉

∼ f(xk−1)︸ ︷︷ ︸
〈f,xk−1〉

+ (xk − xk−1)︸ ︷︷ ︸
α

∇f(xk−1)︸ ︷︷ ︸
〈∇f,xk−1〉

But here, it is different. We claim we can write

fk(x)︸ ︷︷ ︸
〈fk,x〉

∼ fk−1(x)︸ ︷︷ ︸
〈fk−1,x〉

+ (fk − fk−1)︸ ︷︷ ︸
β

?︸︷︷︸
〈fk−1,∇x〉

where ? is interpreted as a ‘gradient’.
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Boosting

Here, fk is a Rd → R function, so the gradient should be in such a (big)
functional space → want to approximate that function.

mk(x) = mk−1(x) + argmin
f∈F

{
n∑
i=1

`(Yi,mk−1(x) + f(x))
}

where f ∈ F means that we seek in a class of weak learner functions.

If learner are two strong, the first loop leads to some fixed point, and there is no
learning procedure, see linear regression y = xTβ + ε. Since ε ⊥ x we cannot
learn from the residuals.

In order to make sure that we learn weakly, we can use some shrinkage
parameter ν (or collection of parameters νj).
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Boosting with Piecewise Linear Spline & Stump Functions
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Take Home Message

• Similar goal: getting a predictive model, m̂(x)

• Different/Similar tools: minimize loss/maximize likelihood

m̂(·) = argmin
m(·)∈F

{
n∑
i=1

`(yi,m(xi))
}

vs. m̂(·) = argmax
m(·)∈F

{
n∑
i=1

log f(yi;m(xi))
}

• Try to remove the noise and avoid overfit using cross-validation,

`(yi, m̂(−i)(xi))

• Use computational tricks (bootstrap) to increase robustness

• Nice tools to select interesting features (LASSO, variable importance)
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