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Reference book

Insurance, Biases, Discrimination and Fairness
ISBN : 978-3-031-49782-7

Pitch: Discrimination and fairness of predictive models, in
insurance, in the context of data enrichment ("big data”)
and opaque models ("machine learning”, not to say "artificial
intelligence").

Warning: there are probably too many slides...
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Preliminaries

Definition 1.1: Actuaries,

To be an actuary is to be a specialist in generalization,
and actuaries engage in a form of decision making that
is sometimes called actuarial. Actuaries guide insurance
companies in making decisions about large categories
that have the effect of attributing to the entire cat-
egory certain characteristics that are probabilistically
indicated by membership in the category, but that
still may not be possessed by a particular member of
the category.

J

See Barry and Charpentier (2020) on personalization of insur-

ance prices.
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Preliminaries

“—Tu la troubles, reprit cette béte cruelle,

Et je sais que de moi tu médis ’an passé.

— Comment Uaurais-je fait si je n’étais pas né ?
Reprit UAgneau, je tette encor ma mere.

— Si ce n’est toi, c’est donc ton frére.

—Je n’en ai point.

— C’est donc quelqu’un des tiens.”

de La Fontaine (1668), Le Loup et I'’Agneau.

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 4 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Preliminaries

Definition 1.2: Discrimination,

Discrimination is the act, practice, or an instance of separating or distinguishing
categorically rather than individually.

Discrimination is “the act of treating different groups differently,” Frees and Huang
(2021)

Definition 1.3: Prejudice,

Prejudice is (1) preconceived judgment or opinion, or an adverse opinion or leaning
formed without just grounds or before sufficient knowledge; (2) an instance of
such judgment or opinion; (3) an irrational attitude of hostility directed against
an individual, a group, a race, or their supposed characteristics.
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Preliminaries

Definition 1.4: Disparate treatment,

Disparate treatment corresponds to the treatment of an individual (as an em-
ployee or prospective juror) that is less favorable than treatment of others for
discriminatory reasons (as race, religion, national origin, sex, or disability).

Definition 1.5: Disparate impact,

Disparate impact corresponds to an unnecessary discriminatory effect on a pro-
tected class caused by a practice or policy (as in employment or housing) that
appears to be nondiscriminatory.

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 6 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Motivation (1. Redlining)

1937 HOLC (Home Owners' Loan Corporation)
"residential security” map of Philadelphia
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Motivation (1. Redlining)

(Fictitious maps, inspired by a Home Owners' Loan Corporation map from 1937)

e Federal Home Loan Bank Board (FHLBB) "residential security maps" (for
real-estate investments), Crossney (2016) and Rhynhart (2020)

e Unsanitary index and proportion of Black inhabitants
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Motivation (1. Redlining)

Redlining was used for loans
but also insurers, Kerner (1968)

“use of a red line around the question-
able areas on territorial maps centrally
located in the Underwriting Division for
ease of reference by all Underwriting
personnel [...] mark off certain areas * *
* to denote a lack of interest in business
arising in these areas In New York these
are called K.O. areas meaning knock-
out areas, in Boston they are called red-
line districts. Same thing — don’t write
the business.”
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Motivation (1. Redlining)

Definition 1.6: Redline,

To redline is (1) to withhold home-loan funds or insurance from neighborhoods
considered poor economic risks; (2) to discriminate against in housing or insur-
ance.

See https://evolutionofraceandinsurance.org/ for some historical perspective, Squires
and Velez (1988), or more recently Squires (2003)

... but still a concern see, e.g., Li (1996) about homosexuals.
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Motivation (2. “Gender directive”, 2004/113/EC)

Treaty on European Union (26.10.2012, C326)
— Article 2 -

The Union is founded on the values of respect for human dignity, free-
dom, democracy, equality, the rule of law and respect for human rights,
including the rights of persons belonging to minorities. These values
are common to the Member States in a society in which pluralism,
non-discrimination, tolerance, justice, solidarity and equality between
women and men prevail.

— Article 3 —

(...) It shall combat social exclusion and discrimination, and shall promote
social justice and protection, equality between women and men, solidarity
between generations and protection of the rights of the child.
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Motivation (2. “Gender directive”, 2004/113/EC)

Charter of Fundamental Rights of the European Union (18.12.2000 , C364)
— Article 21 (Non discrimination) —

Any discrimination based on any ground such as sex, race, colour, ethnic or
social origin, genetic features, language, religion or belief, political or any
other opinion, membership of a national minority, property, birth, disability,
age or sexual orientation shall be prohibited.

— Article 23 (Equality between men and women) —

Equality between men and women must be ensured in all areas, including
employment, work and pay.

The principle of equality shall not prevent the maintenance or adoption of
measures providing for specific advantages in favour of the under-represented
Sex.
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Motivation (2. “Gender directive”, 2004/113/EC)
EU Directive (2004/113/EC), 2004 version
— Article 5 (Actuarial factors) —

1. Member States shall ensure that in all new contracts concluded after 21
December 2007 at the latest, the use of sex as a factor in the calculation of
premiums and benefits for the purposes of insurance and related financial
services shall not result in differences in individuals’ premiums and benefits.

2. Notwithstanding paragraph 1, Member States may decide before 21
December 2007 to permit proportionate differences in individuals’ premiums
and benefits where the use of sex is a determining factor in the assessment of
risk based on relevant and accurate actuarial and statistical data. The
Member States concerned shall inform the Commission and ensure that
accurate data relevant to the use of sex as a determining actuarial factor are
compiled, published and regularly updated.
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Motivation (2. “Gender directive”, 2004/113/EC)

There was initially (2004) an opt-out clause (Article 5(2)).

Where gender is a determining factor in the assessment of risk based on relevant and
accurate actuarial and statistical data then proportionate differences in individual
premiums or benefits are allowed.

March 2011, the European Court of Justice issued its judgement into the “Test-Achats
case”. The ECJ ruled Article 5(2) was invalid.

Insurers were no longer able to use gender as a risk factor when pricing policies,
"unisex pricing".

"Machine learning won't give you anything like gender neutrality ‘for free’ that you
didn’t explicitly ask for ", Kearns and Roth (2019)
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Motivation (2. “Gender directive”, 2004/113/EC)

“Ten Oever” judgement (Gerardus Cornelis Ten QOever v
Stichting Bedrijfspensioenfonds voor het Glazenwassers — en
Schoonmaakbedrijf, in April 1993), the Advocate General
Van Gerven argued that “the fact that women generally live
longer than men has no significance at all for the life ex-
pectancy of a specific individual and it is not acceptable for
an individual to be penalized on account of assumptions which
are not certain to be true in his specific case,” as mentioned
in De Baere and Goessens (2011).

Schanze (2013) used the term “injustice by generalization,” from Britz (2008)
("Generalisierungsunrecht")
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Motivation (2. “Gender directive”, 2004/113/EC)

(data source: Mcdonald (2015))
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Motivation (3. Québec)

Au Québec, Charte des droits et libertés de la personne (C-12)
— Article 20.1 —

In an insurance or pension contract, a social benefits plan, a retirement,
pension or insurance plan, or a public pension or public insurance plan,
a distinction, exclusion or preference based on age, sex or civil status is
deemed non-discriminatory where the use thereof is warranted and the
basis therefor is a risk determination factor based on actuarial data
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Motivation (4. Colorado)

Andrus et al. (2021), "What we can’t measure, we can't un-
derstand"”

September 27, 2023, the Colorado Division of Insurance ex-
posed a new proposed regulation entitled Concerning Quan-
titative Testing of External Consumer Data and Information
Sources, Algorithms, and Predictive Models Used for Life In-
surance Underwriting for Unfairly Discriminatory Outcomes

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 18 / 601


https://www.lockelord.com/-/media/files/newsandevents/publications/2023/draft-proposed-algorithm-and-predictive-model-quan.pdf
https://www.lockelord.com/-/media/files/newsandevents/publications/2023/draft-proposed-algorithm-and-predictive-model-quan.pdf
https://www.lockelord.com/-/media/files/newsandevents/publications/2023/draft-proposed-algorithm-and-predictive-model-quan.pdf
https://www.lockelord.com/-/media/files/newsandevents/publications/2023/draft-proposed-algorithm-and-predictive-model-quan.pdf
https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Motivation (4. Colorado)

— Section 4 (Definitions) —

Bayesian Improved First Name Surname Geocoding, or “BIFSG” means, for
the purposes of this regulation, the statistical methodology developed by the
RAND corporation for estimating race and ethnicity.

External Consumer Data and Information Source, or “ECDIS” means, for the
purposes of this regulation, a data source or an information source that is used
by a life insurer to supplement or supplant traditional underwriting factors.
This term includes credit scores, credit history, social media habits, purchasing
habits, home ownership, educational attainment, licensures, civil judgments,
court records, occupation that does not have a direct relationship to mortality,
morbidity or longevity risk, consumer-generated Internet of Things data,
biometric data, and any insurance risk scores derived by the insurer or
third-party from the above listed or similar data and /or information source.
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Motivation (4. Colorado)

— Section 5 (Estimating Race and Ethnicity) —

Insurers shall estimate the race or ethnicity of all proposed insureds that have
applied for coverage on or after the insurer’s initial adoption of the use of
ECDIS, or algorithms and predictive models that use ECDIS, including a third
party acting on behalf of the insurer that used ECDIS, or algorithms and
predictive models that used ECDIS, in the underwriting decision-making
process, by utilizing:

1. BIFSG and the insureds’ or proposed insureds’ name and geolocation
(information included in the applications) for life insurance shall be used to
estimate the race and ethnicity of each insured or proposed insured.

2. For the purposes of BIFSG, the following racial and ethnic categories shall
be used: Hispanic, Black, Asian Pacific Islander (API), and White.
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Motivation (4. Colorado)
— Section 6 (Application Approval Decision Testing Requirements) —

Using the BIFSG estimated race and ethnicity of proposed insureds and the
following methodology, insurers shall calculate whether Hispanic, Black, and
API proposed insureds are disapproved at a statistically significant different
rate relative to White applicants for whom the insurer, or a third party acting
on behalf of the insurer, used ECDIS, or an algorithm or predictive model that
used ECDIS, in the underwriting decision-making process.

1. Logistic regression shall be used to model the binary underwriting outcome
of either approved or denied.

2. The following factors may be accounted for as control variables in the
regression model: policy type, face amount, age, gender, and tobacco use.

3. The estimated race or ethnicity of the proposed insureds shall be accounted
for by including Hispanic, Black, and Asian Pacific Islander (API) as separate
dummy variables in the regression model.
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Motivation (4. Colorado)

4. Determine if there is a statistically significant difference in approval rates for
each BIFSG estimated race or ethnicity variable as indicated by a p-value of
less than .05.

a. If there is not a statistically significant difference in approval rates, no
further testing is required.

b. If there is a statistically significant difference in approval rates, the
insurer shall determine whether the difference in approval rates is five (5)
percentage points or greater as indicated by the marginal effects value of each
BIFSG estimated race or ethnicity variable. (...)
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Motivation (4. Colorado)
— Section 7 (Premium Rate Testing Requirements) —

Using the insureds’ BIFSG estimated race and ethnicity, insurers shall
determine if there is a statistically significant difference in the premium rate
per $1,000 of face amount for policies issued to Hispanic, Black, and API
insureds relative to White insureds for whom the insurer, or a third party
acting on behalf of the insurer, used ECDIS, or an algorithm or predictive
model that used ECDIS, in the underwriting decision-making process.

1. Linear regression shall be used to model the continuous numerical outcome
of premium rate per $1,000 of face amount.

2. The following factors may be accounted for as control variables in the
regression model: policy type, face amount, age, gender, and tobacco use.

3. The estimated race or ethnicity of the proposed insureds shall be accounted
for by including Hispanic, Black, and Asian Pacific Islander (API) as separate
dummy variables in the regression model.
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Motivation (4. Colorado)

4. Determine if there is a statistically significant difference in the premium rate
per $1,000 of face amount for each BIFSG estimated race or ethnicity variable
as indicated by a p-value of less than .05.

a. If there is not a statistically significant difference in premium rate per
$1,000 of face amount, no further testing is required.

b. If there is a statistically significant difference in premium rate per $1,000
of face amount, determine whether the premium rate per $1,000 of face amount
is at least 5% more than the average premium rate per $1,000 for all policies.

i. If the difference in premium rate per $1,000 of face amount is less
than 5%, no further testing is required.

ii. If the difference in premium rate per $1,000 of face amount is 5% or
greater, further testing is required as described in Section 8.
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Motivation (4. Colorado)

In Elliott et al. (2009), BIFSG!, 1ibrary(eiCompare) . €), consider 12 people living near

Atlanta, GA (Fulton & Gwinnett counties), and eiCompare: :uru predict _race wrapper

1 last first
2 1 LOCKLER GABRIELLA
3 2 RADLEY OLIVIA
4 3 BOORSE KEISHA
5 4 MAZ SAVANNAH
6 5 GAULE NATASHIA
76 MCMELLEN ISMAEL
8 7 RIDEQOUT LUQMAN
9 8 WASHINGTON BRYN
10 9 KULENOVIC EVELYN
11 10 HERNANDEZ SAMANTHA
12 11 LONG BIERSISHNE:
13 12 HE JOSE

county city zipcode
Fulton Atlanta 30318
Fulton Fairburn 30213
Fulton Atlanta 30331
Gwinnett Norcross 30093
Gwinnett Snellville 30078
Gwinnett Lilburn 30047
Gwinnett Snellville 30078
Gwinnett Norcross 30093
Gwinnett Buford 30518
Gwinnett Duluth 30096
Gwinnett Duluth 30096

Gwinnett Lawrenceville
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Motivation (3. Colorado)

We have 12 people,
in two counties near Atlanta
(about 10 zip-codes)

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 26 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Motivation (3. Colorado)

Use eiCompare: :wru predict_race wrapper on a revised dataset with the same name

“Savannah Maz”

last
MAZ
MAZ
MAZ
MAZ
MAZ
MAZ
MAZ
MAZ
MAZ
MAZ
MAZ
MAZ

© ® N o oA W N e
0 ~No o WN -

T
w N = O
= = = O
N = O

first
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH
SAVANNAH

W Ofreakonometrics €) freakonometrics

county city zipcode
Fulton Atlanta 30318
Fulton Fairburn 30213
Fulton Atlanta 30331
Gwinnett Norcross 30093
Gwinnett Snellville 30078
Gwinnett Lilburn 30047
Gwinnett Snellville 30078
Gwinnett Norcross 30093
Gwinnett Buford 30518
Gwinnett Duluth 30096
Gwinnett Duluth 30096

Gwinnett Lawrenceville

30045

whi bla his

0
1'3
3
5
13
28
53
5
79
32
55
15

0
61
7

6
18
22

0
22
19
76
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14
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22
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Motivation (3. Colorado)

Use eiCompare: :wru predict_race wrapper on a revised dataset with the same name

“Bryn Washington”

-

© ® N o O A~ W N
NV N g WN

9

e e
w N = O
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last
WASHINGTON
WASHINGTON
WASHINGTON
WASHINGTON
WASHINGTON
WASHINGTON
WASHINGTON
WASHINGTON
WASHINGTON

10 WASHINGTON
11 WASHINGTON
12 WASHINGTON

first
BRYN
BRYN
BRYN
BRYN
BRYN
BRYN
BRYN
BRYN
BRYN
BRYN
BRYN
BRYN

county city zipcode whi
Fulton Atlanta 30318 0
Fulton Fairburn 30213 0
Fulton Atlanta 30331 0
Gwinnett Norcross 30093 0
Gwinnett Snellville 30078 0
Gwinnett Lilburn 30047 1
Gwinnett Snellville 30078 6
Gwinnett Norcross 30093 0
Gwinnett Buford 30518 7
Gwinnett Duluth 30096 2
Gwinnett Duluth 30096 1
Gwinnett Lawrenceville 30045 0

bla his asi

0
99
99
95
96
98
87

95
92
96
96
98
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Motivation (3. Colorado)

Use eiCompare: :wru predict_race wrapper on a revised dataset with the same name

“Samantha Hernandez”

last first
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
HERNANDEZ SAMANTHA
10 HERNANDEZ SAMANTHA
11 HERNANDEZ SAMANTHA
12 HERNANDEZ SAMANTHA

© 0 N o U A W N e
© 00 N O Ol WN -

e e
w N = O
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county
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Gwinnett
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Gwinnett

city zipcode whi bla his asi
0 100

Atlanta
Fairburn
Atlanta
Norcross
Snellville
Lilburn
Snellville
Norcross
Buford
Duluth
Duluth

Gwinnett Lawrenceville

30318
30213
30331
30093
30078
30047
30078
30093
30518

30096
30096
30045

0
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Motivation (3. Colorado)

Use eiCompare: :wru predict_race wrapper on a revised dataset with the same name
“Jose He"

last
HE
HE
HE
HE
HE
HE
HE
HE
HE
HE
HE
HE

© 0 N o U A W N e
W N O O W N -

e Rk e
w N = O
B = = 0
N~ o
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first
JOSE
JOSE
JOSE
JOSE
JOSE
JOSE
JOSE
JOSE
JOSE
JOSE
JOSE
JOSE

county
Fulton
Fulton
Fulton
Gwinnett
Gwinnett
Gwinnett
Gwinnett
Gwinnett
Gwinnett
Gwinnett
Gwinnett
Gwinnett

city zipcode whi bla his

Atlanta
Fairburn
Atlanta
Norcross
Snellville
Lilburn
Snellville
Norcross
Buford
Duluth
Duluth
Lawrenceville

30318
30213
30331
30093
30078
30047
30078
30093
30518
30096
30096
30045

1

1

0
2

1
0
3
1
8
0
9
1
6
2

0
9

[\
~

1

W NNO P, O = 00O

0
2
3
2
30
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asi
100
84
Bi5
98
0
97
86
98
78
98
85
89
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Motivation (5. Motor Insurance in the U.S.)
via The Zebra (2022),

SN © Avraham et al. (2013)
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Motivation (5. Motor Insurance in the U.S.)

CA HI GA NC NY MA PA FL TX| AL ON NB NL QC
Gender 0O o ovooodddd oa o
Age O o oo oo d d|#Fd oo o
Driving experience ET O M ET M |ZT M M M M M M ET |ZT
Credit history o oo o A0 @F O o
Education O 0ooooogvdddd d d d o
Occupation Il 0 o M 0 o M \ZT M \ZT M M M M
Employment status | [l 0 o |ZT o o lﬁ IZT M Iﬁ M M |ZT |ZT
Marital status ¥ o ¥ ¥ ovd d d|d d d d &
Housing situation o o ¥ d od d Ao d d A
Address/zZIPcode | & & o o o 4 & Ao o d d &
Insurance histoy | M & @ M M @ M M A A 4 d A &

CA: California, HI: Hawaii, GA: Georgia, NC: North Carolina, NY: New York, MA: Massachusetts, PA:
Pennsylvania, FL: Florida, TX: Texas, AL: Alberta, ON: Ontario, NB: New-Brunswick, NL:
Newfoundland-Labrador, QC: Québec,
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Motivation (6. Admission in Graduate Program, UC Berkeley)

Bickel et al. (1975)
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Motivation (6. Admission in Graduate Program, UC Berkeley)

Total

Men

Women

Proportions

Total
Top 6

5233/12763 ~ 41%
1745 /4526 ~ 39%

3714/8442 ~ 44%
1198/2691 ~ 45%

1512/4321 ~ 35%
557/1835 ~ 30%

66%-34%
59%-41%

mMmoONw >

597/933 ~ 64%
369/585 ~ 63%
321/918 ~ 35%
269/792 ~ 34%
146/584 ~ 25%

43/714 ~ 6%

512/825 ~ 62%
353,/560 ~ 63%
120/325 ~ 37%
138/417 ~ 33%
53/191 ~ 28%
22/373 ~ 6%

89/108 ~ 82%
17/ 25 ~ 68%
202/593 ~ 34%
131/375 ~ 35%
94/393 ~ 24%
24/341 ~ 1%

88%-12%
96%- 4%
35%-65%
53%-47%
33%-67%
52%-48%

Data from Bickel et al. (1975) (discussed as an illustration of "Simpson's paradox”)

Formalize the later, S is the (binary) genre, Y the admission and X the program
(category),
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Motivation (6. Admission in Graduate Program, UC Berkeley)

sensitive
P[Y=vyes|S=men] > P[Y=yes|S= ]
T overall admission T
PlY=yes| X=x,S=men] < P[Y=yes|X=x,S5= ], Vx.

conditional on program

“the bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole, but
apparently from prior screening at earlier levels of the educational system.
Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects,” Bickel et al. (1975)
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Motivation (6'. Admission in hospitals)
Consider the following mortality rates in two hospitals (fake data)

Total Healthy Pre-condition Proportions
Hospital A | 800/1000 = 80% | 590/600 ~ 98%  210/400 ~ 53% 60%-40%
900/1000 = 90% | 870/900 ~ 97% 30/100 ~ 30% 90%-10%

There is no mathematical "paradox”, per se.

We could have

A> dC>
5= an 5=

and at the same time

A+C<
B+D ™~
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Motivation (6". Mortality in Costa Rica and Sweden)

Overall mortality rate for women, 8.12% in Costa Rica, against
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Motivation (7. Propublica, Actuarial Justice)

Concept of "actuarial justice”
as coined in Feeley and Simon (1994)
Correctional Offender Management
Profiling for Alternative Sanctions
(COMPAS), Perry (2013)

© https://github.com/propublica/compas-analysis
Angwin et al. (2016) Machine Bias
Dressel and Farid (2018)
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Motivation (7. Propublica, Actuarial Justice)

From Feller et al. (2016),

e for White people, among those who
did not re-offend, 22% were wrongly
classified,

e for Black people, among those who
did not re-offend, 42% were wrongly
classified,

e problem, since 42% > 22%
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Motivation (7. Propublica, Actuarial Justice)

From Dieterich et al. (2016),

e for White people, among those who
where classified as high risk, 40% did
not re-offend,

e for Black people, among those who
where classified as high risk, 35% did
not re-offend,

e no problem, since 40% ~ 35%
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Motivation (7. Propublica, Actuarial Justice)

Formalize the later,

S : race (binary), black & white

Y : re-offense (binary), no & yes

Y : classifier (risk category), low & high
sensitive

P[ ¥ = high|Y = no, S = black | = 42%

P[ Y = high|Y =no, S = ] = 22%,
false positive rate T
~ ? ~
P[ Y =nolY = high, S =black] =35% = P[Y =no|Y = high, S= ]
false discovery rate T
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Motivation (7. Propublica, Actuarial Justice)

Look at score distributions, black and defendant, Larson et al. (2016) 0.
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Motivation (7. Propublica, Actuarial Justice)

Look at score distributions, black and defendant, Larson et al. (2016) 0.
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Motivation (7. Propublica, Actuarial Justice)

Cox Proportional Hazards model, black and defendant, Larson et al. (2016) 0.
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Motivation (7. Propublica, Actuarial Justice)

Cox Proportional Hazards model, black and defendant, Larson et al. (2016) 0.
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Motivation (8. Intention)

En France, Loi n® 2008-496 du 27 mai 2008
— Article 1 -

Constitue une discrimination indirecte une disposition, un critére ou une
pratique neutre en apparence, mais susceptible d’entrainer, pour l’'un des motifs
mentionnés au premier alinéa, un désavantage particulier pour des personnes
par rapport & d’autres personnes, & moins que cette disposition, ce critére ou
cette pratique ne soit objectivement justifié par un but légitime et que les
moyens pour réaliser ce but ne soient nécessaires et appropriés.

Extention de la "Loi n°® 72-546 du 1 juillet 1972", qui supprima |'exigence de
I'intention spécifique.

" Technology is neither good nor bad; nor is it neutral " , Kranzberg (1986)
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Motivation (9. Biases, biases everywhere...)

claims database underwriting database

! commerca ascounes | 1 IR | | O
e commercial discounts

o inferred data
—

e multiple decisions
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Datasets

toydatal
Consider a confounding Gaussian variable Xo, Xo ~ N(0,1), and

X =Xo+e€ e~N(0,12%),
S=1(Xo+n>0), n~N(0,1/2%), s € {45},
Y =1(Xo+v>0), v~N(01/%), ye{01}.

x — P[Y = 0|X = x] (left-hand side) and x — P[S = A|X = x] (right-hand side)
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Datasets

toydata?2
e binary sensitive attribute, s € {A, 2}, (60% and 40%)
o (x1,x3) ~ N(ps, Xs), rs=a = 0.4 and rs—, = 0.7
e xo ~ U([0,10]), independent of x; and x3
o = P+ Bix1 + Baxa + B3x¢ + B4l:(s), that does not depend on x3
e y ~ B(p) where p = exp(n)/[1 + exp(n)] = p(x1, X2, s).
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Datasets

Five models are considered

e plain GLM (logistic)

e GAM (cubic splines)

e CART (classification tree)
RF (random forest)
GBM (gradient boosting)
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Datasets

GermanCredit, m = 1,000
e binary sensitive attribute, s € {A, B}, (64% and 36%) corresponding to gender
e y denotes a default (30%)
® x1, - ,xk denote legitimate credit variables (Duration, Purpose, Credit_amount,
Age, Housing, Existing_credits, Foreign_worker, Resident_since, etc)
FrenchMotor (policy observe over one year), n = 12,437
e binary sensitive attribute, s € {A, 5}, (31% and 69%) corresponding to gender
e y denotes the occurrence of a car accident (8.67%, unbalanced data)

e x1, - ,xk denote legitimate credit variables (MariStat, VehAge, SocioCateg,
DrivAge, VehBody, VehEnergy, VehMaxSpeed, Garage, VehUsage, etc)
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—Part1-

Insurance
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Discrimination and Insurance

"What is unique about insurance is that even statistical
discrimination which by definition is absent of any ma-
licious intentions, poses significant moral and legal chal-
lenges. Why? Because on the one hand, policy makers
would like insurers to treat their insureds equally, with-
out discriminating based on race, gender, age, or other
characteristics, even if it makes statistical sense to dis-
criminate (...) On the other hand, at the core of insurance
business lies discrimination between risky and non-risky
insureds. But riskiness often statistically correlates with
the same characteristics policy makers would like to pro-
hibit insurers from taking into account.” Avraham (2017)
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Discrimination and Insurance

Solidarity

The political philosophy of the early twentieth century, condensed into the concept
of solidarity, sought to offer both a scientific theory of social interdependence and
a moral solution to social problems. According to some scholars, the emergence
of this new rationality was made possible by the concept of social risk and the
idea and technology of insurance developed to manage it. Social risk is defined
as the risk to a group of people, statistically speaking, which is caused in one way
or another by their living together and which can be mitigated by a technique of
joint and several liability such as insurance.

The way insurance works requires individuals to take a collective responsibility
or the events they feel the need to prepare for. Society can be said to have
become 'modern’ when insurance becomes social insurance and when, thanks to
the techniques and institutions of insurance, the insurance model becomes both
a symbolic and a functional basis for the social contract.

()
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Discrimination and Insurance

(...)

Solidarity and justice are key principles underpinning the insurance system, ac-
cording to Risto Pelkonen and Timo Somer. In the context of voluntary personal
insurance, solidarity means that the insured share the benefits and costs between
themselves, while justice means that each insured contributes to the costs accord-
ing to the actuarial probability. Social insurance, on the other hand, is available
to all citizens, regardless of their choice and health status, as the costs are cov-
ered by tax revenues and statutory contributions. W/
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Discrimination and Insurance

Definition 2.1: Mutuality,

Mutuality is considered as the normal form of commercial private insurance, where
participants contribute to the risk pool through a premium that relates to their
particular risk at the time of the application, i.e., the higher the risk that they
bring to the pool, the higher the premium required.

Definition 2.2: Solidarity,

Solidarity is the basis of most national or social insurance schemes. Participation
in such state-run schemes is generally compulsory and individuals have no dis-
cretion over their level of cover. All participants normally have the same level of
cover. In solidarity schemes the contributions are not based on the expected risk
of each participant.
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Insurance Pricing and Predictive Modeling

“Humans think in stories rather than facts, numbers or equations - and the
simpler the story, the better,” Harari (2018). For insurers, it is often a mixture of
both.

For Glenn (2000), insurer’s risk selection process has two sides:
e the one presented to regulators and policyholders (numbers, statistics and
objectivity),
e the other presented to underwriters (stories, character and subjective judgment).

The rhetoric of insurance exclusion — numbers, objectivity and statistics — forms what
Brian Glenn calls “the myth of the actuary,” “a powerful rhetorical situation in
which decisions appear to be based on objectively determined criteria when they
are also largely based on subjective ones” or “the subjective nature of a
seemingly objective process”.
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Insurance Pricing and Predictive Modeling

Glenn (2003) claimed that there are many ways to rate accurately. Insurers can rate
risks in many different ways depending on the stories they tell on which characteristics
are important and which are not. “The fact that the selection of risk factors is
subjective and contingent upon narratives of risk and responsibility has in the
past played a far larger role than whether or not someone with a wood stove is
charged higher premiums.” Going further, “virtually every aspect of the
insurance industry is predicated on stories first and then numbers.”

“all models are wrong but some models are useful,” Box et al. (2011) (in other
words, any model is at best a useful fable).
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Insurance Pricing and Predictive Modeling

Definition 2.3: Pure premium (homogeneous risks)

Let Y be the non-negative random variable corresponding to the total annual loss
associated with a given policy, then the pure premium is E[Y].

Proposition 2.1: Law of Large Numbers (2)

Consider an infinite collection of i.i.d. random variables Y, Y1, Y5,---, Yy, --- in
a probabilistic space (2, F,P), with finite expected value, then

1 n
—ZY,- 2% E(Y) , asn— oo.
nl._l ——

g/_/ expected value
(empirical) average
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Insurance Pricing and Predictive Modeling

Expected Value

In probability theory, the expected value is a generalization of the weighted aver-
age. Informally, the expected value is the arithmetic mean of the possible values
a random variable can take, weighted by the probability of those outcomes W

Following the “law of the unconscious statistician,” in Schervish and DeGroot
(2014), for some g,

[e.9]

ey = [ g)dFy(y).

0
- —00

Elg(V)] = |

o0
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Insurance Pricing and Predictive Modeling

More realistically, population is heterogeneous (with respect to risks), with some

covariates x (legitimate, or not).

Definition 2.4: Pure premium (heterogeneous risks)

Let Y be the non-negative random variable corresponding to the total annual
loss associated with a given policy, with covariates x, then the pure premium is

u(x) =E[Y|X = x].

In this general setting, x consist in numeric or categorical variables.
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Insurance Pricing and Predictive Modeling

Proposition 2.2: Law of Large Numbers (2’)

value, then for any A C X such that P[X € A] > 0,

3 Y(X € A)

i 1
=1 = — Vi 2 E(YIXeA) |, asn— o,
A . N——
Z l(X, € .A) i€Zn(A) conditional expected value
; —
i=1 conditional average

where Z,(A) = {i: X; € A} C {1,2,---,n} and ngq = Card(Z,(A)).

Consider an infinite collection of i.i.d. random pairs (X,Y), (X1, Y1),
(X2,Y2), -+ ,(Xn, Yn), - in a probabilistic space (2, F, P), with finite expected

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course)

62 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Insurance Pricing and Predictive Modeling

Excerpt from the Men and Women life tables in 1720 (source:
Struyck (1912)). Mortality, as a function of the age and the gender
of the individual.
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Insurance Pricing and Predictive Modeling

Excerpt from the Men and Women life tables in 1720 (source: Struyck (1912))
Mortality, as a function of the age and the gender of the individual.

men ‘ ‘ women

X Lx 5Px X Lx 5Px X Lx 5Px X Lx 5Px

0 1000 29.0% || 45 371 16.6% 0 1000 28.9% || 45 423 11.8%

5 710 5.6% || 50 313 19.2% 5 711 52% | 50 373 14.7%
10 670 4.2% || 55 253 22.9% 10 674 33% || 55 318 18.2%
15 642 55% || 60 195 27.2% 15 652 43% || 60 260 21.2%
20 607 6.6% || 65 142 31.7% 20 624 58% || 65 205 26.8%
25 567 7.9% || 70 97 37.1% 25 588 6.8% || 70 150 33.3%
30 522 92% || 75 61 45.9% 30 548 7.3% || 75 100 45.0%
35 474 105% || 80 33 51.5% 35 508 7.9% || 80 55 b56.4%
40 424 125% || 85 16 40 468 9.6% | 8 24
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Insurance Pricing and Predictive Modeling

Excerpt from the Men and Women life tables in 2016 (source: Blanpain (2018))
Mortality, as a function of the age, the gender and the wealth of the individual.

| el | | women |

| x  05% 45-50% 95-100% | | x  0-5% 45-50% 95-100% |
0 [ 100000 100000 100000 0 [ 100000 100000 100000
10 | 99299 99566 99619 10 | 99385 99608 99623
20 | 99024 99396 99469 20 | 99227 99506 99526
30 | 97930 98878 99094 30 | 98814 99302 99340
40 | 95595 98058 98627 40 | 97893 98960 99074
50 | 90031 96172 97757 50 | 95021 97959 98472
60 | 77943 91050 95649 60 | 88786 95543 97192
70 | 59824 79805 90399 70 | 79037 90408 94146
80 | 38548 59103 76115 80 | 63224 79117 85825
90 | 13337 23526 38837 90 | 31190 45750 55918
100 530 1308 3231 100 | 2935 5433 8717
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Insurance Pricing and Predictive Modeling

Force of mortality (log scale) for various income quantile, in France, Blanpain (2018).
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Insurance Pricing and Predictive Modeling

Mortality, gender and “race”

Frederick L. Hoffman
Hoffman (1896, 1918, 1931)

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 67 / 601


https://www.cdc.gov/nchs/data/lifetables/life69_1_1.pdf
https://www.cdc.gov/nchs/data/lifetables/life69_1_1.pdf
https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
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’ White, men ‘ ] “Negro”, men

X Lx 5Px X Lx 5Px X Lx 5Px X Lx 5Px
0 100000 2.3% 55 83001 8.5% 0 100000 4.2% 55 66101 13.1%
5 97671 0.2% 60 75969 12.7% 5 95826 0.3% 60 57457 17.4%
10 97441 0.2% 65 66343 18.4% 10 05497 0.4% 65 47485 22.2%
15 97208 0.7% 70 54138 25.5% 15 95161 1.2% 70 36925  29.8%
20 96480 1.0% 75 40324  35.8% 20 94053 2.3% 75 25921 36.1%
25 95524  0.8% 80 25885 47.7% 25 91904 2.5% 80 16560 41.7%
30 94716 0.9% 85 13527  62.1% 30 89584 3.0% 85 9648 51.3%
35 93843 1.3% 90 5125 75.1% 35 86885 4.0% 90 4696  63.4%
40 92631 2.1% 95 1274 85.2% 40 83441 5.4% 95 1721 71.6%
45 90725 3.3% || 100 189  90.5% || 45 78976 7.2% || 100 489  74.8%
50 87690 5.3% || 105 18 100.0% 50 73282 9.8% || 105 123 100.0%
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Insurance Pricing and Predictive Modeling

Force of mortality (log scale) white men and "Negro” men, 1968-71, U.S.
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Insurance Pricing and Predictive Modeling

Example of “direct discrimination”, from Plater (1997)

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 70 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Insurance Pricing and Predictive Modeling
Definition 2.5: Balance Property

A pricing function m satisfies the balance property if Ex[m(X)] = Ey[Y].

Proposition 2.3: Law of total expectations

Ey[Y] = Ex[Eyx[Y|X]] = Ex[u(X)].

Proof Since E(Y) = /yfy(y)dy and E(Y|X = x) = /yfy|x(y|x)dy,

E(E(X|Y)) = / </ XPIX = x|Y = y]dx> PlY = y]dy = //X]P[X — %, Y = y]dxdy
= /x (/]P’[X =x,Y = y]dy) dx = /XIP’[X = x]dx = E(X).
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Insurance Pricing and Predictive Modeling

Homogeneous risk sharing

Policyholder  Insurer
Loss E[Y] Y —E[Y]
Average loss E[Y] 0
Variance 0 Var[Y]

E[Y] is the premium paid, and Y the total loss,

from De Wit and Van Eeghen (1984) and Denuit and Charpentier (2004)
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Insurance Pricing and Predictive Modeling
Heterogeneous risk sharing, with perfect information

Policyholder Insurer
Loss E[Y|©] Y —E[Y|©]
Average loss E[Y] 0
Variance Var[E[Y|©]] Var[Y —E[Y|9]]

where © denotes the heterogeneous risk factor.

The term on the bottom right is E[Var[Y|@]], corresponding to
the standard variance decomposition (or Pythagoras theorem)

Var[Y] = Var[E[Y|©]] + E[Var[Y|©]].
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Insurance Pricing and Predictive Modeling

Proposition 2.4: Variance decomposition (1)

For any measurable random variable Y with finite variance

Var[Y] = E[Var[Y|©]] + Var[E[Y|©]] .

— insurer — policyholder

Proof:

Var[y] = E|Y?| - E[Y]? =E|Var[Y|©] + E[Y|0]?] - E[E[Y|O]]?
= (E[Var[y|@]]) + (E [E[Y|6]%| - E[E[Y|E]]?) = E[Var[Y|6]] + Var[E[Y 6]
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Insurance Pricing and Predictive Modeling

Heterogeneous risk sharing, with imperfect information

Policyholder Insurer
Loss E[Y|X] Y —E[Y|X]
Average loss E[Y] 0
Variance Var[E[Y|X]] E[Var[Y|X]]

E[Var[Y|X]] = E[Var[Y|©]] +E{Var[E[Y|O]X]}

perfect ratemaking

This “misclassification” term (on the right) is called “subsidierende solidariteit” in
De Pril and Dhaene (1996), or “subsidiary solidarity”, as opposed to

“kanssolidariteit” or “random solidarity” term (on the left).
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Insurance Pricing and Predictive Modeling

Proposition 2.5: Variance decomposition (2)

For any measurable random variable Y with finite variance

Var[Y] = E[Var[Y|X]] + Var[E[ Y| X]],

— insurer — policyholder

where

E[Var[Y|X]]

E[E[Var[Y|©]|X]] + E[Var[E[Y|©]| X]]
= E[Var[Y|©]] +E{Var[E[Y|O]|X]}.

perfect ratemaking misclassification
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Clubs, Group and Categories

Groups, or risk classes, are built on the basis of available data, and exist primarily as
the product of actuarial models.
For example, as mentioned in Bailey and Simon
(1960), in motor insurance five risk classes can be
considered,
® ‘“pleasure, no male operator under 25," (reference),
e ‘“pleasure, non-principal male operator under 25," +65%,
e “business use,” +65%,
e “married owner or principal operator under 25," +65%,

e “unmarried owner or principal operator under 25,"
+140%.

There is no “physical basis” for group members to identify other members of their
group, in the sense that they usually don't share anything, except some common
characteristics, Gandy (2016).

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 77 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Clubs, Group and Categories

solidarity risk classes personalization
until 1930 1930-2010 post 2010

In ancient Rome, a collegium (plural collegia) was an association, such
as military collegia, Verboven (2011).

As explained in Ginsburg (1940), upon the completion of his service a
veteran had the right to join one of the many collegia veteranorum in
each legion.

In case of retirement, upon the completion of his term of service, the
soldier would received a a lump sum which helped him somewhat to
arrange the rest of his life. The membership in a collegium gave him
a mutual insurance against “unforeseen risks." These collegia, besides
being cooperative insurance companies, had other functions.
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Clubs, Group and Categories

In the early 1660th, the Pirate's Code was supposedly written by Por-
tuguese buccaneer Bartolomeu Portugués.

A section is explicitly dedicated to insurance and benefits: “a stan-
dard compensation is provided for maimed and mutilated buc-
caneers. Thus they order for the loss of a right arm six hundred
pieces of eight, or six slaves; for the loss of a left arm five hun-
dred pieces of eight, or five slaves; for a right leg five hundred
pieces of eight, or five slaves; for the left leg four hundred pieces
of eight, or four slaves; for an eye one hundred pieces of eight,
or one slave; for a finger of the hand the same reward as for the
eye,” see Barbour (1911) (or more recently Leeson (2009) and Fox
(2013) about this piratical schemes).
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Clubs, Group and Categories

In the X1X-th century, in Europe, mutual aid societies involved a group of individuals
who made regular payments into a common fund in order to provide for themselves in
later, unforeseeable moments of financial hardship or of old age. As mentioned by
Garrioch (2011), in 1848, there were in Paris 280 mutual aidsocieties with well over
20,000 members.

For example, the Société des Arts Graphiques, was created in 1808. It
admitted only men over twenty and under fifty, and it charged much
higher admission and annual fees for those who joined at a more ad-
vanced age. In return, they received benefits if they were unable to
work, reducing over a period of time, but in case of serious illness the
Society would pay the admission fee for a hospice. In England, there
were “friendly societies,” as described in Ismay (2018).
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Clubs, Group and Categories

The money collected through contributions came to the rescue of un-
fortunate workers, who would no longer have any reason to radicalize.
It was proposed that insurance should become compulsory (Bismark
proposed this in Germany in 1883), but the idea was rejected in favor
of giving workers the freedom to contribute, as the only way to moral-
ize the working classes, as Da Silva (2023) explains.

In 1852, of the 236 mutual funds created, 21 were on a professional
basis, while the other 215 were on a territorial basis. And from 1870
onwards, mutual funds diversified the professional profile of contribu-
tors beyond blue-collar workers, and expanded to include employees,
civil servants, the self-employed and artists.

The amount of the premium is not linked to the risk.
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Clubs, Group and Categories

As Da Silva (2023) puts it, “mutual insurers see in the actuarial figure the
programmed end of solidarity.” For mutual funds, solidarity is essential, with
everyone contributing according to their means and receiving according to their needs.
Around the same time, in France, the first insurance companies appeared, based on
risk selection, and the first mathematical approaches to calculating premiums.

Hubbard (1852) advocates the introduction of an “English-style scientific
organization” in their management. For its members, they had to be able to know
“the probable average of the claims” that they should cover, like insurance
companies. The development of tables should lead insurers to adopt the principle of
contributions varying according to the age of entry and the specialization of
contributions and funds (health/retirement).

For Stone (1993) and Gowri (2014) the defining feature of “modern insurance” is its
reliance on segmenting the risk pool into distinct categories, each receiving a price
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Clubs, Group and Categories

corresponding to the particular risk that the individuals assigned to that category are
expected to represent (as accurately as can be estimated by actuaries).

Once heterogeneity with respect to the risk was observed in portfolios, insurers have
operated by categorizing individuals into risk classes and assigning corresponding
tariffs. This ongoing process of categorization ensures that the sums collected, on
average, are sufficient to address the realized risks within specific groups.

The aim of risk classification, as explained in Wortham (1986), is to identify the
specific characteristics that are supposed to determine an individual's propensity to
suffer an adverse event, forming groups within which the risk is (approximately) equally
shared. The problem, of course, is that the characteristics associated with various
types of risk are almost infinite; as they cannot all be identified and priced in every risk
classification system, there will necessarily be unpriced sources of heterogeneity
between individuals in a given risk class.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 83 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Clubs, Group and Categories

In 1915, as mentioned in Rothstein (2003), the president of the Association of Life
Insurance Medical Directors of America noted that the question asked almost
universally of the Medical Examiner was “What is your opinion of the risk? Good,
bad, first-class, second-class, or not acceptable?” Historically, insurance prices were
a (finite) collection of prices (maybe more than than the two classes mentioned,
“first-class" and “second-class").

In the early 1920's, Albert Henry Mowbray, who worked for
New York Life Insurance Company and later Liberty Mu-
tual (and was also an actuary for state-level insurance com-
missions in New Carolina and California, and the National
Council on Workmen's Insurance) gives his perspective on
insurance rate making. See Mowbray (1921).
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Clubs, Group and Categories

“Classification of risks in some manner forms the ba-
sis of rate making in practically all branches of in-
surance. It would appear therefore that there should
be some fundamental principle to which a correct sys-
tem of classification in any branch of insurance should
conform (...) As long ago as the days of ancient Greece
and Rome the gradual transition of natural phenom-
ena was observed and set down in the Latin maxim,
‘natura non agit per altum’. If each risk, therefore is
to be precisely rated, it would be necessary to recognize
very minute differences and precisely measure them.
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Clubs, Group and Categories

“Since we are not capable of covering a large field fully and at the same time
recognizing small differences in all parts of the field, it is natural that we resort
to subdivision of the field by means of classification, thereby concentrating our
attention on a smaller interval which may again be subdivided by further
classification, and the system so carried on to the limit to which we find it
necessary or desirable to go. But however far we may go in any system of
classification, whether in the field of pure or applied science including the
business or insurance, we shall always find difficulties presented by the
borderline case, difficulties which arise from the continuous character of
natural phenomena which we are attempting to place in more or less arbitrary
divisions. While thus acknowledging that classification will never completely
solve the problem of recognizing differences between individuals, nevertheless
classification seems to be necessary at least as a preliminary step toward such
recognition in any field of study. The fact that a complete and final solution
cannot be made is, therefore, no justification for completely discarding
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Clubs, Group and Categories

classification as a method of approach. Since it is insurance hazards that we
undertake to measure and classify, the preliminary step in studying
classification theory may well be to ask what is an insurance hazard and how it
may be determined. It must be evident to the members of this Society that an
insurance hazard is what is termed “a mathematical expectation,” that is a
product of a sum at risk and the probability of loss from the conditions insured
against, e.g., the destruction of a piece of property by fire, the death of an
individual, etc. If the net premiums collected are so determined on the basis of
the true natural probability a n d there is a sufficient spread then the sums
collected will just cover the losses and this is what should be,” Mowbray (1921)
“1. The classification should bring together risks which have inherent in their
operation the same causes of loss.

2. The variation from risk to risk in the strength of each cause or at least of the
more important should not be greater than can be handled by the formula by
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which the classification is subdivided, i.e., the Schedule and | or Experience
Rating Plan used.

3. The classification should not cover risks which include, as important
elements of their hazard, causes which are not common to all.

4. The classification system and the formula for its extension (Schedule

and | or Experience Rating Plans) should be harmonious.

5. The basis throughout should be the outward, recognizable indicia of the
presence and potency of the several inherent causes of loss including extent as
well as occurrence of loss,” Mowbray (1921).
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Several articles and textbooks in sociology tried to understand how classification
mechanisms establish symbolic boundaries that reinforce group identities, such as
Bourdieu (2018), Massey (2007), Fourcade and Healy (2013).

But here, those “groups” or “classes” do not share any identity,
and Simon (1988) or Harcourt (2015) use the term “actuarial
classification” (where “actuarial” designates any decision-making
technique that relies on predictive statistical methods, replacing
more holistic or subjective forms of judgment). In those class-
based systems, based on insurance rating table (or grid), results
are determined by assigning individuals to a group in which each
person is positioned as “average” or “typical.

[Most] “actuaries cannot think of individuals except as members of groups”
claimed Brilmayer et al. (1979). Each individual is assigned the same value as all other
members of the group to which it is assigned.
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Simon (1987, 1988), and then Feeley and Simon (1992), defined “actuarialism,” that
designate the use of statistics to guide “class-based decision-making,” used to price
pensions and insurance. As explained in Harcourt (2015), this “actuarial classification”
is the constitution of groups with no experienced social significance for the
participants. A person classified as a particular risk by an insurance company shares
nothing with the other people so classified, apart from a series of formal characteristics
(e.g. age, sex, marital status, etc.).

For Austin (1983) and Simon (1988), categories used by the
insurance company when grouping risks are “singularly ster-
ile,” resulting in inert, immobile and deactivated communities,
corresponding to “artificial” groups. These are not groups or-
ganized around a shared history, common experiences or active
commitment, forming some “aggregates” — living only in the
imagination of the actuary who calculates and tabulates, not
in any lived form of human association.
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If Hacking (1990) observed that standard classes creates coherent group identities
(causing possible stereotypes and discrimination, Simon (1988), provocatively suggests
that actuarial classifications can in turn “undo people’s identity.”

As mentioned in Abraham (1986), the goal for actuaries is to create groups, or
“classes” made up of individuals who share a series of common characteristics and are
therefore presumed to represent the same risk. Following Francois (2022), we could
claim that actuarial techniques reduce individuals to a series of formal roles that have
no “moral density” and therefore do not grant an “identity” that organizes a coherent
sense of self. And the inclusion of nominally “demoralized categories,” such as gender,
in class-based rating systems makes their total demoralization difficult to achieve — and
is in itself an issue of struggle. Heimer (1985) used the term “community of fate

Rouvroy et al. (2013) and Cheney-Lippold (2017) point out that scoring technologies
are continually swapping predictors, “shuffling the cards,” so that there is no stable
basis for constructing group memberships, or a coherent sense.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 91 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Clubs, Group and Categories

“The price which a person pays for automobile insurance depends on age, sex,
marital status, place of residence and other factors. This risk classification
system produces widely differing prices for the same coverage for different
people. Questions have been raised about the fairness of this system, and
especially about its reliability as a predictor of risk for a particular individual.
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While we have not tried to judge the propriety of these groupings, and the
resulting price differences, we believe that the questions about them warrant
careful consideration by the State insurance departments. In most States the
authority to examine classification plans is based on the requirement that
insurance rates are neither inadequate, excessive, nor unfairly discriminatory.
The only criterion for approving classifications in most States is that the
classifications be statistically justified — that is, that they reasonably reflect loss
experience. Relative rates with respect to age, sex, and marital status are based
on the analysis of national data. A youthful male driver, for example, is charged
twice as much as an older driver all over the country (...) It has also been
claimed that insurance companies engage in redlining — the arbitrary denial of
insurance to everyone living in a particular neighborhood. Community groups
and others have complained that State regulators have not been diligent in
preventing redlining and other forms of improper discrimination that make
insurance unavailable in certain areas. In addition to outright refusals to
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insure, geographic discrimination can include such practices as: selective
placement of agents to reduce business in some areas, terminating agents and
not renewing their book of business, pricing insurance at un-affordable levels,
and instructing agents to avoid certain areas. We reviewed what the State
insurance departments were doing in response to these problem. To determine if
redlining exists, it is necessary to collect data on a geographic oasis. Such data
should include current insurance policies, new policies being written,
cancellations, and non-renewals. It is also important to examine data on losses
by neighborhoods within existing rating territories because marked
discrepancies within territories would cast doubt on the validity of territorial
boundaries. Yet, not even a fifth of the States collect anything other than loss
data, and that data is gathered on a territory-wide basis,” Havens (1979)
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“On the other hand, the opinion that distinctions based on sex, or any other
group variable, necessarily violate individual rights reflects ignorance of the
basic rules of logical inference in that it would arbitrarily forbid the use of
relevant information. It would be equally fallacious to reject a classification
system based on socially acceptable variables because the results appear
discriminatory. For example, a classification system may be built on use of car,
mileage, merit rating, and other variables, excluding sex. However, when
verifying the average rates according to sex one may discover significant
differences between males and females. Refusing to allow such differences
would be attempting to distort reality by choosing to be selectively blind. The
use of rating territories is a case in point. Geographical divisions, however
designed, are often correlated with socio-demographic factors such as income
level and race because of natural aggregation or forced segregation according to
these factors. Again we conclude that insurance companies should be free to
delineate territories and assess territorial differences as well as they can. At the
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same time, insurance companies should recognize that it is in their best interest
to be objective and use clearly relevant factors to define territories lest they be
accused of invidious discrimination by the public. (...) ” Casey et al. (1976)

“One possible standard does exist for exception to the counsel that particular
rating variables should not be proscribed. What we have called ‘equal
treatment’ standard of fairness may precipitate a societal decision that the
process of differentiating among individuals on the basis of certain variables is
discriminatory and intolerable. This type of decision should be made on a
specific, statutory basis. Once taken, it must be adhered to in private and public
transactions alike and enforced by the insurance regulator. This is, in effect, a
standard for conduct that by design transcends and preempts economic
considerations. Because it is not applied without economic cost, however,
insurance regulators and the industry should participate in and inform
legislative deliberations that would ban the, use of particular rating variables
as discriminatory.” Casey et al. (1976)
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Price Optimization

Decision theory under uncertainty (see Charpentier (2014)),

X =Y < R(X)<R(Y),

A classical representation is R(Y) = E[u(w — Y)], as in Neumann and Morgenstern
(1947), where w is the initial wealth.

u denotes the utility of the agent

Let 7 denote the premium asked to transfer risk (loss) Y,

{ u(w—m) > E[u(w—Y)]: purchases insurance

u(w—7) <Efu(w—Y)]: does not purchase insurance

Find 7 such that u(w — 7) = E[u(w — Y)].
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Price Optimization

7 such that u(w — m) = E[u(w — Y)] could be seem as the willingness to pay to
transfer the risk.

Willingness to Pay

In behavioral economics, willingness to pay (WTP) is the maximum price at
or below which a consumer will definitely buy one unit of a product.[1] This
corresponds to the standard economic view of a consumer reservation price. W
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Price Optimization

Definition 2.6: Indifference utility principle

Let Y be the non-negative random variable corresponding to the total annual loss
associated with a given policy, for a policyholder with utility u and wealth w, the
indifference premium is m = w — u™! (E[u(w — Y)]).
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Price Optimization

Price Walking

Price walking, or the loyalty penalty, is a form of price discrimination whereby
longstanding, loyal customers of a service provider are charged higher prices for
the same services compared to customers that have just switched to that provider.
The pricing strategy is common in the insurance and telecommunications indus-
tries. It is used to acquire new customers with artificially low rates or other
incentives not available to existing clients, effectively using existing customers to
subsidize the prices offered to new clients. W/
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—Part 2 —

Machine / Statistical Learning
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Statistical Learning

Proposition 3.1: Law of Large Numbers (1)

Consider an infinite collection of i.i.d. random variables Y, Y1, Y2, -, Yy, -+ in
a probabilistic space (2, F,P), then

liuvieA) 25 p{Y € A}) = P[Y € A], as n — .
n N—————

i probability

(S
(empirical) frequency

“law of the unconscious statistician,” (Ross (2014) and Casella and Berger (1990)),
“statisticians make liberal use of conditioning arguments to shorten what
would otherwise be long proofs,” Proschan and Presnell (1998).

PHY e A} 0{[X = x| < ¢})
P({[X — x| < ¢})
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Statistical Learning

This frequentist approach is unable to make sense of the probability of a "single
singular event”, as noted by von Mises (1928, 1939).

“When we speak of the ‘probability of death’, the exact
meaning of this expression can be defined in the fol-
lowing way only. We must not think of an individual,
but of a certain class as a whole, e.g., ‘all insured men
forty-one years old living in a given country and not en-
gaged in certain dangerous occupations’. A probability
of death is attached to the class of men or to another
class that can be defined in a similar way. We can say
nothing about the probability of death of an individ-
ual even if we know his condition of life and health in
detail. The phrase ‘probability of death’, when it refers
to a single person, has no meaning for us at all.”
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Statistical Learning

Definition 3.1: Loss /

A loss function £ is a function defined on Y x ) such that ¢(y,y’) > 0 and
ly,y)=0.

J

Definition 3.2: Risk R

For a fitted model m, its risk is

R(m) = Ep[¢(Y, m(X))] = / 2y, m(x))dB(y, x).
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Statistical Learning

Definition 3.3: Empirical risk 7A€,7

Given a sample {(y;,x;),i =1,--- , n}, define the empirical risk

Rali) =+ 3 £((x7), ).
i=1

Following Vapnik (1991), the "empirical risk minimization principle” states that the
learning algorithm m* is
m* = argmin{R,(m)}.
meM
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Statistical Learning
Proposition 3.2: Optimal Decision, ” Bayes decision rule”

For each x choose the prediction m} that minimizes the conditional expected
loss,

m} € argen;in {/ﬂ(y,z)dpﬂx()”’()}

It is straightforward since dPy x(y, x) = dPyx(y|x) - dPx(x),

R(m) = [ | [ ey m))dPyix(ylx) |ax(x)

by definition, m} minimizes the term in blue, i.e., for any m

R(w) > [ [ [ ly.m)ayx(ylx) |aBx(x) = R(m").
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Statistical Learning

It is coined "Bayes decision rule” because the conditional distribution Y|X is
sometimes be referred to as the "posterior” distribution of Y given data X.

Definition 3.4: Misclassification loss, g/,

50/1(}/7}7) =1(y #Y).

In the case of a binary classifier, observe that
R(m) = E[e(m(X), Y)] = E[E[(m(X), Y) | X]]
=E[¢{(m(X),1) - P(Y =1| X) + ¢(m(X),0) - P(Y =0] X)]
= E[1[m(X) # 1] - u(X) + 1m(X) #0] - (1 - pu(X)) ]
= E[1[m(X) # 1] - u(X) + (1 = 1[m(X) #1]) - (1 — u(X))]
=E[1[m(X) # 1] - (2u(X) = 1) +1 — pu(X)].
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Statistical Learning

Since m : X — {0, 1}, this expectation is minimized by choosing m = m*, where

1if p(x) > 12

m*(x) — l(u(x) > 1/2) = {0 if M(X) < 1/2

The optimal risk ("Bayes risk") is R(m*) = im‘{R(m)}.

Definition 3.5: Excess of risk of m

For any model m, the excess of risk is R(m) — R(m*).

For a classifier
R(m) — R(m*) = E[|2u(X) — 1| - 1(m(X) # m*(X))].

Since we do not know p consider a classifier based on m ......
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Statistical Learning

Definition 3.6: Plug-in Estimator

Estimate i and use, as a classifier, 1(fi(x) > 1/2).

J

Proposition 3.3

For any model fi, the risk of the plug-in classifier m(x) = 1(fi(x) > 1/2) satisfies

R() — R(m*) < 2E|u(X) — A(X)|.

Proof We have seen that

R(m) — R (m") = EA[M(X) £ 1] — 1[m"(X) #1]) - (2u(X) - ).
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Statistical Learning
But

(1m(X) # 1] - 1[m"(X) # 1]) (2u(X) - 1)

— 1[m(X) # m*(X)] (1[M(X) # 1] — 1[m"(X) £ 1]) (2u(X) — 1)

_{1[61( ) # m*(X)] (2u(X) - 1) if 20(X) =1 >0,
1[(X) # m*(X)] (~1)(2u(X) ~ 1) if 2u(X) —1 <0.

(from the definition of m* )
— 1 [A(X) £ m (X)) [20(X) — 1],
R(m) = R(m") = E(1[m(X) # m*(X)]) - 2|u(X) — */2|.

If m(x) # m*(x), it means that i(x) and p(x) lie on opposite sides of 1/2,

(%) = p(x) = |p(x) = 2/o| + 12 = p(x)| > [i(x) = 1/2]
Al s

>0
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Statistical Learning

(%) = p(x)| = |pa(x) = 1/2| - L[m(X) # m"(X)]

which is also valid when m(x) = m*(x), thus

R(m) =R (m*) = 2B(L[m(X) # m*(X)]) - [1(X) — /2| < 2E[|i(X) — p(X)]]-

This £y/1 loss function may be difficult to directly optimize, as shown in Bartlett

et al. (2006). One could consider some surrogate loss £ which is easier to optimize.
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Statistical Learning

Definition 3.7: Elicitation,

A statistical functional Z(Y) is said to be elicitable if it minimizes expected loss
for some loss function s, in the sense that

(Y) = arygggn{E[S(Y,y)]}

“The elicitability of a risk measure means that the risk measure can be obtained
by minimizing the expectation of a forecasting objective function. Elicitability is
closely related to backtesting, whose objective is to evaluate the performance of a
risk forecasting model. If a risk measure is elicitable, then the sample average
forecasting error based on the objective function can be used for backtesting the
risk measure,” He et al. (2022).

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 112 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Loss Functions

In a regression problem, a quadratic loss function ¢» is used

Definition 3.8: Quadratic loss, /

0(y,7) = (v = )% and the risk is then Ro(m) = E[ (Y — m(X))? .

Observe that
E[Y] = argmin{R2(m)} = argmin{E[Zz (Y, m)} }
meR meR

The expected value is “ellicitable” (for the s = /5 loss).

The empirical risk minimizer is the "least-square” estimate.
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Loss Functions

See Huttegger (2013), explaining why the expected value is also called “best estimate”.

Up to a monotonic transformation (the square root function), the distance here is the
expectation of the quadratic loss function. With the terminology of Angrist and
Pischke (2009), the regression function i is the function of x that serves as "the best
predictor of y, in the mean-squared error sense.”

Proposition 3.4: Optimal Decision, " Bayes decision rule”

For the quadratic loss /2, Bayes decision rule is the (conditional) expected value,
m; = E[Y|X = x] = u(x).
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Loss Functions

Definition 3.9: Inner product

An inner product on H is the application (f,g) — (f,g)# (taking value in R)
bilinear, symmetric, definite positive:

O <f7g>7'l = <g7 f>7'l

© <af + 5g’ h>7‘l = OA(f, h>7‘[ + /8<g7 h>7—l

o (f,f)yy >0and (f,f)y =0 if and only if f = 0.

Example : H =R", (x,y) =x'y
Example : H = R", let X denote some symmetric n X n positive definite matrix. Then

(x,¥)s = x ' =71y is an inner product on R".

o o0
Example : H = (2 = {u : Zu,z < oo}, (u,v) = Zu,-v,-
i=1 i=1
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Loss Functions

Example : H — L2(u { /f 2du(x <oo} (f,g) = /f

Example : Consider the vector space V that consists of all real-valued random
variables defined on (Q2, F,P). Given k € [1,00), define

Xl = [E (1x1)] 7"
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Loss Functions
A norm || - ||, in R", satisfies
e homogeneity, ||ad|| = |a| - ||d]|, Va
e triangle inequality, ||d + V|| < ||d| + ||V||
e positivity, ||d|| >0
o definiteness, [|i]| =0 < =10

01 norm: ||x||e, = |x1| 4+ -+ + |[xal,

Oy norm: ||x||¢, = x12 4 X2,
£, norm: with p > 1, |Ix|lg, = (|x [P + -+ + Ix,|P)1/P
loo norm: ||x|[s,, = max{x;}

Unit balls (||x|[s, < 1) are convex sets
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Loss Functions

Proposition 3.5: Gradient of /, norms

9 1 bl \7

X;
—|lx 0= — X p . p Xi p_l sign X;) = J Sign Xj).
8XJ|| ||p p <Z| l| > |J| (J) (Hfop (J)

(Sr) 2 (S ) 2 (Ber)

9
0x;
e x (bl )
_ p p—1g5. " _ J : .
= [( 1|X/| ) ] Z|X/| U|Xi| = (HXHZP) sign(x;).
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Loss Functions

Definition 3.10: Quantile loss, /4

The quantile loss £q o for some a € (0,1) is

laa(y,y) =max{a(ly —=y),(1-a)(y —y)} = (v = ¥)(a =1, 5)-

This loss is not symmetric £q o (y,y) # q.a(¥,y) (if a # 1/2).

It is called “quantile” loss since

Q(a) = F () € argg&in{E[éq,a (Y, q)}},

(quantiles are also “ellicitable” functionals, elicited by
s(y,9)=aly =9)+ + 1 —a)(y - 9)-)
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Loss Functions

Indeed, the first order condition of

geR

mind (0= 1) [* (v~ a)aFv () + / - adR )],

can be written, using Leibniz integral rule,

*

(1—a)/ZdFy<y)—a/q°°dFy(y) 0

ie. Fy(g*)—a=0.
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Loss Functions

Definition 3.11: Expectile loss, /e

The expectile loss £ o, for some a € (0,1) is

Ee,a()@y) = (y - y)2 ’ (Oé - 1(y<?))

E(a) = arger%in{E{Ee@ (Y,e) } },
(expectiles are elicited by s(x,y) = a(y — x)3 + (1 — a)(y — x)2).

“Expectiles have properties that are similar to quantiles,” Newey and Powell
(1987)
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Loss Functions

“The Gaussian Hare and the Laplacian Tortoise,” Portnoy and Koenker (1997)
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Loss and Generalized Linear Models

In GLM, the scaled deviance (—2x the log-likelihood) of the exponential model is

= d*(yi,yi), where d* (v, y;) = 2(log Li(yi) — log Li(¥;))-

that can be related to in-sample empirical risk

ZE yi, m(x;)) ,

For the Poisson distribution (with a log-link), the loss would be
- 2(yilogyi — yilogyi —yi+yi) yi>0
e(}/ia)/i) = ~
2yi yi =0,
while for a logistic regression, we have the standard binary cross-entropy loss
Uy, yi) = —(yilog[yi] + (1 — yi) log[1 — ¥i]).
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Distance Between Distributions

Definition 3.12: Distance (or metric)

A distance d on a set E is a function E x E — R such that
e d is symmetric, V(a, b) € E2, d(a,b) = d(b,a),
e d is separable, ¥(a, b) € E?, d(a,b) =0« a= b,
e d satisfies V(a, b,c) € E3, d(a,c) < d(a, b) + d(b, c)

. J

In a vector space, with norm || - || the induced distance is d(x,y) = |ly — x||.
Conversely, if

e d invariant by translation, d(x,y) = d(x + a,y + a)
e d is homogeneous, d(ax,ay) = |ald(x, y)

then ||x|| = d(x,0) is a norm.
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Distance Between Distributions

Proposition 3.6

If d is a distance on E, and if ¥ : Ry — R is an increasing function such that
(0) = 0 and ¢(t) > 0 for all t > 0. If ¢ if subadditive (¢(s+t) < ¥(s)+(t)),
then 6(a, b) = ¢(d(a, b)) is also a distance on E.

Proposition 3.7:

If d is a distance on E, then d? is not necessarily a distance.
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Distance Between Distributions

Consider the Euclidean distance in £ = R?, i.e.
d(z1,22) = \/(XQ —x1)2+ (y2 — y1)2. d? is not a distance, see

d?(—1,+1)=224+22=38
d*(-1,0)=12+12=2
d?(0,+1) =12 +12=2

1
1,0

i.e. d? does not satisfy the triangular inequality
d?(—1,+1) > d?(—1,0) + d%(0, +1),

while

d(~1,+1) < d(~1,0) + d(0, +1).

(functions that generalize squared distance are sometimes referred to as divergences)
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Distance Between Distributions

In addition to "distance”, similar terms are used, including "dissimilarity”,
"deviance”, "deviation"”, "discrepancy”, "discrimination”, and "divergence”

(... all denoted "d", or "D")

A fundamental problem in statistics and machine learning is to come up with useful
measures of “distance” between pairs of probability distributions. Two desirable
properties of a distance function are symmetry and the triangle inequality.

Unfortunately, many notions of “distance” between probability distributions do not
satisfy these properties. Weaker notions of distance are often used, such as
dissimilarity measures and divergences.

See Cha (2007) for a comprehensive list of distances...
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Distance Between Distributions

Definition 3.13: Dissimilarity measure

A dissimilarity measure D on a set E is a function E x E — R such that D is
positive and separable, i.e., ¥(a, b) € E2, D(a,b) =0 a= b,

Definition 3.14: Divergence on R"

A divergence D on a set E C R" is a function E x E — R4 such that
e D is separable, ¥(x,y) € E2, D(x,y) =0& x =y,
e D admits development V(x, x + €) € E2, D(x,x + €) ZAHJ ei€j +
O(leP),

where A(e) is definite positive.
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Distance Between Distributions

Definition 3.15: Scale sensitive divergence,

A divergence D is scale sensitive (of order 8 > 0) if D(cx,cy) < |c|’D(x, y)

Definition 3.16: Bregman Divergence,

Let ¢ : X — R be a strictly convex function that is continuously differentiable.
Then the Bregman divergence Dy (x,y) is defined as

Dy(x,y) = ¥(x) = (y) = (Vo(y), x — y).

1 1
If 1(x) = 5 |lx||? (strictly convex), then Dy(x,y) = 5lx — yII*

(recall that V| x||? = 2x)
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Distance Between Distributions

Proposition 3.8: Bregman Divergence

Let v : X — R be a strictly convex function that is continuously differentiable.
Then Bregman divergence Dy(x,y) is

e strictly convex in x,

e (generally) non-convex in y,

e non-negative Dy(x,y) > 0,

e separable, Dy(x,y) =0 if and only if x =y,

e (generally) asymmetric.
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If X =R", and 9(x ZA,JX,XJ x T A(x for some n x n matrix A definite

positive, then
ZAU —y)=(x-y) Alx—y)

(see Mahalanobis distance).

If X =R", and ¥(x Zlog(x, ) then

Dw(an'):Z;_l ——1

i 1 .yl

See Banerjee et al. (2005) for more examples.
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We have defined norms
on R, eg.,

12 n 1/2

2 2 2

Ixlle, = (Il + -+ bal?) " = (Z i )
i=1

that could be extended

on R-valued random variables, e.g.,

Ixl = (& [1X]) " = (X bePox) " = ([ 1P )

We can also define "distances”, "dissimilarity” measures, and "divergences”
on R", eg.,

1/2

n 1/2
1/2
b(x,y) =d(x,y) = (|X1 — i+ X - )/n|2) = (Z X — )/i|2)
i=1
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that could be extended
on R-valued random variables as components of a random vector, e.g.,

1/2 1/2 1/2
DX, V)= (E[IX=YP|) " = (X Ix—vPPp(x,y)) " = ( [ix- y|2f(x,y)dxdy)
where p or f is the joint distribution of (X, Y), e.g., for a Gaussian vector
D(X,Y) = (ux — Ny)2 + (ox — Uy)2 + 20x0y(1 = p).

on R-valued random variables assuming that random variables are independent, e.g.,

)= (S rpp) " = ([ 1x - Py

e.g., for two Gaussian distributions

Di(X,Y) = (ux — py)?* + 02+ 0.
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and one can consider some distance
on R-valued distributions, e.g.,

D(_/\/_('U,X,J)%),N(M}”U}z/)) = (,U'X - My)z + (Jx - Uy)2-

In the context of "probabilistic forecasts” (as in Gneiting et al. (2007)), a "distance”
on pairs R x R-valued distributions, e.g.,

D(x,N(py,03)) = (x — py)* + 0.
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Definition 3.17: Sum invariant divergence,

A divergence D is sum invariant if D(X + Z,Y + Z) < D(X,Y) whenever
Z1 XY

1
Example: if D is 1-scale sensitive, D(1¢,11) < §D(10, 1,)

Example: if D is sum invariant, D(10,11) = D(11,15)
See Bellemare et al. (2017a).
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Distance Between Distributions

~ 1<
Consider sample {xy,--- ,x,} an i.i.d. sample, with empirical measure p, = = Z 1,
i=1

Definition 3.18: Divergence based inference

Consider some parametric family Q@ = {qy,0 € ©}. Given a divergence D, we

want to find
0* = argmin{D(p, qo )}
0c©
or its empirical version unknown PT qu €Q

~

0, = argmin{D( pp , qo )}

0c©
estimated p,,
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Definition 3.19: Unbiased sample gradients,

A divergence D has unbiased sample gradients when the expected gradient of the
sample loss equals the gradient of the true loss for all p and n,

E (VoD(pn, q0)) = VoD(p, gs).

Then D is a proper scoring rule (see Gneiting and Raftery (2007)).

If this is not satisfied, stochastic gradient descent may not converge...
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Distance Between Distributions

Definition 3.20: Integral probability metric,

Integral probability metrics (IPMs) are distances on the space of distributions
over a set X, defined by a class F of real-valued functions on X as

D#(p.q) = sup [E[F(X)] - EIF( ¥ )|

X~p Y ~q

Discussed also in Dedecker and Merlevede (2007)
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Distance Between Distributions

Note that it is still possible to define projections with deviance (that will not be
"orthogonal” projections since divergence are not related to inner products)

Definition 3.21: Projection,

Given a strictly convex function continuously differentiable 1) and the associated
Bregman divergence Dy, a closed closed convex K C X and a point x € X. The
Bregman projection of x onto K is

x* = argmin{Dy(x,y)}
yeK

If ¥(x) = HxH%2 Bregman projection is the standard orthogonal projection onto a
convex set,

x* = argmin{||x — y||?,}
yek
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Definition 3.22: Hellinger distance,

For two discrete distributions p and g, Hellinger distance is

dia(p, q) <F F) —1—2\/76[0 1],

and for absolutely continuous distributions, if p and g are densities,

dH(P;q)2= %/ﬂg(@—@)z dx or %/]Rk (M—M}zdx

See Pardo (2018).
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Proposition 3.9: Distance between Beta variables

Consider two Beta distribution, then d3 (B(a1, b1), B(az, b2)) is

= ! B<31+32 b1+b2)
V/B(a1, b1)B(az, b2) 2 2

Proof

1 1 1
1 —/ fA(t)h(t)dt =1 — / plaata)/2=11 _ 4 (b1+b2)/2—1dt,

A 1(t)f(t) B b)BG ) Jo (1-1)

1

then use B(a, b) = B(a, b) = /0 3711 — t)b_ldt _ m'
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Proposition 3.10: Distance between Gaussian vectors

Consider two Gaussian distributions, then d3 (N (1, Z1), N (1o, X2)) is
1 1 1
=1
2—2——5——exp <__ (p1— NZ)T T (- N2)>
b e

= 1
where ¥ = 5(21 + X).

2
Note that it is a Bregman divergence Dy, with 9)(x) = Zx,-
i=1

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 142 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Distance Between Distributions

Definition 3.23: Pearson/Neyman x-square divergences

For two discrete distributions p and g, Pearson chi-square divergence is

(Pl =3 W

while Neyman chi-square divergence is

. N2
ol = S OO — g, (),

i
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Note that both are Bregman divergences Dy, with ¢p(x) = —QZ V/xi and
i=1
1/}N(X) = ZX,'il.
i=1

d, can be extended to the case of continuous distributions, e.g.,

dpy(pllq)? = / (58 - 1)2 p(x)dx
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Definition 3.24: Total Variation,

For two distributions p and g, the total variation distance between p and q is

drv(p, q) = SUp {Ip(A) — q(A)l}.

Proposition 3.11: Total Variation

For two univariate distributions p and g, the total variation distance between p
and q is

drv(p. q) le( =—||p gla = > (p(i) —a()
i:p(i)=q(i)

. J

See Proposition 4.2 in Levin and Peres (2017).
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Equivalently,

drv(p,q) =5 sup {/fdp /qu}
2ka—>{01}

(see e.g. https://djalil.chafai.net/blog/, with f : RK — {—1,1}, f = 14 — 1 4)

It is an IPM with F = {f : X — {0,1}}, so that F is a set of indicator functions for
any event.

For Gaussian distributions, the distance has no explicit formula, see, e.g., Devroye
et al. (2018).
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Distance Between Distributions

Proposition 3.12: Total Variation, Scheffé theorem,

For two distributions p and g on RX,

drv(p; q) 2/ — q(x)|dx,

drv(p,q) =1— /]Rd min {p(x) — q(x)}dx,

drv(p, q) = p(A) — q(A) where A = {x: p(x) = q(x)}.
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In the univariate case, we can restrict A to half-lines (—o0, t]

Definition 3.25: Kolmorov-Smirnov,

For two distributions p and g, Kolmorov-Smirnov distance between p and q is
dis(p, q) = jgﬂgﬂp((—oo, t])—q((—o0, t])I} = sup {IFp(t)=Fq(0)|} = IFp—Fqlloo;

where F, and F; are the respective cumulative distribution functions.
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Definition 3.26: Entropy,

The entropy associated with distribution p is

= pli) log pli) = E,[ — log p(X)].

and define cross-entropy (of g relative to p) as

= p(i) log q(i) = E,[ — log (X))

° p ° 0
See Amari (2016) or Chambert-Loir (2023) for more details. oéﬁ**g‘@? gf ﬁ
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Definition 3.27: Kullback—Leibler,

For two discrete distributions p and g, Kullback—Leibler divergence of p, with
respect to q is
p(i)

DkL(pllq) = Z:P(i) log G

and for absolutely continuous distributions,

_ p(x) x
Dxv(pllq) = /RP(X) |0gm dx or /Rk p(x) |ogm dx,

in higher dimension.

Also called relative entropy, since Dkr,(p|lq) = Eq(p) — Ep(p).
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Proposition 3.13: KL divergence for Gaussian vectors

Consider two Gaussian distributions, then Dk, (N (g1, X1)||N (120, X2)) is

RE1NE

(o — 1) "5 (o — py) + t0(Z51E) — log 1= |

where k is the dimension, see Polyanskiy and Wu (2022).
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The entropy of X according to p is smaller than or equal to the cross-entropy of p and
g, or equivalently

Proposition 3.14: Gibbs’ inequality

Dx1.(p|lq) is positive and separable, i.e. Dkr(pllg) > 0 and Dki(pllq) = O if
and only if p = q.

> 0 where [ is the set of all x for which p(x) > 0. Recall

Proof: Zp( log QE ;
x€l

that log x < x — 1 (with equality only when x = 1), thus log(1/x) > 1 — x, and

5 e 200 = 300 (1= 5 ) = Lpl) — ate) >0
xel (X)

xel xel x€l

t |
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Proposition 3.15: Additivity for independence distributions

Dk1(pllg) = Dxr(pxllax) + Dxr(pyllay) if p(x,y) = px(x)py(y) and q(x,y) =
ax(x)aqy(y)-

Proof By definition

Dxvr(plq) = // p(x,y) |0g§ %dd

and since p(x,y) = Px(X)Py()/) and q(x,y) = qX(X)Qy(Y)f

_ o p1(x) p2(y) «
Dkv(pllq) = //Pl x) p2(y lgql(x)qz(y)dyd -

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 153 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Distance Between Distributions

Dki(pllg) = /X/ypx(X) py(y) - (log Zig; + log gg/;) dy dx

_ Px(x) Py(y)
- /. /y pe(x) () -log X Sy et /. / p(x) py(y) log 5 dy
(%)

= /px(x)-log qX(X)/ypy(y)dydx—i—/ py(y) - log Py y)/ px(x)dx dy

i PX(X) ( )
= / y(x) - log ——= (%) dx—l—/py - log y(y)dy

Re)

= Dxwr(pxllgx) + DKL(Pquy)-

But for other distances,

{dH(p, q)? < du(px, gx)? + du(py, gy)?
dTV(Pa q) < dTV(PXa qx) + dTV(pyv qy)-
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It is only defined in this way if, for all x, g(x) =0 implies p(x) =0 (“absolute
continuity” with respect to p).

Proposition 3.16

The KL divergence has unbiased sample gradients, but is not scale sensitive.

Proof Bellemare et al. (2017b).

In a Bayesian setting, Dkr1,(p||q) is a measure of the information gained by revising
one’s beliefs from the prior probability distribution g to the posterior probability
distribution p (it is the amount of information lost when ¢ is used to approximate p).

If (x) = Zx,- log(x;) (strictly convex), then Bregman divergence is
x:
Dy(x,y) =Y _ xi |0g;’, = Dx1(x]y)
]
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Dxr(B(p)|B(q)) = plogg +(1—p)log — Z

P = nDk(B(p)|1B(q))

by — a

bl—al

Dxr,(B(n, p)|IB(n, q)) = nplogg +n(1—p)log ]

Dxr.(U([a1, bi])[[U([a2, bo])) = log

2 2 2
— o o
M+%_|og%_l
) ) 2

1
DKL(N(MLU%)HN(M%U%)) = 5

_ _ >
(02— 1) T3 )+ 0(E5 ) ~ g 2

N

Dir.(N (py, Z1) |V (12, X2)) =
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Consider some distribution py, as in Nielsen (2022). Using Taylor expansion,

1 1
Dk (pollpo+a0) = §d9T1(9)d9 ~ §d53'

Definition 3.28: Jeffreys (symmetric) divergence

The Jeffrey divergence is a symmetric divergence induced by Kullback-Liebler
divergence,

1 1
Di(p1, p2) = §DKL(P1”P2) + §DKL(.D2”P1)-
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Definition 3.29: Jensen-Shannon,

The Jensen-Shannon divergence is a symmetric divergence induced by Kullback-
Liebler divergence,

1 1
Djs(p1, p2) = §DKL(P1||Q) + EDKL(P2||q)7

1
where g = §(P1 + p2).

\ J

Endres and Schindelin (2003) proved that 1/ Dys(p1, p2) is a proper distance.

See philentropy package.
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Definition 3.30: f-divergence,

Given a continuous convex function f : [0,00) — R, define

Ds(pllq) = Zq ( (:;>

and for absolutely continuous function

D¢ (pllq) =/Rq(><)f (log %) dxor /Rk q(x)f (%) dx,

D¢(p||q) is properly defined when p < g, see also Csiszar (1964, 1967).
If f(u) = ulogu, Dr(pllq) = Dxr(p; q)
It #(u) = |u — 1], Dy(pllg) = drv(p.q)
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If f(u) = = (vu - 1)%, Dr(pllq) = du(p, )2

= N

If f(u) = 3 (ulogu —(u+1)log (UZ1>> Ds(pllq) = d3s(p, q)

One can define D¢(p|lq) when p &« g: Since f is convex, and f(1) = 0, the function

f

X(_X) must nondecrease, so there exists f'(00) := lerT;o f(x)/x, taking value in

(—00,4+0o0]. And since for any p(x) > 0, we have lim q(x)f <P(X)> — p(x)f'(0).
q(x)—0 q(x)

Proposition 3.17

D¢(pl|q) is linear in f, Daripg(pllq) = aDr(p, q) + bDg(p||q).

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 160 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Distance Between Distributions

Proposition 3.18

Df = D, if and only if f(x) = g(x) + c¢(x — 1) for some c € R.

The only f-divergence that is also a Bregman -divergence is the KL divergence
The only f-divergence that is also an integral probability metric is the total variation.

There is a variational representation of Dy, in Polyanskiy and Wu (2022).
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Since f is convex, let f* be the convex conjugate of f. Let effdom(f*) be the
effective domain of f* (i.e., effdom(f*) = {y : f*(y) < oo})

D¢(p; q) = sup Ep[g] —Eq[f*og]
g:Q—effdom(f*)

1
For example, with the total variation, f(x) = §|x — 1], its convex conjugate is

F(x) = {x* on [-1/2,1/2],

| , and we obtain
400 else.

drv(p,q) = sup Ep[g(X)] — Eqlg(X)].
lg|<1/2
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Extending Rényi entropy of order o, Hy(X) =

i - log (Zp(/)o‘> define

Definition 3.31: Rényi a-divergence,

Given a € (0,00), define

Da(pllq) =

Da(pllq) =

1.og</R

and for absolutely continuous function

PO)* 4

q(x)>t

()

E

a—1

.og(/R

p(x)*

K q(x)a—l

ix).
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Recall that

D.(pllg) = ﬁ log <Z ql(jl_()iial> when a € (0, 00).

One can define limiting cases, Do(P||Q) = — log Q({i : p; > 0}) and
Do (P|Q) = Iogsupi%

1

Observe also that D1(p||q) = Dkw(pllq)
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Distance Between Distributions

Definition 3.32: Cramér,

Consider two measures on p and g on R. Then define Cramér distance

Culp,a) = ([ 1Falo) = Fatollian) ", for k2 1

(> is named "energy-distance” in Székely (2003) and Rizzo and Székely (2016), and
"continuous ranked probability score” in Gneiting et al. (2007).
It is an Integral Probability Metrics (IPM), since

C,(p,q)= sup [E[f(X)]—E[f(Y)].

fe Fyr
k71+k/71§1Tk TXN[J Tywq

where Fy is the set of absolutely continuous functions such that | V£ < 1.
For example, if k =1, ||Vf|loo <1 (corresponding to 1-Lipschitz functions).
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Distance Between Distributions

Definition 3.33: Wasserstein,

Consider two measures on p and g on R. Then define Wasserstein distance

1 1/k
Wi(p, q) = (/0 |Fy M) — Fy(u)*du) ", for k> 1

1 > ¢c2 = function(x) (pnorm(x,0,1)-pnorm
(x,1,2))°2

2 > w2 = function(u) (gqnorm(u,0,1)-gnorm
(u,1,2))"°2

3 > sqrt(integrate(c2,-Inf,Inf) $value)

4 [1] 0.5167714

5 > sqrt(integrate (w2,0,1) $value)

6 [1] 1.414214

where F~! denotes the generalized inverse of F, F~1(u) = ig&{F(x) > u}.
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Distance Between Distributions

1 > cl = function(x) abs(pnorm(x,0,1)-
pnorm(x,1,2))
2> wl = function(x) abs(qnorm(x,0,1)-

qnorm (x,1,2))
> integrate(cl,-Inf,Inf) $value
[1] 1.166631
> integrate(wl,0,1) $value
[1] 1.166636

o B~ W

Proposition 3.19: ¢; and W,

Consider two measures on p and g on R.

1 0o
Wilp. ) = [ 1Fy ) = F(u)ldu= |~ Fy() = Fal)ldx = Gu(p. ).

—00

Proof See Prokhorov (1956), Dall’Aglio (1956) and Vallender (1974).
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Distance Between Distributions

Instead of the geometric proof (see plot above), observe that

x € [FyH(u), FgH(u)]

x € [Fgt(u), Fyt(u)]

= /OO /1 h(u,x)dudx, h(u,x)=1if {U € [Fp(x), Fg(x)]
—00Jo u € [Fg(x), Fp(x)]

/()1]Fp1(u) — Fq*1(U)|du _ /01 /_O:O g(u,x)dxdu, g(u,x) =1 if {

_ /_O:o]Fp(x) —Fy(x)]dx

(see Proposition 2.17 in Santambrogio (2015) for a proper justification)
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Distance Between Distributions

w: multinomial distribution on {0, 1,10}, with p = (.5, .1, .4)
vp: binomial type distribution on {0, 10}, with g, = (1 — 6, 0)
Let 0* = argmin{d(p, qp)} or 6* = argmin{d(p||qs)}

with . dis(p, qe), du(p, ge) and
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Distance Between Distributions

p: multinomial distribution on {0,1,10}, with p = (.5, .1, .4)
vp: binomial type distribution on {0, 10}, with gy = (1 —6,6)
Let 0* = argmin{d(p, q0)}

with , G(p, g9), Wi(p, qp) and
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Distance Between Distributions

Proposition 3.20

The Wasserstein metric is scale and sum invariant, but does not have unbiased
sample gradients.

Proof Bellemare et al. (2017b)
Example If x; are drawn from a Bernoulli distribution

Non-vanishing minimax bias: ¥n, 3p, qg, |E(VoW,(Bn, q0)) — VaWE(p, qp)| > 2672

Wrong minimum: in general,

~

O = argmin {E((W,(Bn, 40))) | # argmin { WE(P, @y))) } = 0
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Distance Between Distributions

Proposition 3.21

The Cramér metric is scale and sum invariant.

CG(X+2Z,Y+2Z) < C(X,Y) whenever Z 1L X, Y and k > 1, and
Cu(eX, e¥) < [c]/4Cu(X, V).

Proposition 3.22

C, has unbiased sample gradients (only k = 2),

E (VoC(Pn, o)) = Vo Ca(p, qo)-
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Distance Between Distributions

Consider first I/, (earth mover's distance), which was the only distance discussed in
Wasserstein (1969). See also Vallender (1974) for an extensive review.

Wi is an IPM where F the set of 1-Lipschitz functions, Kantorovich and Rubinstein
(1958), i.e., if p and g have bounded support,

Wi(p,q) = sup {/+OO f(x)d(p — q)(X)} ;

feF J—oo

F being the class of 1-Lipschitz functions

Proposition 3.23: 1/, and First Order Dominance

Suppose that X; < X (first order dominance, Fy*(u) > F;*(u), Yu € (0,1)),

Wi(p1, p2) = E[Xo] — E[X1].
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Distance Between Distributions
Proof > E[X2] E[X1]
1(p1, P2) / \Fz F1 (v) |[du = / F2 (v)du — / Fr 1(u du

then (property discussed later) E[|X; — Xa|]
1 — X2

E—
Wa(pi, p2) = |nf//|X2 x1|dC(F1(x1), F2(x2)) |nf //|F2 — F Y (u)|dC(u, v)

As discussed in Vallender (1974),
E[| X1 — Xo|] = /[]P[Xl < t, Xo > t]+P[Xy > t, X5 < t]]dt

= / [P[X1 < t] +P[Xo < t] — 2P[Xy < t, X> < t]]dt
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Distance Between Distributions

E[|X1 = Xo|] = [Fi(t) + Fa(t) — 2C(F1(1), Fa(1))]]dt
From Fréchet-Hoeffding bounds, C(u,v) < M(u,v) = min{u, v} and

Fi(t) + Fa(t) — 2C(Fi(t), Fa(t)) > Fi(t) + Fa(t) — 2M(Fi(t), Fa(t))

Bl -l = [ [ IR W) - A (@)ldM(u.v)

/' P () = T (0)ldu
Example let p; < p» '
Wi (B(p1), B(p2)) = p2 — p1.
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Distance Between Distributions

We can also consider W,

Proposition 3.24: G, and W,

Consider two measures on p and g on R.

Wa(p, q)? = /01|Fp_1(u)—Fq_1(u)|2du sl Gl @) — /°° |Fo(X) = Fi(x)Pdx.

—00
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Distance Between Distributions

Proposition 3.25: W, for Gaussian / Bernoulli distributions

Consider two Gaussian distributions, then
Wa(N (i1, 02), N (2, 03))* = (11 — p2)? + (01 — 02)?,

and for two Bernoulli distributions, if p; < p>

Wa(B(p1), B(p2)) = v/p2 — p1-
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Distance Between Distributions

Proposition 3.26: Representation for W,

Consider two measures on p and g on R.

Wap.a = [~ [ (Folmin{x.y}) — Fo(max{x.y})
+ (Fy(min{x, y}) — Fp(max{x, y})) , dxdy

or

Wap. @ =2 [~ [ [(Fal) = Faly) + (Falx) — Foly) ] dxcly

1
Proof Since Ws(p, q)* = / |F,jl(u) - F;l(u)\zdu observe that
0

Fy N (u)—F M (u) = Fy H(u)—Fy  (Fo(Fyt(w)) = Fy H(u)—Fp M (G(u)) where G = Fpof ™t
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Distance Between Distributions
Since Fg is continuously differentiable, so that H = F} o F;'!, then

u o dt
F-1(y) — F-1 :/
P W= F )= e He)
and write

-1 g2 [C At dv
FH = RO = [ g
and depending on whether G(u) < u or u < G(u), we can write
1
/0 (Fp_l( ) — du—/ / mln{t v}) — max{r, v})
+ (min{t,v} — G *(max{t, v})), dtdv.

And finally, let t = Fp(x) and v = Fy4(v), so that G~1(t) = F4(x) and
G71(v) = F4(y), and we get the desired expression.
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Distance Between Distributions

We can finally consider W,

Proposition 3.27: W,

Consider two measures on p and g on R.

Weo(p,q) = sup |Fyt(u) — Fyt(u)l.

ue(0,1)
Furthermore, W (p, q) is the infimum over all h > 0 such that

Fq(x — h) < Fp(x) < Fg(x + h), for all x € R.
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Optimal transport and Wasserstein distance

Definition 3.34: Wasserstein,

Consider two measures on p and g on R¥, with a norm ||-|| (on R¥). Then define

1/k
W, = inf —y|l¥
k(p, ) <ﬂe|'1”(p,q) /R e XYl dﬂ(x,y)> ,

where T(p, q) is the set of all couplings of p and gq.
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Optimal transport and Wasserstein distance

Definition 3.35: Kantorovich Problem

Kantorovich Problem is defined as

We(p,q) = inf / c(x, y)dm(x,y),
meN(p,q) Jxxy

for cost function ¢ (or loss function).
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Optimal transport and Monge mapping

Definition 3.36: Push-Forward and Transport Map

Given two metric spaces X and ), a measurable map T : X — ) and a measure
pon X. The push-forward of p by T is the measure v = Ty on ) defined by

VB CY, Tuu(B) = u(T71(B)).

By the change-of-variable formula

Proposition 3.28: Push-Forward and Transport Map

For all measurable and bounded ¢ : Y — R,

/y e(y)dTep(y) = /X P (T (x))du(x).
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Optimal transport and Monge mapping
If Y is a finite set {yy, - ,¥,},

Tup = ZM {yi) 0y

If X is a single atom, {x}, pn = 0x and Tup(B) = pu(T1(B)) = 67(x). If
Card(support(rv)) > 1, there is no transport map.

One solution is to allow mass to split, leading to Kantorovich's relaxation of Monge's
problem

Proposition 3.29: Existence of a map

If X = Y is a compact subset of R¥, if 11 and v are two measures, and if y is
atomless, then there exists T such that v = T pu.

see Santambrogio (2015).
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Optimal transport and Monge mapping

If X and ) are two sets of R¥, and if measures w and v are absolutely continuous,
with densities f and g (w.r.t. Lebesgue measure),

/ o(y)g(y)dy = / ©(T(x)) - g(T(x))det VT (x)-dx.
Y X

=f(x)

Definition 3.37: Monge Problem

Monge problem

T#itr;iq . c(x, T(x))dPa(x),

for cost function c.

Note that the constraint and the objective function are non-convex.
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Optimal transport and Monge mapping

Theorem 3.1: Optimal map for continuous univariate distributions

The optimal Monge map T* for some strictly convex cost ¢ such that TPy = Pg
is T = F3 ' oF,.

T* is an increasing mapping.

Example Univariate Gaussian

X8 = T*(xa) = ps + 080y (X0 — f1a)-
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Optimal transport and Monge mapping

Theorem 3.2: Optimal map for continuous multivariate distributions,

With a quadratic cost, the optimal Monge map T* is unique, and it is the gradient
of a convex function, T* = V.

Example Multidimensional Gaussian
xg = T"(xa) = pg + A(xa — py),

where A is a symmetric positive matrix that satisfies AX, A = X, which has a unique
solution given by A = 2;1/2 (21/22321/2)1/22;1/2, where M*/2 is the square root of
the square (symmetric) positive matrix M based on the Schur decomposition (Ml/2 is
a positive symmetric matrix), as described in Higham (2008).
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Optimal transport and Monge mapping

Gangbo (1999) proved, when X = ) is a compact subset of R, the infimum in Monge
problem and the minimum in Kantorovich problem coincide, if i is atomless,

Proposition 3.30: Monge/Kantorovich Problems

X =) is a compact subset of R¥ and if y is atomless,

min{Monge problem, see Def. 3.37} = min{Kantorovich problem, see Def. 3.35}.
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Optimal transport (discrete)

(via Harris and Ross (1955))
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Optimal transport (discrete)

One can consider optimal transport for empirical measures, P = Zw;éx,.

i=1
With uniform weights and n points for P, and P, W,f is the optimal matching cost
(Hungarian algorithm, Kuhn (1955, 1956)), cast as a linear program

1/k
Wk (Py, Pr) = (mln de Xi, Ys(i)) ) ,

SESn

where S, is the set of permutations on {1,2,--- | n}.
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Optimal transport (discrete)

Consider the set of n x n doubly-stochastic matrices,
Dy={MeR":M1,=1,and M1, =1,},
and the subset of permutation matrices,
Up={Mec{0,1}"": M1,=1,and M1, =1,}.

Let C denote the cost matrix, C;j = d(x;, y;)¥, then

]
]

Wi (x, y)* = argmin{(P, C>}, where (P, C) = Pi;Cij
PeU, i=1 j=1

and “optimal transport” permutation matrix

P* e aIngErBi"n{<P, C)}
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Optimal transport (discrete)

7

8

9

10

11

12

0.41
0.28
0.28
0.28
0.41
0.66

2

SOl EW N

0.55
0.24
0.47
0.62
0.37
0.76

8

0.22
0.73
0.32
0.81
0.89
0.21

9

0.64
0.22
0.52
0.25
0.25
0.89

10

0.04
0.64
0.16
0.64
0.81
0.22

11

0.25
0.80
0.37
0.85
0.97
0.14

12

S 1 BwWw N
=

1

111
28
3¢9
47
5+ 10
6+ 12
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Optimal transport (discrete)

Consider wo samples, with the
height of men and women (both
groups of size n).

On the following graph, we can vi-
sualize the optimal matching of in-
dividuals in the two groups.

It is a monotone mapping.
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Optimal transport (discrete)

Two groups, with black and non-black mothers, delivering babies (in the U.S.)

x1 <> x; (newborn weight) and x, <> x> (weight gain of the mother)
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Optimal transport (discrete)

Proposition 3.31: Hardy—Littlewood—Padlya

inequality,

Given x1 <---<x, and y; <--- <y, n pairs of
ordered real numbers, for every permutation o of
{1a27"' ,n},

n n n
ZXIYn+1—i < inya(i) < in)/i-
i=1 i=1 i=1

J

various implications, e.g. bounds on the covariance, and the

correlation, see Proposition 5.1.

This can be extended to more general function ®(x;, y;).
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Optimal transport (discrete)

Definition 3.38: Supermodular,

Function ® : R x R — R is supermodular if for any z, 2’ € R,
P(zANZ)+P(zV Z) > d(2) + (),

where z A Z’ and z V Z’ denote respectively the maximum and the minimum
componentwise. If —® is supermodular, @ is said to be submodular.
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Optimal transport (discrete)

Proposition 3.32: Hardy-Littlewood—Padlya inequality,

Given x; < ---
supermodular function ® : R x R — R, for every permutation o of {1,2,---

< xpand y; < --- <y, n pairs of ordered real numbers, and some

N},

n n n
Z¢(Xi7yn+1—i) S Z(D(Xi:.ya(i)) S Z(D(Xiayi)’
i=1 =1l i=1

while if ® : R x R — R is submodular,

ZQ)X,,_)/, <Z¢Xlayol Z(D(Xla)/n-H /)

Functions ®(x, y) = v(x — y) for some concave function 7 : R — R, such as
®(x,y) = —|x — y|¥ with k > 1, are supermodular.
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Optimal transport (discrete)

1 > permutations = function(n){ ®(x,y) = (x — y)?, submodular function,

2 + if (n==1){

3+ return (matrix (1)) Consider x; < --- < x,

z : Zpeis:eimutations(n—l) 1 > Phi = function(x,y) sum((x-y) " 2)

¢ B o = e () 2 > set.seed (1)

7+ A = matrix(nrow=n*p,ncol=n) g = - soEsls)

8 + for(i in 1:n){ 4>y = yli1:6] .

o B AL(i-1)*p+1:p,] = 5 > vect = pe?mutatlons(G)

o B e (5, e (i) 6 > MY = matrix(vect, ncol=6)

0l } 7 > MPhi = function(i) Phi(x, y[MY[i,]])
o B return (A) 8 > S = Vectorize (MPhi) (1:nrow (MY))

s B 3 9 > y[MY[which.min(S) ,]1]

o+ 3} 10 [1] 0.046 0.288 0.409 0.788 0.883 0.940
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Optimal transport (discrete)
In a very general setting (with n, # 1), if @y € R}" and ag € R’ satisfy
a, 1, = aj1, (identical sums), define

U(ay,ag) = {M € R?"*™ : M1, = ay and M'1,, = ag}.

This set of matrices is a convex transportation polytope (see Brualdi (2006)).

Ny

In our case, let U,, ,, denote U <1,,A, 1,,B> (U, is the set of permutation
N

matrices associated with S,). Let C denote the cost matrix, C;; = d(x,-,yj)k.

ny  ng
Wk(x,y)k = argmin {(P, C)}, where (P, C) = ZZ Pi;iCij (3)
PEUny,ng i=1j=1
and “optimal transport”
P* € argmin {(P./ C)} (4)

PeUnAmB
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Optimal transport (discrete)

SO W N

0.41
0.28
0.28
0.28
0.41
0.66

0.55
0.24
0.47
0.62
0.37
0.76

0.22
0.73
0.32
0.81
0.89
0.21

0.64
0.22
0.52
0.25
0.25
0.89

0.04
0.64
0.16
0.64
0.81
0.22

0.25
0.80
0.37
0.85
0.97
0.14

0.24
0.76
0.27
0.58
0.91
0.33

0.77
0.76
0.68
0.32
0.81
0.96

0.74
0.12
0.63
0.51
0.05
0.99

SOl W N

3/5
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1/5

1/5

2/5

2)5
1/5

3/5

1/5

2)5

3/5

35

3/5

35

0.55
0.10
0.45
0.48
0.25
0.79
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Optimal transport (discrete)

From Kantorovich (1942), one can use the dual linear programming problem

primal(a, b, C) = min {(P,C)}

PeU a,b
Wi (a, b)k = or
dual(a,b,C)= max {u'a+v'b
( ) (u, V)GMC{ }
where Mc = {(u,v) € R™""|u; + v; < C; )}

If ny ~ ng ~ n, O(n®log(n)) problem.

Set ¢p(a, C) = max {u a+v'b}, ar i(a, C)is a convex non-smooth map.

(u,v)em
The dual optimum u* is subgradient of a — (a, C).

If k =2 (Euclidean distance), convex quadratic problem.
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Optimal transport (discrete)

Given P € U,, ., define the entropy as

g(P) = _iipi’j |OgP,'7j or 6/(P) = —ZA:XR:P;J“OgP,'J — ].]

i=1 j=1 i=1 j=1

and consider the v-regularized optimal transport problem

P; = gégur::f”:{ﬁ C) - 75(’3)} (5)

since the problem is strictly convex.
The Lagrangian is here

E(P7)‘Aa )‘B) = <Pa C> - VS(P) - <)‘A1 P]'nB - 1”A> - <>‘Bv PT]‘”A - 1”B>
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Optimal transport (discrete)
and the first order conditions are

Cij+ vlog(Pij) — Awi — Asj =0,

Pij = exp[Aaj — Cij+ A j] or P = Dyexp[—C|Dg
where D, and Dg are diagonal matrices.

This can be related to the Doubly Stochastic Scaling Problem: let A be some n x n
matrix with positive coefficients, we want to find D, and Dy two positive diagonal
matrices (n x n) such that DyADg is doubly stochastic (see Parlett and Landis (1982))

More generally, this corresponds to the Matrix Scaling Problem: Let A be some
ny X ng matrix with positive coefficients, we want to find D, and Dy two positive
diagonal matrices (respectively ny x ny and ng x ng) such that DyADg is in U(ay, ag).

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 203 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Optimal transport (discrete)

Theorem 3.3: Sinkhorn - Matrix Scaling,

For any matrix A n x m with positive entries, for any a and b in the simplex,
there exist unique u € R’ and v € R such that

diag[u] A diag[v] € U, .

Sinkhorn and Knopp (1967) (extending Sinkhorn (1962, 1964, 1966)) suggested the
following algorithm (updating alternatively Dy and Dg)

D\") = diag(as/(ADg)tV)
D§Y) = diag(as/(ADy)®)

(where the division here is element-wise).
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Optimal transport (discrete)

An alternative way to write the entropic optimization problem is

Pj; = argmin{(R C>+’}"'dKL(PHaA®aB)} (6)
PeUa, 2y

Using mutual information here makes it easier to extend to the continuous case...

The extension of Sinkhorn algorithm is the coordinate descent/ascent algorithm.

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 205 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Optimal transport (discrete)

set.seed (123)
x = (1:6)/7
runif (9)

—, V V V V
<
]

1] 0.14 0.29 0.43 0.57 0.71 0.86
> y[1:6]

[1] 0.29 0.79 0.41 0.88 0.94 0.05
> library(T4transport)

> Wxy = wasserstein(x,y[1:6])

> Wxy$plan

=
S)
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Optimal transport (discrete)

1 > Wxy = wasserstein(x,y[1:6])
2 > Wxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn(x, y[1:6], p = 2, lambda = 0.001)
2 > Sxy$plan

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 208 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Optimal transport (discrete)

1 > Sxy = sinkhorn(x, y[1:6], p = 2, lambda = 0.005)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn(x, y[1:6], p = 2, lambda = 0.05)
2 > Sxy$plan
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Optimal transport (discrete)

1>y

2 [1] 0.29 0.79 0.41 0.88 0.94 0.05
3 [7] 0.53 0.89 0.55

4 > library(T4transport)

5 > Wxy = wasserstein(x,y)

6 [,11 [,2] [,3] [,41 [,8] [,e6]
- [1,] 0.5 0.5 0.0 0.0 0.0 0.0
s [2,] 0.0 0.0 0.0 1.0 0.0 0.0
9 [3,] 0.0 1.0 0.0 0.0 0.0 0.0
0 [4,] 0.0 0.0 0.0 0.0 1.0 0.0
in [6,] 0.0 0.0 0.0 0.0 0.0 1.0
2 [6,] 1.0 0.0 0.0 0.0 0.0 0.0
1 [7,] 0.0 0.0 1.0 0.0 0.0 0.0
© [8,] 0.0 0.0 0.0 0.0 0.5 0.5
5 [9,] 0.0 0.0 0.5 0.5 0.0 0.0
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Optimal transport (discrete)

1 > Wxy = wasserstein(x,y)
2 > Wxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn(x, y, p = 2, lambda = 0.001)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn(x, y, p = 2, lambda = 0.005)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn(x, y, p = 2, lambda = 0.02)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn(x, y, p = 2, lambda = 0.05)
2 > Sxy$plan
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Optimal transport (discrete)

Theorem 3.4: Optimal transport for discrete univariate distributions

Consider n points each group, on R, {x1, -+ ,x,} and {y1,---,yn}, ordered in
the senses that x; < xp < --- < xpand y; <y < --- < y,, forany k > 1,

1. 1/k
Wi = (;Z |x; —yi|k>

i=1

Theorem 3.5: Optimal transport for continuous univariate distributions

1/k

we = ( [ 1B @) - £ ) )
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Optimal transport (discrete)

Theorem 3.6: Optimal transport for continuous univariate distributions

Let P, and P, be two probability measures on R, and suppose that c(x, y) = h(x—
y) for some strictly convex function h. The there exists a unique = € (P, P.)
such that

e 7 is optimal to Kantorovich problem (3.35)

e 7 is the comonotone joint distribution with marginals P, and Ps.

If c(x,y) = |x — y|, the optimal transport solution might be non-unique.

Theorem 3.7: Optimal map for continuous univariate distributions

The optimal Monge map T* such that T;]P’A =Ppis T* = FB_1 o Fy.
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Optimal transport (discrete)

Consider ny = 25 and ng = 25 points in R, ng = 32 and nz = 50

~ 1 M

Fn,(x) = fZI(X, < x) and Fp,(x) = ZI(X' < x)
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Optimal transport (discrete)

Consider ny = 25 and ng = 25 points in R, ng = 32 and nz = 50
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Optimal transport (discrete)

In the univariate case, if k =1,

Zixf Yo(i)|
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Multivariate Optimal Transport

Consider n and n points in R?

Consider n and 2n points in R?
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Multivariate Optimal Transport

Consider n and n points in R?, and k =1, 2,3, 4, TyPy =Ps

Consider n and n points in R?, and p=1,2,3,4, TuPs =P,
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Multivariate Optimal Transport

Theorem 3.8: Optimal map for continuous multivariate distributions,

With a quadratic cost, the optimal Monge map T* is unique, and it is the gradient
of a convex function, T* = V.

Example Multidimensional Gaussian
xg = T"(xa) = pg + A(xa — py),

where A is a symmetric positive matrix that satisfies AX, A = X, which has a unique
solution given by A = 2;1/2 (21/22321/2)1/22;1/2, where M*/2 is the square root of
the square (symmetric) positive matrix M based on the Schur decomposition (Ml/2 is
a positive symmetric matrix), as described in Higham (2008).
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Multivariate Optimal Transport

Proposition 3.33: W, for Gaussian vectors

Consider two Gaussian distributions, then

Wa (N (g, £1), N (2, £2))° = g — a3 + tr(Z1 + Xp — 2(X)°E,51%)1/?)

Proof: Let X1 ~ N (1, X1), X2 ~ N (o, X2), and I define the covariance matrix of

(X1, X2),
(% ¢
(2 %)

where (generally), C is some n; x np matrix. Recall that n; X ny matrices can have a
pseudo-inverse, in the sense that (Penrose conditions)

AATA=A (AAT)T = AA™
ATAA" =A", |(AA)T = A A,
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Multivariate Optimal Transport

Observe that E(|| X1 — X2H§2) = tr(X; + X3 — 2C). Recall that C must satisfy the
Schur complement constraint, X1 — C}:glCT = 0, so that we want to solve

C* = argmin{—2tr(C)} s.t. ; — CE;'CT =0,

as studied in Olkin and Pukelsheim (1982), where X1 and X, are positive (= 0)
matrices.

Let G={C,m xnmp: X — C):2_1CT =0}, S={S: S5 X, =X,}, one can prove
(standard duality and convexity arguments) that

_ -\ _ 1/2 1/2
rgeaé({%r(C)} = rgeag{tr():ls +X557)} = 2tr(5 T X))
with respective (unique) solutions

Cr=x,5"
5= ) 7(x P, EY ) Y
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Multivariate Optimal Transport

See Olkin and Pukelsheim (1982), Givens and Shortt (1984) and Knott and Smith
(1984), or more recently Takatsu (2008) and Takatsu and Yokota (2012), with more
geometric interpretations.

To illustrate, consider the previous example, with newborn weight and weight gain of
mothers, in the U.S., with Black and non-Black mothers, with here a joint mapping
Ry — RJ.
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Multivariate Optimal Transport

(x1,x2) <> (x1.x) (newborn weight, weight gain of the mother)
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—Part 3 —
Models
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Generalized Linear Model

Definition 4.1: Exponential family,

The distribution of Y is in the exponential family if its density (with respect to
some appropriate measure) is

fe,ga()/) = exXp

<—y9 _(pb(e) + <y, w)),

where 6 is the canonical parameter, @ is a nuisance parameter, and b : R — R is
some R — R function.

Such as the binomial, Poisson, Gaussian, gamma distributions, etc.

Also compound Poisson / Tweedie (from Tweedie (1984)).
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Generalized Linear Model
Given some dataset (y;, x;), suppose that u(x) = g~ }(x' B)

2 [Oi—p gt ‘
: : Cl— [ v
=gy B
OLS, u(x) = x" 8 and B°° = argmin {an(y; -~ x,Tﬂ)Z} = (XTX)"'xTy.
i=1
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Generalized Linear Model

Consider problems

min {f(x)} min {f(x)}
xERK or xcRk
under constraint g(x) =0 under constraint g(x) <0

Karush-Kuhn-Tucker condition is

VxL(x*,z*) =0
V. L(x*,z)=0

where
L(x,z) = f(x)+ 2" g(x)

is the Lagrangian problem (parameter z are multipliers)
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Generalized Linear Model

Definition 4.2: Ridge Estimator (OLS),

~ridge 1< -
ﬁ/\dg = argmin {5 Z(Yi —x; B’ + )\Zﬁf}'

BERK i=1 j=1

~ridge

B = (XX + A X Ty

Definition 4.3: Ridge Estimator (GLM)

B — argmin {— > log f(yilui = g7 (x{ B)) + Azﬂf}'

BERK i=1 j=1
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Generalized Linear Model

Definition 4.4: LAssO Estimator (OLS),

N . 1 n k
B =argmin{ 23 (yi—x] B + A |5

i=1 j=1

Definition 4.5: LAsSO Estimator (GLM)

. K

N . -

By = argmin —Zlog f(yilui = g1 (x; B)) + )‘Z 1l
i=1

Jj=1
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Generalized Linear Model

1 > library(glmnet)

2 > fit_ridge = glmnet(x, y, alpha = 0)
3> fit_lasso = glmnet(x, y, alpha = 1)
Elastic net
1. k Ao k
: T 2\2 2
min EZ(YI‘—X; B) +)‘12|/8j|+726j ;
i=1 j=1 j=1

e.g. A1 = a) and Ay = (1 — @)\ (two parameters — one for the global regularization,
one for the trade-off between Ridge (Tikhonov) vs. Lasso)
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Accuracy

Consider the case where y € {0,1}, and a score m(x) (classically in [0, 1]).

. . exp[x ' B]
E.g., for a logistic regression, m(x) = l—i—Tp[xTﬂ]'
Receiver operating characteristic
A receiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the performance of a binary classifier model (can be used for multi
class classification as well) at varying threshold values. The true-positive rate is
also known as sensitivity, recall or probability of detection. The false-positive rate
is also known as the probability of false alarm and equals (1 - specificity). W
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Accuracy

Definition 4.6: ROC curve

The ROC curve is the parametric curve
{P[m(X) > t|Y = 0], P[m(X) > t|Y = 1]} for t € [0,1],

when the score m(X) and Y evolve in the same direction (a high score indicates
a high risk).
C(t) = TPRo FPR7(1),
where
FRP(t) = P[m(X) > t|Y = 0] = P[mo(X) > t]
TPR(t) = P[m(X) > t|Y = 1] = P[m(X) > t].
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Accuracy

1S T N O R N R

1

W Ofreakonometrics €) freakonometrics

> library (ROCR)

> pred = prediction(df$yhat, df$y)

> roc = performance (pred,"tpr","fpr")
> plot(roc)

> auc = performance( pred,"auc")

see also

> library (pROC)

Definition 4.7: AUC, area under the ROC curve

The area under the curve is defined as the area below the ROC curve,

1 1
AUC:/ C(t)dt:/ TPR o FPR™1(¢)dt.
0 0
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Accuracy
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Calibration

Well-calibration was initially discussed in forecasting

Definition 4.8: Well-calibrated (1),

The forecast X of Y is a well-calibrated forecast of Y if E(Y|X) = X almost
surely, or E[Y|X = x| = x, for all x.

one can define “well-calibration” in prediction

Definition 4.9: Well-calibrated (2),

The prediction m(X) of Y is a well-calibrated prediction if E[Y|m(X) =y] =Y,
for all y.
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Calibration

“[SJuppose the Met Office says that the probability of rain tomorrow in your
region is 80%. They aren’t saying that it will rain in 80% of the land area of
your region, and not rain in the other 20%. Nor are they saying it will rain for
80% of the time. What they are saying is there is an 80% chance of rain
occurring at any one place in the region, such as in your garden. [...] [A]
forecast of 80% chance of rain in your region should broadly mean that, on
about 80% of days when the weather conditions are like tomorrow’s, you will
experience rain where you are. [...] If it doesn’t rain in your garden tomorrow,
then the 80% forecast wasn’t wrong, because it didn’t say rain was certain. But
if you look at a long run of days, on which the Met Office said the probability of
rain was 80%, you’d expect it to have rained on about 80% of them.” McConway
(2021)
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Calibration

“Well calibrated classifiers are probabilistic classifiers for which the output can
be directly interpreted as a confidence level. For instance, a well calibrated
(binary) classifier should classify the samples such that among the samples to
which it gave alpredicted probability] value close to 0.8, approximately 80%
actually belong to the positive class,” scikit learn: Probability calibration

“Suppose that a forecaster sequentially assigns probabilities to events. He is
well calibrated if, for example, of those events to which he assigns a probability
30 percent, the long-run proportion that actually occurs turns out to be 30
percent,” Dawid (1982)
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Calibration

“Out of all the times you said there was a 40 percent chance of rain, how often
did rain actually occur? If, over the long run, it really did rain about 40 percent
of the time, that means your forecasts were well calibrated,” Silver (2012)

“we desire that the estimated class probabilities are reflective of the true
underlying probability of the sample,” Kuhn and Johnson (2013)

See Murphy and Epstein (1967), Roberts (1968), Gneiting and Raftery (2005) on
ensemble methods for weather forecasting, or more generally Lichtenstein et al. (1977),
Oakes (1985), Gneiting et al. (2007).
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Calibration

As explained in Van Calster et al. (2019), "among patients
with an estimated risk of 20%, we expect 20 in 100 to
have or to develop the event”,

e If 40 out of 100 in this group are found to have the
disease, the risk is underestimated

e If we observe that in this group, 10 out of 100 have the
disease, we have overestimated the risk.

Hosmer-Lemeshow test, from Hosmer Jr et al. (2013) (logis-
tic regression), and Bier score, from Brier (1950) and Murphy
(1973)

Function plotted in psychological papers Keren (1991)
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Calibration

e “reliability diagrams”, Wilks (1990)
Used in scikit-learn (calibration curve )
see Pakdaman Naeini et al. (2015) and Kumar
et al. (2019), with quantile-based bins
(average of y;'s against average of /M(x;)’s)

e “local regression”, Denuit et al. (2021)

See also Austin and Steyerberg (2019)
regression of y;'s against m(x;)’s
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Calibration

Definition 4.10: Calibration plot

The calibration plot associated with model m is the function y — E(Y|m(X) =
y). The empirical version is some local regression on {y;, m(x;)}.

Definition 4.11: Globally unbiased model m,

Model m is globally unbiased if E[Y] = E[m(X))].

Definition 4.12: Locally unbiased model m,

~

Model m is locally unbiased at y if E[Y|m(X) =y] =.
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Calibration

Consider claims (annual) frequency, corrected from the exposure, freMTPL2freq from
CASDataset package, as in Denuit et al. (2021).

ﬁ,’glm meam ﬁ,'bst

average m(x)’s
10% quantile
90% quantile

0.1087 0.1092 0.0820
0.0605 0.0598 0.0498
0.1682 0.1713 0.1244
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Calibration

Evolution of p— E[Y|m(X) = p] and u — E[Y|m(X) = Fa_l(u)]
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Calibration
For GLM, remember that

b(6:)

i0i —
f(yi) = exp (y(p + c(yi, @))»

alogﬁ,-_(?logﬁ,-'(‘)@,-.8,11,-.877,-_8Iog£,-_y,-—u,-. 1 ,X,,‘<a77i>_1
dB; 00;  Op; Oni 0B 0B; e V(w) Y \ow
When g is the canonical link (g, = bt or n; = x B = 6;)

ViegL=X"(y—y)=0

Proposition 4.1: Calibration of GLM

In the GLM framework with the canonical link function, m(x) = g 1(x] B) is
globally unbiased (on the training dataset), but possibly locally biased.
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Calibration

Otherwise
ViegL=X"Q(y —y) =0,

where Q is a diagonal matrix (2 = WA, where
W = diag((V(ui)g'(1i)?) ") and A = diag(g’(11)), so that we recognize Fisher
information - corresponding to the Hessian matrix (up to a negative sign) — X' wX)

validation data

training data
GLM CART GAM RF y GLM CART GAM RF

y
m(x,s) | 873 873 873 873 827|855 9.05 9.03 8384 8.70
m(x) 8.73 873 873 873 829|855 9.05 9.03 884 873
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Calibration

Definition 4.13: Brier score (binary classifier)

Brier score is the mean squared error of probability estimate,

Consider “confidence” value given by Picpurify, using pictures generate by a GAN
(a generative adversarial network, used in Hill and White (2020)).
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Calibration

female (0.984)  female (0.983)  female (0.982)  female (0.960)
male (0.016) male (0.017) male (0.018) male (0.040)

female (0.009)  female (0.013)  female (0.014)  female (0.015)
male (0.991) male (0.987) male (0.986) male (0.985)
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Standard modeling architecture

x|

layer 1 layer 2

x|

-
I:l
—

Xy

model
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Standard modeling architecture

© BT
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N

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 254 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Standard modeling architecture

X1

=
=l V
= O
]

X3E

X4
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—Part 4 —
Data
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Data (the two types)

“It is often said, You cannot prove causality with statis-
tics.” One of my professors, Frederick Mosteller, liked to
counter, You can only prove causality with statistics.” (...)
The title, ‘Observation and Experiment,” marks the mod-
ern distinction between randomized experiments and ob-
servational studies,” Rosenbaum (2018)

T USED TO THINK, THEN I TOOK A | | SOUNDS LKE THE
CORRELATION lr’lPUED STAnsI;cs CLASS. CLASS HELPED.
CAVSATION. NOwW I DON'T WELL, MAYBE

77 15919

Correlation, Randall Munroe, 2009 https://xkcd.com/552/
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Data (the three rung ladder)

“Ladder of causation” from Pearl et al. (2009)

3. Counterfactuals
(Imagining, “what if | had done...")

2. Intervention
(Doing, “what if | do...")

1. Association
(Seeing, “what if | see...”)

Picture source: Pearl and Mackenzie (2018)

What would be the impact of a treatment T
on a variable of interest Y 7
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Proxy

“OK, let’s not use race, but should we use zip code, which of course is a proxy for
race in our segregated society?,” O'Neil (2016).

Definition 5.1: Proxy,

A proxy is a person authorized to act for another (from a contracted form of the
Middle English word procuracie (from French “procuration”)).

Definition 5.2: Perfect proxy,

A variable X is a perfect proxy for Z if there exist functions ¢ : X — Z and
1 Z — Y such that

BX = 9(2)] =Blp(X) = 2] = 1.
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Proxy

Definition 5.3: Comonotonicity,

Variables X and Y are comonotonic if (X,Y) = (F71(V), Fy_l(U)) for some
U~ U(O,1]).

Comonotonicity
In probability theory, comonotonicity mainly refers to the perfect positive depen-

dence between the components of a random vector, essentially saying that they
can be represented as increasing functions of a single random variable. W/

See also Dhaene et al. (2002a,b) on comonotonic vectors.
See also Prince and Schwarcz (2019), or Tschantz (2022) for discrimination by proxy.

Range of possible situation between independence and perfect proxy.
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Independence

Independence

Independence is a fundamental notion in probability theory, as in statistics and
the theory of stochastic processes. Two events are independent if, informally
speaking, the occurrence of one does not affect the probability of occurrence of
the other or, equivalently, does not affect the odds. W/

Definition 5.4: Independence (dimension 2)

X and Y are independent, denoted X 1L Y, if for any sets A, B C R,

P[X € A, Y € B =P[X € A] -P[Y € B].

Definition 5.5: Linear Independence (dimension 2)

Consider two random variables X and Y. X L Y if and only if Cov[X, Y] = 0.
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Independence

Correlation
in the broadest sense, "correlation” may indicate any type of association, in

statistics it usually refers to the degree to which a pair of variables are linearly
related. W

Definition 5.6: Correlation (dimension 2),

X and Y are two random variables
Cov[X, Y]
Var[X] - Var[Y]
where Cov[X, Y] = E[(X — E[X]) (Y — E[Y])] = E[XY] — E[X]E[Y].

Corr[X, Y] =
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Independence

From Cauchy-Schwarz theorem, —1 < Corr[X, Y] < +1 but those bounds are rarely
sharp,

Proposition 5.1: Correlation bounds (dimension 2)

For any random variables X and Y (with finite variances),
fmin < Corr[X, Y] < fmax, Where

_ Cov[F1(V), Fy_l(l - U)] and rons — Cov[F1(V), Fy_l(U)]

fmin = Var[X] - Var[Y] mex Var[X] - Var[Y]

Maximal correlation is obtained when X and Y are comonotonic (minimal correlation
when X and —Y are comonotonic).

Related to optimal transport, see also Knott and Smith (1984).
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Independence

Proposition 5.2

Consider two random variables X and Y. X 1L Y if and only if for any functions
¢ :R — Rand ¢ : R — R (such that the expected values below exist and are
well-defined) Cov[p(X),¥(Y)] =0, i.e.,

E[p(X) - 9(Y)] = E[p(X)] - E[%(Y)]-

Definition 5.7: Maximal Correlation, HGR

Consider two random variables X and Y,

(X, ¥) = max{Corp(X), (Y]}
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Independence

HGR because of Hirschfeld (1935), Gebelein (1941) and Rényi (1959) (also
Sarmanov (1958a,b)).

rr(X,Y)= sDGJTT&\;;EQYIE[sD(X )WYl

where
Fx ={p: X = R:E[p(X)] =0 and E[¢?(X)] = 1}
{gy ={¢: Y = R:E[(Y)] =0and E[¢*(Y)] = 1}
See either ccaPP or acepack package,
1 > ccaPP::maxCorProj(x = x, y = y, method = "pearson")

2 > corstar = acepack::ace(x = x, y = y)
3 > cor(corstar$tx, corstar$ty)
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Independence

Proposition 5.3

Consider two random variables X and Y. X 1L Y if and only if r*(X,Y) =0.

Proof: Given a random variable X, its characteristic function is ¢x(t) = E[e/*X].

Recall that
dx(t) = py(t), Vt € R if and only if X £ Y
dx.v(s,t) = E[e/XHY)] = 6x(s) - ¢y (t), Vs,t € R if and only if X 1 Y

If r*(X,Y) =0, let s, t € R and consider ¢(x) = ¢x(x) = E[*X] and
Y(y) = ¢y (y) = E[e®Y], then Cov[e’X, €Y ] = Cov[X., Y{] =0, i.e.
E[X Y] = E[XJE[Y],

E[e/(XHY)] = E[e*X] - E[eY], Vs, t c Rie. X 1L Y.
dxv(s,t) dx(s) v (t)
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Independence

Proposition 5.4

Consider two random variables X and Y such that (X, Y) is a Gaussian vector.
Then r*(X, Y) = |Corr[X,Y]].

See Lancaster (1957, 1958), and Gauss-Hermite decomposition

x2 — 2px 2 gy
fx,y) = 27T\/11_—p2 exp (—#) = d(x)o(y) - ; r'Hi(x)Hi(y)

where H;'s are Hermite polynomial.
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Independence

Instead of

rr(X,Y)= SDefry,a;;egyIE[sO(X)tb(Y)],

wher
o {]—"X ={p: X =5 R:E[p(X)] =0 and E[¢*(X)] =1}

Gy ={v: Y = R:E[)(Y)] =0and E[p*(Y)] = 1}

Definition 5.8: Constrained Maximal Correlation,

Consider two random variables X and Y, as well as some Hilbert spaces Fx C Fix
and G, C G,

FCY) = _max {Corfp(X). (Y]}
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Independence

_Kimeldorf and Sampson (1978) and Kimeldorf et al. (1982) suggested to consider for
Fx and G, as subsets of monotone functions.

Fx = {p € Fx : ¢ monotone}
G, = {1 € G, : v monotone}

See Mourier (1953), Hannan (1961), Jensen and Mayer (1977) and Lin (1987).
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Independence

Definition 5.9: Linear Independence

In a general context, consider two random vectors X and Y, in R%* and R%,
respectively. X L Y if and only if for any a € R% and b € RY

Covla' X,b" Y] =0.

Definition 5.10: Independence

In a general context, consider two random vectors X and Y. X 1L Y if and only
if for any A C R% and B c R%,

P[{X € A} N {Y € B}] = P[{X € A}] - P[{Y € B}].
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Independence

Proposition 5.5: Independence

Consider two random vectors X and Y. X 1L Y if and only if for any functions
¢ R%* — R and ¢ : R% — R (such that the expected values below exist and
are well-defined)

Elp(X)p(Y)] = E[p(X)] - E[p(Y)],

or equivalently
Cov[p(X), ()] = 0.
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Independence

Definition 5.11: Mutual Independence

Let Y = (Y1, , Yk) denote some random vector. All components of Y are
(mutually) independent if for any Az, -, Ax CR

k k
P {(Y1,--+,Ye) € (A = [[PHY: € A}
i=1 i=1

Definition 5.12: Conditional Independence (dimension 2)

X and Y are independent conditionally on Z, denoted X 1L Y | Z, if for any
sets A, B,C C R,

PIXe A YeB|ZeC]=P[XeAlZe(C] -P[Y eB|ZeC(].
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Independence

Definition 5.13: Conditional Independence

In a general context, consider three random vectors X, Y and Z. (X 1L Y)|Z if
and only if for any A c R%, B C R% and C C R%,

P{Xec AN{YeBYZcCl=P{XecA|ZcC]-P{Y eB}Zec].

\. J

Proposition 5.6

Consider three random variables X, Y, and Z. If X L Z and Y L Z, then
aX +bY L Z, forany a,b € R.
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Independence

Proposition 5.7: X L Z, Y L Z#= (X, Y) L Z

Consider three random variables X, Y, and Z. If X L Z and Y L Z, it does not
imply that (X, Y) L Z, for any ¢ : R> = R.

(0,0,0) with probability 1/,

_J(0,1,1) with probability 1/4,
(X,v,2) (1,0,1) with probability 1/,
(1,1,0) with probability 1/a.

Proposition 5.8

Consider a random vector X in RX, and a random variable Z.
X L Z does not imply that )(X) L Z, for any 9 : R — R.
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Independence

Proposition 5.9

Consider three random variables X, Y, and Z. Evenif X 1L Z and Y 1 Z,
it does not imply either that ¢(X,Y) L Z or that ¢)(X,Y) 1 Z, for any
¥ R? = R.

| \

Proposition 5.10

Consider a random vector X in R¥, and a random variable Z.
X 1L Z does not imply either that 1)(X) L Z or ¢)(X) 1L Z, for any ¢ : R — R.
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Causation

Definition 5.14: Common cause,

If X and Y are non-independent, X [{ Y, then, either

X causes Y
Y causes X
there exists Z such that Z causes both X and Y.

See also Bollen and Pearl (2013)
SCM, Goldberger (1972), Duncan (1975) or Bollen (1989)
Bayesian network, Pearl (1985), Henrion (1988), Charniak (1991)

Causal path diagrams and probabilistic DAGs, Spirtes et al. (1993)
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Causation

Sewall Wright (see Wright (1921, 1934)) use directed graphs to
represent probabilistic cause and effect relationships among a set
of variables, and developed path diagrams and path analysis

(a) (b)

confounder mediator

%
X2 X3 X3

(c)

collider

X1

X2
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Causation

Definition 5.15: Path

A path 7 from a node x; to another node x; is a sequence of nodes and edges
starting at x; and ending at Xx;.

Definition 5.16: d-separation

A set of nodes x; is said to be d-separated with another set of nodes x; by x.
whenever every path from any x; € x; to any x; € x; is blocked by x.. We will
simply denote x; Lg x; | xc.

Proposition 5.11

Two nodes x; and x; are d-separated by x. if and only members of x. block all
paths from x; to x;.
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Causation

Chain rule - {]P’[Xl,xz,X3,X4] = P[x1] x P[x2|x1] x P[x3|x1, x2] X P[xa|x1, X2, x3]
P[x1, x2, x3, xa] = P[x4] X P[x3]xa] X P[x2|x3, x4] X P[x1|x2, X3, Xa]

Definition 5.17: Directed acyclic graph, DAG (or causal graph)

A directed acyclic graph (DAG) G is a directed graph with no directed cycles.

Definition 5.18: Markov Property

Given a causal graph G with nodes x, the joint distribution of X satisfies the
(global) Markov property with respect to G if, for any disjoints x1, x2 and x.

X1J_gX2|XC = X1J_|_X2|XC.
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Causation

Proposition 5.12: Probabilistic graphical model

If X satisfies the (global) Markov property with respect to G

n
Plxq, -, xn) = HIP[X,-]parents(x,-)]
i=1

where parents(x;) are nodes with edges directed towards x;

Path from x; to x3 is blocked by xp, i.e., x1 Lg x3 | x2,
X1 or X1 1L X3 | Xa. From the chain rule,

P ]P’[Xl,Xg,Xg;] = P[Xl] X IP’[X2|X1] X P[X3’X2,X1]
2 X3 —_——

Plx3|x2]
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Causation

il - From the chain rule, for the causal graph on the left (top),

X X3 P[x1, x2, x3, xa] = P[x1] X P[x2|x1] X P[x3|x2] X P[x4|x3]

L - From the chain rule, for the causal graph on the left (middle),
x5 X3 Plx1, x2, x3, xa] = P[x1] X P[x2] x P[x3]x1, x2] X P[x4]x3]

L - From the chain rule, for the causal graph on the left (bottom),
X X3 Plx1, x2, x3, xa] = P[x1] X P[x2] x P[x3]x1, x2, xa] X P[xa]
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Intervention

P[Y € A|X = x] : how Y € A is likely to occur if X happened to be equal to x
Therefore, it is an observational statement.

PlY € Aldo(X = x)] : how Y € A is likely to occur if X is set to x
It is here an intervention statement.

Using causal graphs, intervention do(X = x) means that all incoming edges to x are
cut.

If P[Y € Aldo(X = x)] # P[Y € A|X = x], it means that X and Y are confounded,
see Pearl (2009).
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Intervention

Definition 5.19: Structural Causal Models (SCM)

In a simple causal graph, with two nodes C (the cause) and E (the effect), the
causal graph is C — E, and the mathematical interpretation can be summarized
in two assignments
{C = he(Uc)
E = he(C, Ug),

where Uc and Ug are two independent random variables, Uc 1l Ug.

(a) observation (b) intervention
uc Ug ug
C E C = he(Uc) C E C=c (ordo(C =¢))
E = he(C, Ug) E} = he(c, Ug)
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Intervention

(a) (b)

m mediator variable

Uy uy
X y X
Um m Um m

confusion :

(c) (d)

w confounding variable

Uy uy uy
X y X y
Uy, w Uy, w

{mediator . PlYr=1]=P[Y =1|do(X = x)] = P[Y = 1|X = X]

P[Y; = 1] = P[Y = 1|do(X = x)] # P[Y = 1|X = x].
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Intervention

In fact, in the presence of a confounding factor, P[Y} = 1] which corresponds to
P[Y = 1|do(X = x)] should be written

SPIY =1|W = w, X =x]-P[W = w] = E(P[Y = 1|W, X = X]).
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Causal Inference and counterfactuals

Define potential outcomes to quantify the treatment effect, TE = v/, | — y/ 1.,

{observation : ¥/ 7., when t; — 1 is observed, and x;

counterfactual : y/+, , when ; — 1 is observed, and x;

Here we want to observe counterfactuals y, ,, at the individual level.

Gender Name  Treatment Outcome (Weight) Height
ti 01 Yi Yireo Yir.. TE X
1 H Aex O0®& DO [75 75 64 11| 172
2 F Betty 1 OM |52 67 52 15 | 161
3 F Beatrix 1 OM |57 71 57 14 | 163
4 H Ahmad 0 M O |78 78 61 17 | 183

Different notations are used y(1) and y(0) in Imbens and Rubin (2015), y* and y" in

Cunningham (2021), or y;—1 and y;—o in Pearl and Mackenzie (2018).
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Causal Inference and counterfactuals

Define potential outcomes to quantify the treatment effect, TE = v/, | — y/ 1.,

{observation : ¥/ 7., when t; — 1 is observed, and x;

counterfactual : y/+, , when ; — 1 is observed, and x;

Here we want to observe counterfactuals y -, ,, at the individual level.

Gender Name  Treatment Outcome (Weight) Height
ti 01 Yi Yireo Yir.. TE X
1 H Alex oo |75 75 ? 7 | 172
2 F Betty 1g¥ |52 ? 52 ? 161
3 F Beatrix 10M |57 7 57 7 | 163
4 H Ahmad 0O |78 78 ? ? 183

Different notations are used y(1) and y(0) in Imbens and Rubin (2015), y* and y" in
Cunningham (2021), or y;—1 and y;—o in Pearl and Mackenzie (2018).
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Causal Inference and counterfactuals

Definition 5.20: Average Treatment Effect,

Given a treatment T, the average treatment effect on outcome Y is

T=ATE = E[Ytt—l - Ytz:—O]'

Definition 5.21: Conditional Average Treatment Effect,

Given a treatment T, the conditional average treatment effect on outcome Y,
given some covariates X ,is

7(x) = CATE(x) = E[Y{_1 — YiolX = x].
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Causal Inference and counterfactuals

Definition 5.22: Individual Average Treatment Effect

Given a treatment T, the conditional average treatment effect on outcome Y,
for individual i, given covariates X, is

IATE(/) = B[V 1ty — Yites).
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—Part 5 -

Sensitive Variables and Proxies
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Context

There exists list of variables considered (by law) as sensitive (e.g., in Québec)

ALLONS/AU TRAVAIL T

race,
color,

sex,

gender identity or expression,
pregnancy,

sexual orientation,

civil status,

age,

religion,

political convictions,
language,

ethnic or national origin,
social condition,

disability.

FMO!
ATIGU
- l’ E1
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Explainability

“On a collection of additional
60 images, the classifier predicts
“Wolf” if there is snow (or light
background at the bottom), and
“Husky” otherwise, regardless of
animal color, position, pose, etc.”,
Ribeiro et al. (2016)
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Explainability

Esteva et al. (2017) and Winkler et al. (2019) use deep-classifiers to detect skin cancer

“So in the set of biopsy images, if an image
had a ruler in it, the algorithm was more
likely to call a tumor malignant, because the
presence of a ruler correlated with an in-
creased likelihood a lesion was cancerous,”
Patel (2017)
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Racial Discrimination
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Racial Discrimination

Definition 6.1: Racism,

A belief that race is a fundamental determinant of human traits and capacities
and that racial differences produce an inherent superiority of a particular race;
also behavior or attitudes that reflect and foster this belief.

Du Bois (1899)
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Racial Discrimination

Gannon (2016) “race is a social construct”

In the U.S., “an individual’s response to the race
question is based upon self-identification”

e White American, European American, or
Middle Eastern American (59.3%)

“Hispanic or Latino Americans (18.9%)"
Black or African American (12.6%)
American Indian or Alaska Native (0.7%)
Asian American (5.9%)

Native Hawaiian or Other Pacific Islander

(0.2%)

See maps on https://www.arcgis.com/apps/mapviewer /index.html
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Racial Discrimination

By comparing skull anatomy and skin color, “generis humani varietates quinae
principes, species vero unica” (one species, and five principle varieties of humankind),
Blumenbach (1775)

- the " Caucasian" (or white race, for Europeans, including Middle Easterners and
South Asians in the same category),

- the “Mongolian” (or yellow race, including all East Asians)
- the “Malayan™ (or brown race, including Southeast Asians and Pacific Islanders)
- the “Ethiopian” (or black race, including all sub-Saharan Africans)

- the “American” (or red race, including all Native Americans)
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Racial Discrimination

Definition 6.2: Colourism,

Prejudice or discrimination especially within a racial or ethnic group favoring
people with lighter skin over those with darker skin.

Fitzpatrick Skin Scale (six levels), Telles (2014).
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Racial Discrimination

In the context of insurance, several reference in the late XIX-th Century

“industrial insurers operated a high-volume business; so to simplify sales they
charged the same nickel to everyone. The home office then calculated benefits
according to actuarially defensible discrimination, by age initially and then by
race. In November 1881, Metropolitan decided to mimic Prudential, allowing
policies to be sold to African Americans once again, but with the understanding
that black policyholders’ survivors only received two-thirds of the standard
benefit,” Bouk (2015)

1884, Massachusetts state legislature passed the Act to Prevent Discrimination by
Life Insurance Companies Against People of Color

See Frederick L. Hoffman (1896) (discussed earlier)
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Racial Discrimination

In auto insurance, Heller (2015) observed that African American neighbourhood pay
70% more, on average, for auto insurance premiums than other neighbourhoods.

via https://www.michiganautolaw.com /wp-content/uploads/2017 /08 /Consumer-
Federation-of-America-High-Price-of-Mandatory-Auto-Insurance-in-Predominantly...
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Racial Discrimination

The Property Casualty Insurers Association of America responded that “insurance
rates are color-blind and solely based on risk."

via https://www.pciaa.net/pciwebsite/cms/content/viewpage?sitePageld=43349
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Sex and Gender Discrimination
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Sex and Gender Discrimination

See slides with life tables per gender (exist since 1720, see Struyck (1912))

Definition 6.3: Sexism,

Prejudice or discrimination based on sex especially, discrimination against women;
also behavior, conditions, or attitudes that foster stereotypes of social roles based
on sex.

Martin (1977), Hedges (1977) and Myers (1977) in the U.S. In Los Angeles,
Department of Water and Power vs. Manhart, the Supreme Court considered a
pension system in which female employees made higher contributions than males for
the same monthly benefit because of longer life expectancy.

See slides about the “Gender Directive” in Europe (and Thiery and Van Schoubroeck
(2006)).
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Sex and Gender Discrimination

Data Ortiz-Ospina and Beltekian (2018).
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Age-based Discrimination

Age is not a club in which one enters at birth, and it will change with
time, Macnicol (2006)

“If you are not already part of a group disadvantaged by prejudice,
Jjust wait a couple of decades—you will be,” Robbins (2015).

Definition 6.4: Ageism,

Prejudice or discrimination against a particular age-group and
especially the elderly.

COVID-19 Decision Support Tool used in England, in March 2020, provided by the
NHS (National Health System).

https://www.nhsdghandbook.co.uk/wp-content/uploads/2020,/04 /COVID-Decision-
Support-Tool.pdf
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Age-based Discrimination
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Age-based Discrimination

“on the grounds of age do not constitute discrimination (...) if age is a
determining factor in the assessment of risk for the service in question and this
assessment is based on actuarial principles and relevant and reliable statistical
data,” of the European Union (2018)

“a society that relentlessly discriminates against people because of their age
can still treat them equally throughout their lives. Everyone’s turn [to be
discriminated againstlis coming,” Gosseries (2014)

Number of crashes (left) and number of fatalities (right), per million miles driven, for
both males and females (males in blue and females in red), by driver age. The
reference (0) are men aged 30-60 years. The number of accidents is three times higher
(4+200%) for those over 85, and the number of deaths more than ten times higher
(+900%). (data source: Li et al. (2003))
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Age-based Discrimination
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Genetic or Social Identity

Definition 6.5: Genetic discrimination,

Genetic discrimination should be defined as when an individ-
ual is subjected to negative treatment, not as a result of the
individual's physical manifestation of disease or disability, but
solely because of the individual's genetic composition

Related to “genetic determinism" (as defined in de Melo-Martin

(2003) and Harden (2023)) or more recently “genetic essentialism”
(as in Peters (2014)).
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Genetic or Social Identity

According to Rawls (1999), the starting point for each person in society is the result of
a social lottery (the political, social, and economic circumstances in which each person
is born) and a natural lottery (the biological potentials with which each person is born)

“Those suffering from disease, a genetic defect, or disability on the basis of a
natural lottery should not be penalized in insurance,” Wortham (1986)

Social identity refers to a person’s membership in a social group. The common groups
that make up a person’s social identity are age, ability, ethnicity, race, gender, sexual
orientation, socioeconomic status and religion, as discussed by Tajfel (1978) and Tajfel
et al. (1986).
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Names, Text and Language

Icelandic surnames are different from most other naming systems in the modern
Western world by being patronymic or occasionally matronymic, as mentioned in
Willson (2009) and Johannesson (2013): they indicate the father (or mother) of the
child and not the historic family lineage. Generally, with few exceptions, a person's last
name indicates the first name of their father (patronymic) or in some cases mother
(matronymic) in the genitive, followed by —son “(son") or — (“daughter™).

For instance, in 2017, Iceland'’s national Women's soccer team players were Agla
Maria Alberts , Sigridur Gardars , Ingibjorg Sigurdar , Glodis
Viggos , Dagny Brynjars , Sara Bjork Gunnars , Fanndis Fridriks
Hallbera Gisla , Gudbjorg Gunnars , Sif Atla or Gunnhildur Jons
In the national Men's soccer team, players were Hakon Rafn Valdimarsson, Patrik
Gunnarsson, Héskuldur Gunnlaugsson, Jilius Magniisson, Viktor Orlygur Andrason or
Kristall Mani Ingason.

From Gaddis (2017), (data from US Census (2012)
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Names, Text and Language

[ Name Rank  White (%) Black (%) Hispanic (%) |
Washington 138 5.2% 89.9% 1.5%
Jefferson 594 18.7% 75.2% 1.6%
Booker 902 30.0% 65.6% 1.5%
Banks 278 41.3% 54.2% 1.5%
Jackson 18 41.9% 53.0% 1.5%
Becker 315 96.4% 0.5% 1.4%
Meyer 163 96.1% 0.5% 1.6%
Walsh 265 05.9% 1.0% 1.4%
Larsen 572 95.6% 0.4% 1.5%
Orozco 690 3.9% 0.1% 95.1%
Velazquez 789 4.0% 0.5% 94.9%
Gonzalez 23 4.8% 0.4% 94.0%
Hernandez 15 4.6% 0.4% 93.8%
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Names, Text and Language

As discussed in Riach and Rich (1991) and Rorive (2009), a popular technique to test
for discrimination (in a real life context) is to use “practice testing” or “situation
testing”. This started probably in the 60's in the U.K., with Daniel et al. (1968)

In France, Top 3 first names by sex and generations in France, according to the origin
(Southern Europe or Maghreb) of grandparents, Coulmont and Simon (2019)

|

immigrants

children

grandchildren

Southern
Europe

José, Antonio, Manuel
Maria, Marie, Ana

Jean, David, Alexandre
Marie, Sandrine, Sandra

Thomas, Lucas, Enzo
Laura, Léa, Camille

Maghreb

Mohamed, Ahmed, Rachid Mohamed, Karim, Mehdi

Fatima, Fatiha, Khaduja

Sarah, Nadia, Myriam

Yanis, Nicolas, Mehdi
Sarah, Ines, Lina

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 314 / 601



https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Names, Text and Language

l White

Black

Asian

Hispanic

Cost estimators
Farmers, ranchers
Construction
Surveying

Heavy vehicle
Property appraisers
Floral designers
Electrical installers
Logging workers
Brickmasons
Aircraft pilots

Postal service
Nursing assistants
Security guards
Probation officers
Orderlies aides
Bus drivers
Vocational nurses
Barbers

Shuttle drivers
Home health aides
Social workers

Manicurists

Medical scientists
Software developers
Computer engineers
Database administrators
Computer programmers
Chemists

Pharmacists

Supervisors of personal care
Other physicians

Taxi drivers

Drywall installers

Roofers

Carpet installers

Painters and paperhangers
Maids-housekeeping cleaners
Construction laborers
Cement masons
Brickmasons

Pipelayers

Landscaping workers
Agricultural workers

https://flowingdata.com/2024/01/31 /occupation-and-race/

) freakonometrics

freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course)

315 / 601


https://flowingdata.com/2024/01/31/occupation-and-race/
https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Names, Text and Language

Jobs can also be related to gender (see https://translate.google.com/) in Turkish

|

2017

2023

|

o bir 6gretmen
o bir hemsire
o bir doktor
o bir Sarkici
o bir sekreter
o bir disci

o bir cigekei
o caliskan

o tembel

o glizel

o cirkin

v VvV ViV ViV iV V VYV

she is a teacher
she is a nurse

he is a doctor
she is a singer
she is a secretary
he is a dentist
she is a florist

he is hard working
she is lazy

she is beautiful
he is ugly

he is a teacher
she is a nurse
she is a doctor
he is a singer
she is a secretary
he is a dentist
she is a florist

he is hard working
he is lazy

she is beautiful
he is ugly
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Names, Text and Language

“Speak White is the protest of white Negroes in Amer-
ica. Language here is the equivalent of colour for the
American Negro. The French language is our black
colour,”

Michele Lalonde, author of the 1968 poem “Speak White"
(reported by Dostie (1974))

“phonostyle discrimination,” Léon (1993), or of “diastratic
variation,” with differences between usages by gender, age
and social background (in the broad sense), in Gadet (2007).

“linguistic profiling," (identification of a person’s race from
the sound of their voice),Squires and Chadwick (2006)
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Pictures
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Pictures

More than a century ago, first Lombroso (1876), and then Bertillon and Chervin
(1909), laid the foundations of phrenology and the “born criminal” theory, which
assumes that physical characteristics are correlated with psychological traits and
criminal inclinations (“prima facie”).
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Pictures

Faces generated by Karras et al. (2020). Gender and age were provided by

gender.toolpie, facelytics, picpurify with a “confidence,” cloud.google,
howolddoyoulook and facialage

female, age: 38  female, age: 23 male, age: 37 male, age: 53
female (0.997)  female (0.989) male (0.967) male (0.985)
age: 34 age: 20 age: 27 age: 38
joy (74%) joy (85%) joy (81%) joy (73%)
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Pictures

Faces generated by Karras et al. (2020). Gender and age were provided by

gender.toolpie, facelytics, picpurify with a “confidence,” cloud.google,
howolddoyoulook and facialage

female, age: 30 male, age: 27 male, age: 43 male, age: 37
female (0.985) male (0.983) male (0.984) male (0.996)
age: 28 age:33 age: 38 age: 38
joy (82%) joy (69%) joy (78%) joy (56%)
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Pictures

Faces generated by Karras et al. (2020). Gender and age were provided by

gender.toolpie, facelytics, picpurify with a “confidence,” cloud.google,
howolddoyoulook and facialage

male, age: 24 male, age: 33 male, age: 34 male, age: 48
male (0.944) male (0.981) female (0.905) male (0.989)
age: 26 age: 32 age: 34 age: 48
joy (70%) joy (81%) joy (82%) joy (83%)
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Spatial Information

“Geographic location is a well-established variable in many lines of insurance,”
Bender et al. (2022).
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Spatial Information

“Geographic information is crucial for estimating the future costs of an
insurance contract,” Blier-Wong et al. (2021).
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Credit Scoring

“Credit scoring is one of the most successful applications of statistical and
operations research modeling in finance and banking,” Thomas et al. (2002).

In the brief section "how insurers determine your premium,” in the National
Association of Insurance Commissioners (2011, 2022) reports, it is explained that
“most insurers use the information in your credit report to calculate a
credit-based insurance score. They do this because studies show a correlation
between this score and the likelihood of filing a claim. Credit-based insurance
scores are different from other credit scores.”

As shown in Dean and Nicholas (2018) and Dean et al. (2018), “credit scores are
increasingly used to understand health outcomes.”
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Credit Scoring

Mortgage
N e SNSRI 538 SILEY S
E)ri%; E?EE?S"VH Excellent Credit Good Credit Average Credit Poor Credit Bad Credit

760-850 700-759 660-699 620-669 Under 620

and interest.

Auto Loan
Rates $32667 $33773 $35187 $37506 $41.882

60-month Auto Loan

for $30,000. Amount

shown is principal and ]
interest.

Excellent Credit
720-850

Good Credit
680-719

Average Credit
640-679

Bad Credit
Under 600

https://www.incharge.org/debt-relief /credit-counseling /credit-score-and-credit-report /
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Credit Scoring

Credit Card
Rates

Average APR across
all credit cards.
Credit card rates will
vary due to many
different factors.

Insurance
Rates

30-year-old driver
no tickets, no claims
4-door 2016 sedan
driving 12,000 a year
in city traffic.

https://www.incharge.org/debt-relief /credit-counseling /credit-score-and-credit-report /

W Ofreakonometrics €) freakonometrics

176%  176%  201%  222%  254%

75%

quency

Excellent Credit Good Credit Average Credit Poor Credit Bad Credit
740-850 700-739 660-669 620-659 Under 620

r

$1,500 53;0“90 $2,150  $2,400  $2,580

45% Higher 60% Higher 72% Higher
Excellent Credit Good Credit Average Credit Poor Credit Bad Credit
760 or Higher 700-759 640-699 600-639 Under 600
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Networks

“Network and data analyses compound and reflect discrimination embedded
within society,” Bernstein (2007).

“You apply for a loan and your would-be lender somehow examines the credit
ratings of your Facebook friends. If the average credit rating of these members
is at least a minimum credit score, the lender continues to process the loan
application. Otherwise, the loan application is rejected,” Bhattacharya (2015)

Homophily principle (in the sense of McPherson et al. (2001)), because as popular
saying goes, “birds of a feather flock together.”

“Insurance companies can base premiums on all insured drivers in your
household, including those not related by blood, such as roommates,” National
Association of Insurance Commissioners (2011, 2022)

but there are a few things to bear in mind when using network data...
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Networks

Definition 6.6: Network

A (directed) network G = (V, E), where, as a convention, VV = {1,--- | n} denote
either nodes, or vertices, and E € {0,1}"*" represents the relationships.

Definition 6.7: Adjacency Matrix

Ajj € {0,1}, and Aj =1 if and only if i and j are linked,

Aij:{lif(i,j)eE

0 otherwise

There are no self-loops, i.e. A;; = 0. If the matrix is symmetric (A;j = Aj;), the
network is undirected.
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Networks

W Ofreakonometrics €) freakonometrics

© N O U A W N e

10
11
12
13
14

> library (igraph)

> g

IGRAPH 8d07103
+ attr:

U--- 26
gender (v/c)

+ edges from 99d4d7971:

[1]
L6l
[11]
[16]
[21]
[26]
[31]
[36]
+

1--12
A== @
2-- 9
4--18
4--14
6--21
V== g
B==i0

1-- 3
2==10
3--12
4--10
5--14
6--12
7==12
G== €

1-- 9
2==ilF
3-- 9
4-- 8
B==26
6-- 9
7==10
B==18

61 --
1-- 6
D= T
3-- 6
4--23
B==iG
6--15
8§--12
Q==i2

omitted several edges
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Networks

Definition 6.8: Neighbors

(immediate) neighbors of node i are B ¢

N;={jeV:(ij)eE}. 0 o.,?
Proposition 6.1: Neighbors e :

Ni:{jEVZAiJ>O}. 1 15

Definition 6.9: Extended Neighborhood

I > neighbors(g, 4)
b + 6/26 vertices
b [1] 8 10 13 14 18 23

(immediate) extended neighbors of node i are

N,‘ = NiU{i}
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Networks

Definition 6.10: Neighbors of neighbors

Neighbors of neighbors of node i are

N® = {jeVv: (A2, >0} - &
(eV: (A, >0} o ?/%
20 &

where classically, (A?);; = Z Aj kAkj | dlm o

k=1 7 5 3 @
Definition 6.11: 2-Neighbors o ] b4

. . u lsa
Neighbors of order 2 of node i are 6
No(i)={j € V:3k <2, (A%);; >0}

Note that Na(i) = N; U N2,
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Networks

19 B 1326
22
23 °

Definition 6.12: Subgraph of G 2 %
Given two networks G = (E, V) and G’ = (E', V'), vy N’
G’ is a subgraph of G (denoted G’ C G) if E' C E A
and V' C V. i

1! 15
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Networks

Induced subgraph
an induced subgraph of a graph is another graph, formed from a subset of the

vertices of the graph and all of the edges, from the original graph, connecting
pairs of vertices in that subset W/

Definition 6.13: Induced subgraph of G

Given a network G = (V,E) and a subset of vertices V' C V. The induced
subgraph Gy, = (V’, E') is the graph whose vertex set is V/ and whose edge set
consists of all of the edges in E that have both endpoints in V' (denoted E).
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Networks

Set E; = N; and

Vi = {(i,j) € E, where j € N;}. " f 5
< o

Definition 6.14: Induced subgraph of neigh-

4
1 4
bors d °25 o

21 3
Given a node i in a network (E, V), the induced 5 &
subgraph of node i is Gy, also denoted G; = .
! 15 7
(Eiv VI) 5.

E.g. Ga = (E4, Va)
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Networks

Definition 6.15: Degrees

Row i contains list of vertices connected to vertex i,

di=> Aij=Al1=#N.
j=1

Let d = (d;) denote the vector of degrees, and D = diag(d).

Definition 6.16: Normalized Adjacency Matrix

Ay=D1A= D~Y2AD~'/? is the normalized adjacency matrix.
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Networks

(for directed networks, this corresponds to “out degrees”)

Definition 6.17: Walk

A walk from node i to node j is a sequence of edges, (i,v1), (v1,v2), (v2,v3),
“ (Vk—1, k), (ks f)

Definition 6.18: Path

A walk where all the vertices are distinct is a path.

Definition 6.19: Connected graph

There exists a path that connects very pair of nodes in the network.
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Networks

Definition 6.20: Shortest path

A geodesic between nodes i and j is a “shortest path” (i.e., with minimum number
of edges) between these nodes. dsy(7,/) is the distance between nodes i and j.

Conveniently suppose that the set of vertices V is Z, = {1,2,--- | n}.
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Networks
Exemples of (shortest) paths.
L '@ 19

22_12

25
17 3 17

21 21 3
g = 2 =g 9 2 18
( 15 7 u 15 7
6 6
24 24

1 > shortest_paths(g,from=11,to0=26)
$vpath

$vpath [[1]]

+ 6/26 vertices,

[1] 11 9 2 18 13 26

g oA wN

W Ofreakonometrics €) freakonometrics

g o~ wN

2 12
3

23
J \ 5
20
4 o 4 I ; 4
1 1 ~ 1
14 16 14 14 16
10 10 10
25 5 25

> shortest_paths(g,from=20,to=16)
$vpath

$vpath [[1]]

+ 8/26 vertices,
[1] 20 22 12 8 4

14 5 16
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Networks

Definition 6.21: Random walk

Random walk with transition matrix P = diag(d)'A.

Let x; denote the node reached at time t, and p(t) € S, C R’] the probability vector
associated with {x; = i}. Then

Piry1 = diag(d) " Ap,.

The stationary distribution is w = lim p,.
t—o0

Proposition 6.2: Unique Stationnary Distribution

7 exists and is unique if the network is connected and aperiodic.
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Random Graphs: Regular Graph (Dirac)

Definition 6.22: Complete graph

A complete graph is a simple undirected graph in
which every pair of distinct vertices is connected

Here dj=(n—1), Vie {l,--- ,n}
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Random Graphs: Regular Graph (Dirac)

Definition 6.23: (r) Regular graph

a regular graph is a graph where each vertex has
the same number of neighbors; i.e. every vertex
has the same degree.

Here dj=r, Vie {1,--- ,n}

195 <0
O %0%21®
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Random Graphs: Regular Graph (Dirac)

Definition 6.24: (r) Regular graph

a regular graph is a graph where each vertex has v

the same number of neighbors; i.e. every vertex

has the same degree.

Here di =r, Vie {1, -,

n}

See Bollobas (1998) for regular random graphs
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Random Graphs: Erdds-Rényi (Binomial-Poisson)

From Gilbert (1959), d; - D; ~ B(n— 1, p)

Definition 6.25: Erdos-Rényi graph

Aij = Aji < Xij where X;; are i.i.d. B(p) ran-
dom variables (each edge has a fixed probability
of being present or absent, independently of the
other edges).

(np)*e="?
Kl
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7

Random Graphs: Barabési-Albert, preferential attachment (Power law)

\
|

N[

1628 |

O\ 26
\ \ \[7

o 3 \i‘\\"“’//ZO o
From Barabasi and Albert (1999), e

Definition 6.26: Barabasi—Albert / /I 1\

2 6 2 19

Let m > 1. The network initializes with a network yaw X'
2 15

of mg > m nodes. At each step, add 1 new node,
then sample m existing vertices from the network,
with a probability that is proportional to the num-
ber of links that the existing nodes already have.

(heavily linked nodes (“hubs”) tend to quickly accumulate
even more links)
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Networks Generation

Havel-Hakimi algorithm

The Havel-Hakimi algorithm is an algorithm in graph theory solving the graph
realization problem. That is, it answers the following question: Given a finite list
of nonnegative integers in non-increasing order, is there a simple graph such that
its degree sequence is exactly this list? A simple graph contains no double edges
or loops. W

Suppose that the sum of degrees is even, random networks can then be generated with
the algorithm of Havel (1955) and Hakimi (1962) (see also Viger and Latapy (2005)).

1 > degs = sort(round (1+rexp (100, 1/10)), decreasing=TRUE)
> > if (sum(degs) %% 2 '= 0) {

3+ degs [1] <- degs[1] + 1

4 + }

5 > g = realize_degseq(degs, allowed.edge.types = "all")
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Networks Centrality

Definition 6.27: Degree Centrality

Degree centrality of node i is c4(i) = d;, and ¢4 = d.

Definition 6.28: Eigenvector Centrality

1 n
Eigenvector centrality of node / is solution of ce(i):XZA,-,jce(j), or
j=1

1
Ce = XATce, for some fixed constant A > 0.

Equation ATce = AC. means that c, is some eigenvector associates with AT (or A if
G is undirected).
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Networks Centrality

Definition 6.29: PageRank Centrality

n R
PageRank centrality of node /i is solution of c,(i) =« AiJdeQ) + 5, or
J=1 J
c, = aA' D ¢, + 51, for some fixed constant v and 3.
1 > eigen_centrality(g) 1 > page_rank(g)
> [1] 0.527 0.821 0.732 0.544 0.060 > [1] 0.030 0.049 0.043 0.045 0.033
5 [6] 0.702 0.671 0.833 1.000 0.788 3 [6] 0.060 0.036 0.049 0.070 0.049
+ [11] 0.310 0.864 0.286 0.298 0.458 « [11] 0.036 0.058 0.036 0.044 0.031
5 [16] 0.019 0.075 0.657 0.030 0.030 5 [16] 0.024 0.023 0.052 0.026 0.026
6 [21] 0.162 0.160 0.544 0.345 0.060 o [21] 0.020 0.044 0.045 0.025 0.033
7 [26] 0.046 7 [26] 0.014
8 > eigen(t(get.adjacency(gl))) 8 >
$vectors[,1] 9 >
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Networks Centrality

Definition 6.30: Closeness Centrality

. - . n
Closeness centrality of node i is cc(i) = —

stp(ia.j)
j=1

1 > closeness(gl)

> [1] 0.014 0.018 0.017 0.017 0.011

5 [6] 0.016 0.017 0.019 0.019 0.019

4 [11] 0.014 0.019 0.013 0.014 0.015 1 >

s [16] 0.009 0.012 0.018 0.011 0.011

¢ [21] 0.012 0.014 0.017 0.014 0.011

7 [26] 0.010

See Freeman et al. (1979)
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Networks Centrality

Definition 6.31: Laplacian : .l.
L = diag(d) — A, ; "a
. ..
d ifi=] . .
Lij:=q-1 ifi#jand(i,j)€E . ..
. u |
0 otherwise, . m
. |
. =
1> L = laplacian_matrix(g) - -
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Networks Centrality

Proposition 6.3: Alternative expression for L

Let ¢ = (0,---,0,1,,0---,0) € {0,1}", f N
L= > He—ellei—g)"

(iJ)eE

4 j nx nmatrix,l;j =
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Sidenote on quadratic forms

Definition 6.32: Normalized Laplacian Matrix

Lo =D Y?LD /2 =1 — Ay is the normalized adjacency matrix.

L and Ly are symmetric positive semidefinite matrices.

Proposition 6.4: Laplacian and quadratic form

L = diag(d) — A,

1 1 &
x'Lx = 5 > (xi—x)? = 5 > Aiilxi —x)?
(i)E =1
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Sidenote on quadratic forms

Proof. n
Ai. = ZA/j = d
n j '
Z Aij(xi — Z A (X — 2xxj +X Z Aj, X Z 2A; i +ZA JX
ij=1 ij=1 ij=1
n
> Aij(xi— xj _2de +2 Z Aijxix; =2x" (D — A)x =2x" Lx
ij=1 i=1 ij=1
L x' Dx L x Ax L]

Since x " Lx > 0 for all x, L is symmetric positive semidefinite matrices.
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Sidenote on quadratic forms
Let A\p > Ap_1 > -+ > A2 > A1 > 0 denote L's eigenvalues.

Proposition 6.5: Spectrum of L and \;

The n-vector of one's, 1, is an eigenvector of L associated with eigenvalue A\; = 0.

Proof.

= 5% 1,-1)1,-1)"1 = Y (1,-1)0=0.
(ij)eE L 0 (ij)eE

Proposition 6.6: Spectrum of L and )\,

Network G = (E, V) is disconnected in two groups if and only if A, = 0.
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Sidenote on quadratic forms

Proposition 6.7: Spectrum of L and )\,

Network G = (E, V) is disconnected in at least k groups if and only if Ax = 0.

Proposition 6.8: Laplacian and quadratic form
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Networks Homophily and Assortative Mixing

Definition 6.33: Homophily

Homophily is the tendency of individuals to form relations with others similar to
them.

Definition 6.34: Community,

Communities are partitions of nodes.

The total number of edges that run between nodes of the same type is

1if ¢ =c¢
Z d(ci, ¢j) = ZAu‘S(CHCJ) where 0(c;, ¢j) = { o

(i)eE 0 otherwise.
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Networks Homophily and Assortative Mixing

8 o 10 m oz 1
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Networks Homophily and Assortative Mixing

The expected number of edges between nodes if edges are placed at random is
did;
2 % 2m 6(Cl7 CJ)

and the difference between the actual and expected number of edges in the network
that join nodes of the same type is m@ where Q is the modularity measure,

Definition 6.35: Modularity measure,

The modularity measure of a partition (c) of a network (E, V) is B;;

I
did;
Q=— Z (Au - 2_:1;) (i, )
i

where m is the total number of links. B is coined “modularity matrix".
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Networks Homophily and Assortative Mixing

12 3 4 5 6 7 8 9 0 1 12 13 14 15 16 17 18 19 20 21 2 2 24 25 2

. . . . . . - B . . . .
A network is said to be assortative if a signif- AR EEEEE i

2

[ |
i i i i | | HEEEENTE
icant portion of its links are between nodes 1 - -

i s H N
that belong to the same community s.==. - ..=.= e —
B_a 49 g a9 " B mEm
2m Yooom! ] [
[ | |
|| [ ||
[ | H B
| H N
|
|
w [ | |
«THNETENEEE T . [ | . .I
1> A get.adjacency (g) » HE B
2> m = sum(A) /2 . . .I H EE
3> d = apply(A,1,sum) » H N EEE NEm ||
4> B = A - d %% t(d)/(2%m) : - -
» |
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Networks Homophily and Assortative Mixing

did;
Since B;j = A;j — " and
2m
d 2m
r
n n (jj n dj
B’J_ZAia.i %Zd,_dj—272m:0
i=1 i=1 i=1
n n d n d
Bij=)» Aj —=— > d =d——2m=0
=1 =1 M=y
_ 1 [
di 2m
In the case where were two communities, A and 5, set
lifieA lifie
sh=] ! and s/ = —sf =4 "
—1ifie —1lifieA
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Networks Homophily and Assortative Mixing

then .
§(ci, ¢) = E(s,-sj +1)
so that
Z B;i jd(ci, ¢j) Z Bij(sisj+1) = ﬁ Z B; jsis; = %STBS,
i

(whatever the reference group).

Proposition 6.9

The modularity measure can be written

+1lifieA

I 7 : A
= —5 Bs, wheres=1,—1., ie. s =
O=am 8 {—1 if i €
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Networks Homophily and Assortative Mixing
When is Q maximal (in s) ? see “modularity maximization,” in Newman (2012)

Recall that s € {£1}", so that s' s = n. Our problem is

max {s'Bs}, subjecttos's = n.
se{£1}n

Using the Legrangian, our optimization problem has the following first order condition

(fs(sTBs +A(n—s'"s))=0

Do (Z Bijsisi +A(n—>_s7)) = Z Biksi — Ask = 0, Vk
j i=1

or, with matrix notations, Bs, = \As,, i.e. s, is an eigenvector of B. Thus
1 1 n
* T T
= , BSy = —s_As, = —)\.
Q 4m T am T T 4m
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Networks Homophily and Assortative Mixing

1 > modularity(gl, 1+(V(gl)$gender=="female"))
> [1] 0.3078474
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Networks, without networks

Following Morris (1995), from AMEN (AIDS in Multi-Ethnic Neighborhoods) Study
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Networks, without networks
Here we have 4 sensitive groups, on a bipartite network (heterosexual relationships)
Consider a discrete copula representation

& Black Hispanic White Other aj
Black | 0.258  0.016 0.035 0.013 | 0.323
Hispanic | 0.012 0.157 0.058 0.019 | 0.247
White | 0.013  0.023 0.306 0.035 | 0.377
Other | 0.005 0.007 0.024 0.016 | 0.053
b; 0.289  0.204 0.423 0.084

K K

ai=)» ej=Elland bj=> e;=E]1
j=1 i=1
Further
K K K K
a'b=> acb = (D en) (D ews) = D (E)ij = |IE?
k=1 k=1 i=1 j=1 i
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Networks, without networks

Thus, we recover the coefficient introduced in Gupta et al. (1989),

Definition 6.36: Assortativity coefficient,

With K communities
K K
D ek — D akbk
k=1 k=1

K
1-— Z akbk
k=1

. J

_ trace[E] — | E?||
1 ||E?|

r =

More generally, when dealing with data with a network topology, we should be careful...

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 366 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Statistics with a Network Topology

[ sample data (y, X, S) [ network data (V,E,y, X, S)
for anode i€V,
I R 1Ty 1 1 < Aly
y==-2 Y= 77 y(i)= 2> vi="7D Ay =5
nj:l 1'1 d; i d; P A; 1
— sample version of E[Y]. — sample version of E;[Y].
1y Ly 1 (Ai-1,)Ty
Vs = ;1(51 =s)i= 17 ys(i) = - Z I(sj = s)y; = (A -1)71
j= s JEN;
— sample version of E[Y|S = s]. — sample version of E;[Y|S = s].

where a - b is the element-wise product.
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Statistics with a Network Topology
Given sample {x1,---,x,}, the empirical variance,
5 1 n .\ o1&
o= —Z(x,-—x) , where X = —Zx,-
Nz Nz

could be written as a U-stat, Lee (2019)

1 n

2 2

=52 Z (xi = x)° -
ij=1

On a network, with adjacency matrix A,

1 n n
O'é = 4— Z A;J(X;—Xj)2 s where 2e = Z A,'J
e =
ij=1 i,j=1
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Statistics with a Network Topology

Given sample {(x1,¥1), -, (Xn,¥n)}, the empirical co-
variance could be written as a U-stat,

1 n
v = 202 Z (xi —x3) (vi = y;)
ij=1
and if observations are nodes on a network

1 n
cvg = > A (xi—x) (i — ;)
€ ij=1
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Statistics with a Network Topology
If x is independent of the topology of the network (summarized by A),

1 & 5 1 & 5
UZZﬁZ(Xi—Xj) ® 1o Y Aij(xi—x)° = og
ij=1 ij=1

otherwise, the topology of the network is not neutral...
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Statistics with a Network Topology

05%02 05202 O‘é§02
“cor(A, x) =~ 0" “cor(A,x) > 0" “cor(A,x) < 0"

Erdés-Rényi network with n = 100 nodes, probability p (drawn randomly in [0, 1])
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Statistics with a Network Topology
Following Hall (1970), write

._;)2:

> (xi—x + x-X%)

:>(n—1)52—ZX—XJ —1—22 xi — x;)( —|—Z(XJ—X
i=1

n n n n
= n(n—1)s> =" (xi — x) —i-ZZZ xi—x) (5 — %)+ DD (x
j=1i=1 j=1i=1 J=1i=1
n n n n
30— ) = 2303 - x)og %) =230 3oy %4 % - )~ %)
i=1 j=1 i=1 j=1 i=1j=1
n n n n n n
= ) > (xi—x)=2> > (x5 —X)P+2> (x—x)>_(x—X) =2n(n—1)s?
i=1j=1 i=1j=1 i=1 j=1
0
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Statistics with a Network Topology

Thus, for any m, write

n n
2n(n—1)52:Z(x,-—xj)2:2(x,-—m—xj m) Zu + U+ 2uu
ij=1 =l T ij=1
i uj
If m=X,
n
Z u? = ”Z u? = n(n —1)S? and therefore Z uiuj = 0.
ij=1 ij=1
Hence,
2n2 Zl —X) =0 but p055|bly — Z Aij(xi —X)(x; —X) # 0.
s ij=1
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Paradoxes in Networks

“on average your friends have more friends than you do.”

Proposition 6.10: Friendship Paradox

.

The average number of friends of the collection of friends of individuals in a social
network will be higher than the average number of friends of the collection of the
individuals themselves. More formally

1 /1 & 1
;Z;(E;A,-jdj) > ;;d,-.

Define differences A;'s between the average of its neighbours’ degrees and its own
degree, in the sense that

1 n
A= diJ;A,-jdj— d;.
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Paradoxes in Networks
Write the average as

1 _1n1n“' ._1n 4 “
S a3 (G a) = 3 (4 ).
i= = j= =
that yields
IZA,'_ZAU< 1) but also ~ ZAU( _ )7
ni:l ij=1 =

by exchanging the summation indices, and because A is a symmetric matrix. By
adding the two, we can write

S tea(de g -2ra ([T ) 2o

(the exact equality holds only when d; = d; for all pairs of neighbors)
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Attributed Networks

Definition 6.37: Attributed Network

An attributed (directed) network Gy = (V, E, X) is a network (V/, E) where X
is a node attributes matrix, n x k, where each row is a feature vectors, for each

node in V =1,.

If X = (x1,---,xn), the classical average is

Given an attributed (directed) network Gy = (V, E, X), where X =

1
X AI iXi = diXi
lu’g( Z A,J % o 2m ;

(X17 o 7Xn)y
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Attributed Networks

Similarly, the variance of X = (x1,--- ,xp) is

Var(x) = — Z(X, (%)) (x5 — 1(x))
1761
while variance over edges

1 1 _ did;
5 A~ o)) 05~ g(x)) = 5= 3 (A = ok ) .
2 A 7
I7J

This leads to an other modularity measure, after anoter renormalization, so that it
takes the value 1 in a network with perfect assortative mixing—one in which all edges
fall between nodes with precisely equal values of x;,

1 ,  did 1 did
Q= %Z (A,'JX,- — 2 I,I) = % . <di1i:j_2n”l> XiXj

Varg(x) =
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Attributed Networks

Definition 6.38: Modularity measure for attributed networks

For some categorical variable x, the modularity measure is

did;
Q:%%:Qé\i,j om )5(anj)
If x is a numerical variable, a different normalization is considered
1 d;d; did;
Q = E % (A,’J — 2—nj> XiXj, where K = ; (dk]-k | — m) Xk X|

also coined “assortativity coefficient”.
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Attributed Networks

“you apply for a loan and your would-be lender somehow examines the credit
ratings of your Facebook friends. If the average credit rating of these members
is at least a minimum credit score, the lender continues to process the loan
application. Otherwise, the loan application is rejected,” Bhattacharya (2015)

“ll ne faut jamais juger les gens sur leurs fréquentations. Tenez, Judas, par
exemple, il avait des amis irréprochables,” Paul Verlaine

For the generalized friendship paradox, which considers attributes other than degree, as

in Cantwell et al. (2021), one can define an analogous quantity, Agx), for some
attribute x (such as the wealth) is defined as

x 1
"
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Attributed Networks

which measures the difference between the average of the attribute for node i's
neighbours and the value for i itself. When the average of this quantity over all nodes
is positive one may say that the generalized friendship paradox holds. In contrast to

the case of degree, this is not always true — the value of A,(-X) can be zero or negative —
but we can write the average as

A2 = 3 v x) = S Y )
nZ\M g
i J
where the second line again follows from interchanging summation indices. Defining

the new quantity
6i = 7”7
>4

and noting that A
1 I A I
nZéi—niZjdj—n;deAu_lv
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Attributed Networks

we can then write

1 ) 1 1 1

- AT =~ i0j — — i—=» 6;=C ,0).

n; ; ngx ngxng ov(x, d)
Thus, we will have a generalized friendship paradox in the sense defined here if (and
only if) x and & are positively correlated. But this is not always the case

Cov(d,é) >

=0 Cov(d,x) >0
Cov(x,0) >0 7= Covld,x) 2 0.
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Network Centric Fairness Perception

Definition 6.39: d-Neighbors

Given d € Ny, let Ny : V — P(V) defined as Ny(i) = {j € V : Tk <
d, (A¥);;j > 0}. Ni(i) = N; corresponds to (standard) neighbors of node i.

Definition 6.40: d-centered subgraph

Given d € Ny, and a node i, the subgraph centered on node /i (of order d) is
Gf' = (Nq(i), Ea(i)) where Eq(i) = {(j,/') € E : j.j' € Na(i)}.

Suppose that y is binary, y; € {0,1}.

Instead of a “model” m: X — [0, 1], consider a decision function h: V — [0,1]
decision function.
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Network Centric Fairness Perception

Definition 6.41: Isomorphic Networks

Two subgraphs G1 = (V4, E1) and G» = (V2, E2) of G are isomorphic with respect
to h: V — R if there exists a one-to-one mapping ¢ : Vi — V5, such that

- V(k, 1) € E1, (¢(k), (1)) € Ea,

- Vk € Vi, h(k) = h(¢(k)).
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Network Centric Fairness Perception

Definition 6.42: Isomorphic Attributed Networks

Two attributed subgraphs G = (V4, E1, X1) and G, = (Va, E, X2) of G are
isomorphic with respect to h : V — R if there exists a one-to-one mapping

1 V1 — V5 such that
- V(k, 1) € Ev, (¢(k), 9())) € Ea,
- Vk € Vi, h(k) = h(1(k)).and xx = 1, X5 4)-
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Network Centric Fairness Perception

Definition 6.43: Fairness Perception Function

F(i, h) associate with decision h, for some node i (on a given network G), “fairness
perception function” if
e local axiom, if h(i) = KH(i) and ¥j € N(i), h(j) = W (), then F(i,h) =
F(i, b,
e monotonicty axiom, if h(i) < K(i) and Vj € N(i), h(j) = H'(j), then
F(i,h) < F(i, H),
e neighborhood expectation axiom, if h(i) = K’ (i) and Vj € N(i), h(j) < K (}),
then F(i, h) > F(i, ),
e homogeneity axiom, let G; = (E;, Vi) and G; = (Ej, V;) be two subgraphs, if
Gi and G; are isomorphic with decision function h, then F(i, h) = F(j, h)
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Network Centric Fairness Perception

Definition 6.44: Neighborhood Peer Expectation

Given an network G, a decision function h: V — [0, 1], and a node i

1-— Vi .
Ei[h] = > yih() + =—"— > _ (1= y)h(j)
ZyJJEN Zl_yjjeNf
JEN; JEN;
where actually, if y; = 1, Ej[h] = Z yih(j),
Yj JEN;

JEN;

- — y)h().
Zl—yj%\,:i(l i)h())

JEN;

while if yi = O, E,[h] =
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Network Centric Fairness Perception

The Neighborhood Peer Expectation considers the average decision of all neighbors
with the same output y.

Ei[h] =

1 — y;)h(j
y“; ih(j) + Zl JJ;( vi)h(j)
JEN; JEN;

can we extended when considered larger networks, with d > 1,

i ) 1—y; .
Ei,d[hlzi > W)+ = S Y (- y)ho)
2. Vi jeNg(i) Z Vi jeNq (i)

JEN4(i) JEN4(i)
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Network Centric Fairness Perception

Proposition 6.11: Network-Centric Fairness Perception

Given a network G = (V,E), and a decision function h, the network-centric
fairness perception function is defined as

1if Ei[h] < h(i)
0 otherwise

-

satisfies the locality, monotonicity, neighborhood expectation, and homogeneity
axioms, i.e. it is a fairness perception function.

More generally, function E;[h] should satisfy
e if Vj € N, such that h(j) = H'(j), then Ej[h] = E;[H'],
e if Vj € N;, such that h(j) < H'(j), then E;[h] < Ej[H'],
e if G; and §; are isomorphic, with respect to h, Ej[h] = E;j[h]
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Network Centric Fairness Perception

Consider an attributed network Gs = (V, E, S)

Definition 6.45: Fairness Visibility

Let Vs = {i € V : S; = s}, then fairness visibility of h for group s is

LS Fih)

.7-"d(s, h) = #Vs
i€ Vs

Definition 6.46: Fairness Visibility Parity

h satisfies fairness visibility parity, with respect to S, if

Fal(s, h) = Fq(s', h).
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Network Centric Fairness Perception

Consider some binary decision rule h: V — {0,1},

Proposition 6.12: Asymptotic Fairness Visibility

Assuming the network graph is connected, and the decision function h has non-
zero true positive and false positive rates, the fairness visibility of group Vs, based
on the neighborhood peer expectation, converges to the acceptance probability
for Vs as the d-neighborhood size increases,

Tl = —

> F(i,h) = P[h(i) = 1]i € Vs), as d — oo.
#Vs &5,

Heuristically, since the graph is connected, N,-(d) — V as d increases.
Fa(i,h)y=1if h(i)=1

, thus consider only i € V,
Fali,h) = 0if h(i) =0 Y=

For any i, ultimately, {
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Network Centric Fairness Perception

For non-relational data, standard definition of demographic parity is

Definition 6.47: Demographic Parity

Decision function h satisfies demographic parity if
P[h(i) = 1]i € V) =P[h(i) =1|i € Vy).

1
acceptance probability for group s

. J

Again, this definition ignores the neighborhood structure of a node.
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Network Centric Fairness Perception

Proposition 6.13: Local vs. Asymptotic Fairness Visibility

Even if decision function h satisfies demographic parity,
P[h(i) = 1]i € Vs) = P[h(i) = 1]i € Vy),
there can still be non-parity w.r.t. fairness visibility, for some d,

Fal(s, h) # Fa(s', h).

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 392 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

— Part 6 —

Group Fairness
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Group Fairness

Back on toydata2, distributions of scores, m(x;)'s conditional on y; and s;
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Group Fairness

Definition 8.1: Fairness through unawareness,

A model m satisfies the fairness through unawareness criteria, with respect to
sensitive attribute s € Sif m: X — ).

by Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold and Richard Zemel,
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Group Fairness

See introduction about the gender directive,

“institutional messages of color blindness may therefore artificially depress formal
reporting of racial injustice. Color-blind messages may thus appear to function
effectively on the surface even as they allow explicit forms of bias to persist,”

Apfelbaum et al. (2010)

Definition 8.2: Aware and unaware regression functions y

The aware regression function is p(x,s) = E[Y|X = x,S5 = s]
and the unaware regression function is pu(x) = E[Y|X = x].
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Historical Perspective: "Cultural Fairness” and "Statistical Discrimination”

Definition 8.3: Four definitions of cultural fairness,

A test (y) is considered "culturally fair” if it fits the
appropriate equation

Cor[S, Y] = Cor[S, Y]/Cor[Y, Y]
Cor[S, Y] = Cor[S, Y]

Cor[S, Y] = Cor[S, Y] - Cor[Y, Y]
Cor[S, Y] =0

\ J

See also Thorndike (1971), Linn and Werts (1971), following Cleary (1968).
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"Economics of Discrimination” and "Statistical Discrimination”

See Becker (1957) or Baldus and Cole (1980), among (many) others.

THE
EGONONIGS

U pischNAoN

GARY S
BECKER
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Historical Perspective: Decomposition

{YA:i = X;\r;,',BA +éeni (group A), y, = 7;\l—IBA
Ve :X—l—;iﬁ3 + €x:i (gI’OUp )7 y :_TIB .

Using ordinary least squares estimates

Definition 8.4: , ,

_ _ — BN —T i =

Yo=Yy :(XA_X) B +XI(13A_6)a (7)
characteristics coefficients

_ _ . SN~ —T 2 7

Yo=Y :(XA_X) BA+XT(:8A_ﬁ)‘ (8)
characteristics coefficients

Also Brown et al. (1980) and Conway and Roberts (1983).
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Historical Perspective: Decomposition

(as in Equation 7) on the left

xu(By — B:) and (%4 — X:)
(as in Equation 8) on the right.

%:)3
X(BA—ﬁ)and (?A—Y )61_\

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 400 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Independence and Demographic Parity

Definition 8.5: Independence,

A model m satisfies the independence property if m(Z) LL S, with respect to the
distribution P of the triplet (X, S, Y).

by Solon Barocas, Moritz Hardt and Arvind Narayanan

For classifiers, one might ask for independence Y 1L S (where ¥ is a class), as
Darlington (1971).
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Independence and Demographic Parity
Definition 8.6: Demographic Parity,

A decision function y — or a classifier m;, taking values in {0,1} — satisfies
demographic parity, with respect to some sensitive attribute S if (equivalently)

P[Y =1|S=4] =P[Y =1|S =] = P[Y = 1]
E[Y|S = A] = E[Y|S = &] = E[Y]
P[m:(Z) = 1|S = 4] = P[mi(Z) = 1|S = 5] = P[m(Z) = 1].

by Toon Calders, Sicco Verwer, Sam Corbett-Davies, Emma Pierson, Sharad Goel, etc
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Independence and Demographic Parity

unaware (without s)

aware (with s)

GLM GAM CART RF | GLM GAM CART RF
n = 1000, various t, ratio P[Y = 1|S = B]/P[Y = 1|S = 4]
t=30% | 1.652 1519 1235 1559|1918 1714 1235 1.798
t=50% | 1.877 2451 2918 2404 | 2944 3457 2918 2.180
t=70% | 6.033 8.711 26.000 4.621 | 7.917 19.333 26.000 4.578

(dem,parity from R package fairness)

On the left-hand side, evolution of the ratio ratio ]P’[\A/ =1|S ==2]/P[Y = 1|S = A].

The

In the middle t — P[m¢(X) > t|S = &] and t — P[m:(X) > t|S = A] on the model

(at y = 1) corresponds to perfect demographic parity.

with s, and on the right-hand side without s.
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Independence and Demographic Parity

On the left-hand side, evolution of the ratio ratio P[Y = 1|S = £]/P[Y = 1|S = 4].
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Independence and Demographic Parity

On the left-hand side, evolution of the ratio ratio IP)[\A/ =0|S = A]/IP’[\A/ =0|S = 7]
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Independence and Demographic Parity

Definition 8.7: Weak Demographic Parity

A decision function y satisfies weak demographic parity if

E[Y|S = A] = E[Y|S = &].

Definition 8.8: Strong Demographic Parity

A decision function y satisfies demographic parity if Y 1S, ie., for all A,

P[Y c AIS=A]=P[Y € A|S=¢], VAC ).
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Independence and Demographic Parity

Proposition 8.1

A model m satisfies the strong demographic parity property if and only if

dTV(]P)m|A7]P)m\ ) = dTV(]P)M]P) ) =0.

dTV(IP’m|A,IF’m| ) could be seen as a measure of “unfairness”, but for a non-binary
sensitive attribute, a more general definition is necessary (see Denis et al. (2021)).
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Independence and Demographic Parity

Definition 8.9: Conditional demographic parity,

We will have a conditional demographic parity if (at choice) for all x,

P[Y =1|X, =x,S=A]=P[Y =1|X, = x,S = 7], Vy € {0,1}
E[Y|X,=x,S=A=E[Y|X, =x,5=7],
P[Y € A|X, =x,5S=A]=P[Y € A|X, =x,5S=7¢], VAC D,

where L denotes a “legitimate” subset of unprotected covariates.
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Independence and Demographic Parity

Proposition 8.2

A model m satisfies is strongly fair if and only if W5(Py,P.) = 0.

W Ofreakonometrics €) freakonometrics

> model_glm = glm(y~x1
+x2+x3, data=
toydata2, family=
binomial)

> pred_y_glm = predict
(model_glm, type="
response")

> sA = pred_y_glm[
toydata2$sensitive
=="A"]

> library(transport)

> wassersteinld(sA, sB)

[1] 0.3860795
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Independence and Demographic Parity

On the FrenchMotor dataset, consider GLM, GBM and RF for claim occurence

1 > wassersteinld(lA,1B): > wassersteinld(bA,bB)1 > wassersteinld (fA,fB)
> [1] 0.007220468 > [1] 0.008895917 > [1] 0.01001088
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Independence and Demographic Parity

1 > wassersteinld(lA,1B): > wassersteinld(bA,bB)1 > wassersteinld (fA,fB)
> [1] 0.007220468 > [1] 0.008895917 > [1] 0.01001088
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Independence and Demographic Parity

Definition 8.10: Unfairness,

Given a model m, let P, denote the distribution of m(X, S) and PP,,s denote the
conditional distribution of m(X,S) given S = s, define

Z/{TV( )— max {dTV(]P)maPm|s) or Z dTV(]P)maPm|s)
se{h, se{A,B}

Uks(m) = max {dKS(]P)ma]Pm|s Yor > dks(Pm;Pmys)
seih, se{AB}

Z/lwk(m) = max {Wk Pm7]P)m|s)} or Z Wk(]Pm;]P)m|s)
se{A,B}

\. J

In the original version, Chzhen and Schreuder (2022) suggested to use the one on the
right.
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Independence and Demographic Parity

Those measures characterize strong demographic parity,

Proposition 8.3: Strong Demographic Parity

A model m is strongly fair if and only if Z/(m) = 0.
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Separation and Equalized Odds

Definition 8.11: Separation,

A model m : Z — Y satisfies the separation property if m(Z) 1L S | Y, with
respect to the distribution IP of the triplet (X, S, Y).

by Solon Barocas, Moritz Hardt and Arvind Narayanan
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Separation and Equalized Odds

Definition 8.12: True positive equality, (Weak) Equal Opportunity,

A decision function y — or a classifier my(-), taking values in {0,1} — satisfies
equal opportunity, with respect to some sensitive attribute S if

P[Y=1S=AY=1=P[Y=1S=5Y=1=P[Y =1|Y =1]
P[m(Z) =1|S =AY =1] = P[m(Z) = 1|S =2, Y = 1] = P[m(Z) = 1|Y = 1],

which corresponds to parity of true positives, in the two groups, {A, =}.
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Separation and Equalized Odds

Definition 8.13: Strong Equal Opportunity

A classifier m(-), taking values in {0, 1}, satisfies equal opportunity, with respect
to some sensitive attribute S if

P[m(X,S) € A|S = A, Y = 1] = P[m(X, S) € A|S

for all A C [0,1].
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Separation and Equalized Odds

Definition 8.14: False positive equality,

A decision function y — or a classifier m¢(-), taking values in {0,1} — satisfies

parity of false positives, with respect to some sensitive attribute s, if
P[Y=1S=4Y=0=P[Y=1/S=5Y =0 =P[Y =1|Y =0]
Pm(Z)=1S=24Y =01=P[m(Z)=1S=75,Y =0] =P[m(Z) = 1|Y = (].
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Separation and Equalized Odds

ROC curves (TPR against FPR) for the logistic regression on toydata2.

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 418 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Separation and Equalized Odds

Evolution of the false positive rates, fpr_parity from fairness.
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Separation and Equalized Odds

Evolution of the false negative rates, fnr parity from fairness.
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Separation and Equalized Odds

Definition 8.15: Equalized Odds,

A decision function y — or a classifier m;(-) taking values in {0,1} — satisfies
equal odds constraint, with respect to some sensitive attribute S, if

P[Y=1S=4Y=y]=P[Y=1S=5Y=y]=P[Y =1]Y =y], Vy € {0, 1}
Pm(Z)=1S=4Y =y]=Pm(Z)=1S=2,Y =y], Vy € {0,1},

which corresponds to parity of true positive and false positive, in the two groups.
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Separation and Equalized Odds

Evolution of the equalized odds metrics
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Separation and Equalized Odds

One can also consider any kind of standard metrics on confusion matrices, such as ¢
(introduced in Yule (1912)), usually named "Matthews correlation coefficient”

Definition 8.16: ¢-fairness,

We will have ¢-fairness if ¢, = ¢z, where ¢ denotes Matthews correlation
coefficient for the s group,

. TP, - TN, — FP, - FN,
* (TP, + FP) (TP, + FN,) - (TN, + FP.)(TN; + FN,)’

. J

s € {A,B}.

but one could consider the Fi-score (as defined in Van Rijsbergen (1979)),
Fowlkes—Mallows or Jaccard indices (in Fowlkes and Mallows (1983) or Jaccard
(1901)).

.. or AUC as we will considered later on.
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Separation and Equalized Odds

Evolution of the ¢-fairness metric
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Separation and Equalized Odds

Definition 8.17: Class Balance,

We will have class balance in the weak sense if
E[m(X)\Y =Y75=A] =E[m(x)|Y=}/7S = ]7 Vy € {071}7
or in the strong sense if

Pm(X) € AlY =y,S=4A=P[m(X) € A|Y =y,S=15], VA C[0,1], Vy € {0, 1f}.
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Separation and Equalized Odds

Definition 8.18: Similar Mistreatement,

We will have similar mistreatment, or “lack of disparate mistreatment,” if

{P[?: Y|S=A]=P[Y=Y|S=5]=P[Y = Y]
P[m:(X) = Y|S = 4] = P[m:(X) = Y|S = £] = P[m:(X) = Y].

Definition 8.19: Equality of ROC curves,

Let FRPs(t) = P[m(X) > t|Y = 0,5 = s] and TPRs(t) = P[m(X) > t|Y =
1,5 =s], where s € {A, 2}. Set A7pr(t) = TPR.o TPR; () —t et Aprp(t) =
FPR. o FPR;(t) — t. We will have fairness with respect to ROC curves if
[ATPR[l0 = [|AFPRIl0c = 0.
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Separation and Equalized Odds

Definition 8.20: AUC Fairness,

We will have AUC fairness if AUC, = AUC;, where AUC; is the AUC associated

with model m within the s group.

unaware (without s)
GLM GAM CART RF

aware (with s)
GLM GAM CART

RF

| ratio of AUC

0.837 0.839 0.913 0.768

0.857 0.860 0.913

0.763
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Sufficiency and Calibration

Inspired by Cleary (1968), define

Definition 8.21: Sufficiency,

A model m : Z — ) satisfies the sufficiency property if Y 1L S | m(Z), with
respect to the distribution P of the triplet (X, S, Y).

Definition 8.22: Calibration Parity, Accuracy Parity,

Calibration parity is met if

PlY = 1/m(X) = t,S = A] = P[Y = 1|m(X) = t,S = 2], ¥t € [0, 1].
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Sufficiency and Calibration

Evolution of accuracy, in groups A and
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Sufficiency and Calibration

Definition 8.23: Good Calibration,

Fairness of good calibration is met if

PlY =1|m(X) =t,S = 4] = P[Y = 1|m(X) = t,S =] = t, Vt € [0,1].

Definition 8.24: Non-Reconstruction of Protected Attribute,

If we cannot tell from the result (x, m(x), y and y) whether the subject was
a member of a protected group or not, we will talk about fairness by non-
reconstruction of the protected attribute

P[S = A|X, m(X),Y, Y] =P[S = 5|X, m(X), Y, Y].
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Relaxation and Approximate Fairness

Definition 8.25: Disparate Impact,

A decision function Y has a disparate impact, for a given threshold T, if,

n{P[?:uszA] P[Y =1|S = 7]

= y == < 7 (usually 80%).
P[Y =1|S=58] P[Y =1|S = 4]

The 80% rule was suggested by the "Technical Advisory Committee on Testing”,
from the State of California Fair Employment Practice Commission (FEPC) in 1971, or
the 1978 "Uniform Guidelines on Employee Selection Procedures”, a document used by
the U.S. Equal Employment Opportunity Commission (EEOC), see Biddle (2017).
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Relaxation and Approximate Fairness

We have defined (Definition 8.10) unfairness as

U (m) = sela) {Wik(Pm, Proys) }

so that m is (strongly) fair if and only if Ux(m) = 0.

Chzhen and Schreuder (2022) introduced the notion of Relative Improvement

Definition 8.26: =-Approximate Fairness

Model m is e-approximately fair if Ux(m) < e - Ux(m*), where m* is Bayes
regressor, for some € > 0.
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Three different concepts ?

Independence (Definition 8.5) : m(Z) 1L S
Separation (Definition 8.11): m(Z) L S| Y
Sufficiency (Definition 8.21): Y 1L S | m(Z)

e Independence assumes no differences among groups, regardless of accuracy

e Separation minimizes differences among groups by not trying to maximize
accuracy
e Sufficiency maximizes accuracy by not trying to minimize differences among
groups
See Kleinberg et al. (2016) or Chouldechova (2017).
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Impossibility theorems

Unless very specific properties are assumed on P, there is no prediction function m(-)
that can satisfy at the same time two fairness criteria.

Independence (Definition 8.5) : m(Z) 1L S
Separation (Definition 8.11): m(Z) .LL S| Y
Sufficiency (Definition 8.21) : Y 1L S | m(Z)

Proposition 8.4

Suppose that a model m satisfies the independence condition (8.5) and the suf-
ficiency property (8.21), with respect to a sensitive attribute s, then necessarily,
Y U S.

Therefore, unless the sensitive attribute s has no impact on the outcome y, there is
no model m which satisfies independence and sufficiency simultaneously.
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Impossibility theorems

From the sufficiency property , S Il Y | m(Z), then, for s € S and A C ),
P[S=sY e A =E[P[S=5s,Y € Am(Z)]],
can be written
P[S=s,Y € A =E[P[S = s|m(Z)] - P[Y € Am(Z)]].

And from the independence property (8.21), m(Z) 1L S, we can write the first
component P[S = s|m(Z)] = P[S = s], almost surely, and therefore

P[S=s,Y € A|=E[P[S = 5] - P[Y € A/m(Z)]] = P[S = s] - P[Y € A],

for all s € S and A C Y, corresponding to the independence between S and Y.
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Impossibility theorems

Proposition 8.5

Consider a classifier m; taking values in ) = {0, 1}. Suppose that m; satisfies the
independence condition (8.5) and the separation property (8.11), with respect to
a sensitive attribute s, then necessarily either m¢(Z) 1L Y or Y 1L S (possibly
both).

Because m; satisfies the independence condition (8.5), m:(Z) IL S, and the
separation property (8.11), m¢(Z) LL S | Y, them, for y € YV and for s € S,

P[me(Z) = y] = P[m(Z) = y|S = s] = E[P[m(Z) = y|Y, S = 5]],
that we can write

P[my(Z) =y] = Z]P’ me(Z)=ylY =y,S=5s]-P[Y =y|S=5],
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Impossibility theorems

Pmi(Z) =y] = Z]P’[mt(Z) :)7|Y:)/] 'P[YZY‘SZSL

almost surely. Furthermore, we can also write

P[me(Z ZP m(Z) =y|Y =y] - P[Y =y],

so that, if we combine the two expressions, we get
ZIP’ m(Z) =y|Y =y]- (P[Y =y|S =s] —P[Y = y]) =0,

almost surely. And since we assumed that y was a binary variable,
PlY=0]=1—-P[Y =1], aswellasP[Y =0|S=s] =1—-P[Y =1|S =5], and
therefore

P[m(Z) =y|Y =1] - (P[Y = 1S =] - P[y =1])
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Impossibility theorems

~P[mi(Z) = 7Y =0] - (P[Y =0|S = s] —P[Y =0])

can be written
P[m(Z) =y|Y = 0] - (P[Y = 1|5 = 5] = P[Y =1]).
Thus, either P[Y = 1|S = s] — P[Y = 1] almost surely, or

P[m¢(Z) =y|Y =0] =P[m¢(Z) = y|Y = 1] (or both).
Of course, the previous proposition holds only when y is a binary variable.
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Impossibility theorems

Proposition 8.6

Consider a classifier m; taking values in Y = {0,1}. Suppose that m; satisfies
the sufficiency condition (8.21) and the separation property (8.11), with respect
to a sensitive attribute s, then necessarily either P[m;(Z) = 1|Y = 1] = 0 or
YU Sormy(Z) LY.

Suppose that m; satisfies the sufficiency condition (8.21) and the separation property
(8.11), respectively Y LL S | m¢(Z) and m¢(Z) 1L S | Y. For all s € S, we can write,
using Bayes formula

Plm(2) = 1Y =1,5=3] - P[Y =1|S=3]
P[me(Z) = 1|S = s]

PlY=1S=sm(Z)=1] =
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Impossibility theorems

e ez 11 PIm(Z)=1]Y =1]-P[Y =1|S = 5]
PlY =1|S =s,m(Z) =1] = S Pm(Z)=1)Y =y] P[Y =1|S = 3]
ye{0,1}

that should not depend on s (from the sufficiency property). So a similar property
holds if S = s’. Observe further that P[m:(Z) = 1|Y = 1] is the true positive rate
(TPR) while P[m:(Z) = 1|Y = 0] is the false positive rate (TPR). Let

ps = P[Y = 1|S = 5], so that

TPR
PlY =1|S = Z)=1]= .
| 5 =s.m(Z) =1] ps - TPR+ (1 — ps) - FPR

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 440 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Impossibility theorems

Suppose that Y and S are not independent (otherwise Y L S as stated in the
proposition), i.e., there are s and s’ such that
ps =P[Y =1|S =s] #P[Y = 1|S = §'| = pss. Hence, ps # ps, but at the same time

TPR B TPR
ps- TPR+(1—ps)-FPR  py-TPR+ (1 — ps)-FPR’

Supposes that TPR # 0 (otherwise TPR = P[m;(Z) = 1]Y = 1] = 0 as stated in the
proposition), then
(ps — ps') - TPR = (ps — ps) - FPR # 0,

and therefore my(Z) 1L Y.
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Group fairness, wrap-up

independence, ¥ 1L S, (Definition 8.5)

statistical parity Dwork et al. (2012) PlY =1|S=s] =cst, Vs
conditional statistical parity ~ Corbett-Davies et al. (2017) P[Y =1|S =s,X = x] = csty, Vs,y

separation, Y 1L § | 'Y, (Definition 8.11)

equalized odds Hardt et al. (2016) PlY =1|S=5s,Y = y] =cst,, Vs,y
equalized opportunity Hardt et al. (2016) IF’[T/ =1S=sY =1 =cst, Vs
predictive equality Corbett-Davies et al. (2017) IP[\A’ =1S=s,Y =0] =cst, Vs
balance Kleinberg et al. (2016) E[M|S=s,Y =1] =cst,, Vsy

sufficiency, Y 1L S | Y, (Definition 8.21)

disparate mistreatment Zafar et al. (2019) PlY =y|S=s,Y =y] =cst,, Vs, y
predictive parity Chouldechova (2017) PlY =1|S =5, Y = 1] = cst, Vs
calibration Chouldechova (2017) PlY =1M=m,S = s] == ¢(m), Vm,s
well-calibration Chouldechova (2017) PlY=1M=m,S=s]=m, Vm,s
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Numerical examples

Conditional distributions of scores on GermanCredit, logistic regression.
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Numerical examples

Conditional distributions of scores on GermanCredit, boosting model.
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Numerical examples

with sensitive without sensitive

GLM tree boosting  bagging | GLM tree boosting  bagging
P[m(X) > t] 51.7% 28.0% 54.7% 61.7% 50.7% 28.0% 56.0% 60.7%
Predictive Rate Parity | 0.992 1.190 0.992 1.050 0.957 1.190 1.041 1.037
Demographic Parity 0.998 1.091 1.159 1.027 1.213 1.091 1.112 1.208
FNR Parity 1.398 0.740 1.078 1.124 1.075 0.740 1.064 0.970
Proportional Parity 0.922 1.008 1.071 0.949 1.121 1.008 1.027 1.116
Equalized odds 0.816 1.069 0.947 0.888 0.956 1.069 0.953 1.031
Accuracy Parity 0.843 1.181 0.912 0.904 0.896 1.181 0.943 0.966
FPR Parity 1.247 0.683 1.470 0.855 2.004 0.683 0.962 1.069
NPV Parity 0.676 1.141 0.763 0.772 0.735 1.141 0.799 0.823
Specificity Parity 0.941 1.439 0.930 1.028 0.851 1.439 1.007 0.990
ROC AUC Parity 0.928 1.162 0.997 1.108 0.926 1.162 1.004 1.090
MCC Parity 0.604 2.013 0.744 0.851 0.639 2.013 0.884 0.930

Fairness metrics on GermanCredit, with threshold at 20%.
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Numerical examples

with sensitive without sensitive

GLM tree boosting  bagging | GLM tree boosting  bagging
P[m(X) > t] 30.3% 26.0% 27.7% 25.7% 30.7% 26.0% 28.0% 27.0%
Predictive Rate Parity | 1.030 1.179 1.110 1.182 1.034 1.179 1.111 1.200
Demographic Parity 1.090 1.062 1.074 1.069 1.108 1.062 1.044 1.019
FNR Parity 1.533 0.851 1.110 0.781 1.342 0.851 1.322 0.962
Proportional Parity 1.007  0.981 0.992 0.987 1.024 0.981 0.964 0.942
Equalized odds 0.925 1.032 0.982 1.041 0.944 1.032 0.955 1.008
Accuracy Parity 0.949 1.154 1.054 1.164 0.963 1.154 1.038 1.159
FPR Parity 1.118 0.703 0.820 0.653 1.118 0.703 0.784 0.641
NPV Parity 0.738 1.080 0.890 1.108 0.766 1.080 0.848 1.082
Specificity Parity 0.935 1.470 1.169 1.480 0.935 1.470 1.203 1.652
ROC AUC Parity 0.928 1.162 0.997 1.108 0.926 1.162 1.004 1.090
MCC Parity 0.745 1.817 1.105 1.754 0.779 1.817 1.056 2.055

Fairness metrics on GermanCredit, with threshold at 40%.
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Numerical examples

Conditional distributions of scores on FrenchMotor, from the logistic regression.
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Numerical examples

Conditional distributions of scores on FrenchMotor, from a boosting classification.
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—Part 7 -

Individual Fairness
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Individual Fairness

Definition 10.1: Similarity Fairness,

Consider two metrics, one on ) x Y (or for a classifier [0,1] and not {0,1})
noted D,, and one on X noted Dy, such that we will have similarity fairness on
a database of size n if we have the following property (called Lipschitz property)

Dy(m(x;,s;), m(xj,s;)) < L- Dy(xj,x;), Vi,j=1,---,n,

for some L < oo.
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Individual Fairness

Definition 10.2: Local individual fairness,

Consider two metrics, one on Y ([0, 1] for a classifier and not {0,1}) noted D,,
and one on X noted D,, model m is locally individually fair if

/
IE(X,S) limsup Dy(m(X, S), m(x’,S))

<L <oo.
x":Dy(X,x")—0 DX(X7XI)
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Individual Fairness

Definition 10.3: Proxy Based Fairness,

A decision making process y exhibits no proxy discrimination with respect to
sensitive attribute s if

E[Y|do(S = 4)] = E[Y]|do(S = &)].

Definition 10.4: Fairness on Average Treatment Effect,

We achieve fairness on average treatment effect (counterfactual fairness on av-
erage)
ATE=E[YS_ , — Y5 .| =0.
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Individual Fairness

A decision satisfies counterfactual fairness if "had the protected attributes (e.g.,
race) of the individual been different, other things being equal, the decision
would have remained the same.”

Definition 10.5: Counterfactual Fairness,

We achieve counterfactual fairness for an individual with characteristics x if

CATE(x) =E[YZ,_, — Y& . |X=x] =o0.
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Individual Fairness

Definition 10.6: Path-Specific Counterfactual Effect,

Given a causal diagram, a factual condition (denoted F), and a path 7 some s
to y, the m-effect of a change of s from E to A on y is

PCE,(? — A|F) = E[Y]|dox(S = A), F] — E[Y|S = &, F].
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Counterfactual Fairness

If the protected variable is considered as the treatment, individual fairness is close a
measuring a treatment effect.

What does “other things being equal ” really mean ?

It is possible to suppose that the protected attribute s could affect some explanatory
variables x in a non-discriminatory way, Kilbertus et al. (2017) (concept of “revolving
variable™).

See ceteris paribus and mutatis mutandis CATE, in Charpentier et al. (2023a)
“ceteris paribus CATE" : E[Y*(5)|X = x] — E[Y*(A)|X = x]
“mutatis mutandis CATE" : E[Y*(5)|X = x*(5)] — E[Y*(A)|X = x]

suggested also in 7,7 and 7. We need to transport X|S = A to X|S = £ (multivariate
transport).
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Counterfactual Fairness

As explained in Villani (2003); Carlier et al. (2010); Bonnotte (2013), the
Knothe-Rosenblatt rearrangement is directly inspired by the Rosenblatt chain rule,

from Rosenblatt (1952), and some extensions obtained on general measures by Knothe
(1957). The Knothe-Rosenblatt rearrangement is

Tf(X1|X2,-~ , Xd) Ti*(xl)
T3 (xa|x3, -+, Xa) T3 (xelx)
T, xq) = : or Tir(x1,- -+ ,xq) = :
T (xd-1|xa) Ti 1 (xd-1lxt, -+, xd-2)
T5(xa) Ty(xdlxt, s xd-1)

the “monotone lower triangular map,” defined in Bogachev et al. (2005).
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Counterfactual Fairness

distribution (group 1)
0
L

distribution (group 0)
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Counterfactual Fairness

distribution (group 1)
0
L

distribution (group 0)
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Counterfactual Fairness

housing x4

/ duration xg
default
job xo savings x3

credit x5 —» purpose xz

age x1 \/

Causal graph in the German Credit dataset from Watson et al. (2021), or DAG.
(acyclical probablistic graphical models)
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Counterfactual Fairness

The joint distribution of X satisfies the (global) Markov property w.r.t. G:
d
Plxy, -+ ,xq] = H]P’[xj|parents(xj)],

=1

where parents(x;) are nodes with edges directed towards x;, in G.
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Counterfactual Fairness

Consider some acyclical causal graph G on (s, x) where variables are topologically
sorted, where s € {A, 5} is a binary variable , defining two measures 114 and y; on R,
by conditioning on s = A and s = B, respectively, factorized according to G. Define

Ti(x)
T3 (x2| parents(x2))
To(xt, -, xq4) = :

Tg—l(xd—l | parents(xg_1))
T (xq| parents(xq))

This mapping will be called “sequential conditional transport on the graph G."
The counterfactual value will be obtained by propagating “downstream” the causal
graph (following the topological order), when s changes from A to
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Counterfactual Fairness

distribution (group 1)
0
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distribution (group 0)

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 462 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Counterfactual Fairness

distribution (group 1)
0
L

distribution (group 0)
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Counterfactual Fairness
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Counterfactual Fairness

The mutatis mutandis difference m(s = 1, x{', x3) — m(s = 0, x1, x2), i.e., +22.70%, is:

m(s =1,x1,x2) — m(s =0,x1,x2) :—10.65%
+ m(s=1,x{,x)—m(s=1x,x) :+17.99%
+ m(s=1,x7,x3) —m(s=1,x7,x) :+15.37%.

or m(s =1,x7,x3) — m(s = 0,x1,x), i.e., +35.82%, is:

m(s =1,x1,x2) — m(s =0,x1,x2) :—10.66%
+ m(s=1,x,x3) —m(s=1,x1,x) :+16.07%
+ m(s=1,x7,%)—m(s=1,x1,x3) :+30.41%.

The "treatment effect” depends on the causal structure.
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Counterfactual Fairness

Similarity Fairness (Lipschitz)

Proxy Based Fairness,

Fairness on Average Treatment Effect
Counterfactual Fairness,
Path-Specific Effect

Path-Specific Counterfactual Effect
Mutatis Mutandis Counterfactual

Dwork et al. (2012)
Kilbertus et al. (2017)
Kusner et al. (2017)
Kusner et al. (2017)
Avin et al. (2005)

Wu et al. (2019)
Kusner et al. (2017)
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Counterfactual Fairness

(a) (b) ()

X2 X1 X1
s ——Y S§— Y S— Y
N ST N N
/ AN e !
/ N 7z / /
X1 / X2 / X2 /
/ // // //
/ ! !
/ / /
V4 /I // //
! ! !
\‘ / / /
/ / /
/ / /
X3 X3 X3

(a) Causal graph used to generate variables in toydata2 .

(b) Causal graph, where s might cause y, either directly, or indirectly, through x;.
(c) Causal graph, where s might cause y, either directly or indirectly, via with two
possible paths and two mediator variables, x; and x».
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Counterfactual Fairness

X2 X2 2
TN 7N TN
S y Ss———Yy S y
N A N\ i

X1 ! X1 X1

Xg;/ X3 X3

(d) Causal graph with no direct impact of s on y, but two mediators, and possibly, x;
might cause x».

(e) similar to (c) with an additional indirect connection from x; to y, via mediator x3.
(f) similar to (d) with an additional indirect connection from x; to y, via mediator xs.
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Counterfactual Fairness

Original data

s x1 X2 X3 | Mgm(X) Mgm(X,5) Mgam(x) Meam(x,s) me(x)  me(x,s)
Betty 0 2 0| 18.22% 24.06% 13.23% 17.63% 17.4% 29.6%
Brienne 1 5 1| 67.19% 70.47% 66.18% 67.09% 63.60%  61.80%
Beatrix 2 8 2| 9495%  94.73% 97.53% 97.58% 96.60%  98.40%
Alex L 0 2 0| 1822% 13.71% 13.23%  10.05%  17.40%  9.20%
Ahmad A1 5 1| 67.19%  54.48% 66.18% 50.49% 63.60%  64.40%
Anthony | A 2 8 2 | 94.95% 90.02% 97.53% 90.51% 96.60%  68.20%
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Counterfactual Fairness

Counterfactual
[s x X x3 | Mgm(X)  Mgm(X,S) Mgam(X) Mgam(x,5)  ma(x)  me(x,s) |

adjusted data, using marginal quantiles
Betty A -168 21 -1.68 3.51% 3.58% 4.78% 4.85% 10.40%  10.80%
Brienne | A -0.98 5.1 -0.96 | 19.39% 17.65% 16.64% 16.13% 29.00%  41.00%
Beatrix | A -027 7.9 -0.26 | 59.83% 53.65% 51.89% 46.37% 53.60%  49.00%
adjusted data, using optimal transport, (c)
Betty A -196 21 -1.9 2.62% 2.82% 4.65% 4.81% 0.00% 0.00%
Brienne | A 0.29 5 0.25 | 48.24% 38.92% 40.04% 32.14% 21.40%  12.20%
Beatrix | A 0.31 7.8 0.21 | 72.83% 65.1% 67.5% 58.83% 20.80% 15%
adjusted data, using Gaussian transport, (c)
Betty A -158 215 -1.59 3.95% 3.96% 4.96% 4.99% 0.40% 0.40%
Brienne | A -0.98 496 -0.99 | 18.47% 16.84% 15.84% 15.40% 19.80%  27.20%
Beatrix | A -0.38 7.79 -0.38 | 55.71% 50.05% 47.86% 43.16% 51.80%  63.60%
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Counterfactual Fairness

Optimal matching, of individuals in group B to individuals in group A, on right, where
points e are Betty, Brienne and Beatrix, and e their counterfactual version in group A.
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Counterfactual Fairness

Counterfactual
[s x X2 X3 | Mgm(X)  Mgm(X, ) Mgam(X)  Mgam(x,5)  ma(x)  me(x,s) |

adjusted data, with fairAdapt, Figure (e)

Betty A -1.65 2 -1.32 | 3.63% 3.54% 4.72% 4.60% 14.60% 8.00%

Brienne | A -0.97 455 -0.94 | 16.57% 14.96% 13.96% 13.51% 2.20% 5.20%

Beatrix | A -0.33 7.72 -0.44 | 56.3% 50.71% 48.49% 43.74% 70.60%  74.80%

adjusted data, with fairAdapt, Figure (f)

Betty A -175 228 -1.68 3.5% 3.6% 5.03% 5.13% 7.20% 7.00%

Brienne | A -0.96 5.3 -0.96 | 20.9% 19.05% 17.91% 17.34% 5.80% 8.40%

Beatrix | A -0.24 8.12 -0.34 | 62.31% 56.43% 54.8% 49.3% 45.60%  39.20%
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Numerical illustrations

Original data

s x1 X2 x3 | Mgm(X) Mgm(X,5) Mgam(X) Meam(x,5) me(x)  me(x,s)
Betty 0 2 0 | 18.22% 24.06% 13.23% 17.63% 17.4% 29.6%
Brienne 1 5 1 | 67.19% 70.47% 66.18% 67.09% 63.60% 61.80%
Beatrix 2 8 2 | 94.95% 94.73% 97.53% 97.58% 96.60%  98.40%
Alex A0 2 0 | 18.22% 13.71% 13.23% 10.05% 17.40% 9.20%
Ahmad A1 5 1 | 67.19% 54.48% 66.18% 50.49% 63.60%  64.40%
Anthony | A 2 8 2 | 94.95% 90.02% 97.53% 90.51% 96.60%  68.20%
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Numerical illustrations

sex housing g
job savings \_/

age credit purpose

Simple causal graph on the GermanCredit dataset,
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Numerical illustrations

housing -
duration
Ve s

age credit —> purpose

\/

Causal graph on the germancredit dataset, from Watson et al. (2021)
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Numerical illustrations

Alex Ahmad Anthony | Betty Brienne Beatrix
| s (gender) M M M
x1 Duration 12 18 30 12 18 30
u= Fys(x1) 36% 57% 86% 34% 50% 79%
T(xa) = Ff‘sle(u) 12 18 30 12 18 24
X2 Credit 1262 2319 4720 1262 2319 4720
u = Fys(x2) 25% 55% 82% 17% 45% 76%
T(x) = F;‘Sl:M(u) 1262 2319 4720 1074 1855 3854
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Numerical illustrations

On the GermanCredit dataset

| Firstname s Firstname s [ Job Savings Housing
Alex M Betty highly qualified employee 100 DM rent radio
Ahmad M Brienne skilled employee 100<=...<500 DM own :
Anthony M Beatrix unskilled - resident no savings for free (
Original data
s Age Duration Credit | Mgm(x) Mgm(X,s) Mgm(X) Mgm(X,5) Mear(x) mc
Betty 26 12 1262 39.69% 36.66% 42.30% 43.26% 31.75% 3
Brienne 33 18 2320 24.30% 22.61% 23.88% 21.08% 21.31% 2
Beatrix 45 30 4720 30.88% 30.08% 28.49% 30.42% 15.38% 1
Alex M 26 12 1262 39.69% 42.10% 42.30% 44.86% 31.75% 3
Ahmad M 33 18 2320 24.30% 26.84% 23.88% 22.18% 21.31% 2
Anthony | M 45 30 4720 30.88% 35.08% 28.49% 31.82% 15.38% 1
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Numerical illustrations

Original data

s Age Duration Credit | Mgm(X) Mgm(X,5) Mgbm(X) Mgom(X,5) Meare(X)  Mea
Betty M 26 12 1074 39.51% 41.90% 40.69% 44.86% 31.75% 31
Brienne | M 33 18 1855 23.95% 26.46% 23.88% 22.18% 21.31% 21
Beatrix | M 45 24 3854 24.91% 28.58% 20.55% 20.31% 21.31% 21
adjusted data, with fairAdapt, causal graph from Figure ??
Betty M 26 12 1110 42.73% 45.18% 44.24% 46.64% 31.75% 31
Brienne | M 33 18 1787 23.90% 26.40% 23.88% 22.18% 21.31% 21
Beatrix | M 45 24 3990 25.01% 28.70% 22.17% 23.60% 21.31% 21
adjusted data, with fairAdapt, causal graph from Figure ??
Betty M 26 18 1778 52.23% 54.03% 40.05% 46.81% 21.31% 21
Brienne | M 33 15 1864 32.25% 35.85% 31.60% 25.97% 21.31% 21
Beatrix | M 45 21 3599 39.70% 43.16% 28.36% 28.90% 21.31% 21
adjusted data, with fairAdapt, causal graph from Figure ??
Betty M 26 15 1882 49.05% 50.86% 35.32% 40.12% 21.31% 21
Brienne | M 33 18 1881 50.76% 53.49% 43.00% 38.77% 21.31% 21
Beatrix | M 45 24 3234 24.20% 26.23% 14.63% 16.84% 21.31% 21
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Numerical illustrations

Scatterplot (m(x;), m(7*(x;))) for individuals in groups M and
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Numerical illustrations

Scatterplot (m(x;), m(7*(x;))) for individuals in groups M and
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Numerical illustrations

Scatterplot (m(x;), m(7*(x;))) for individuals in groups M and
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— Part 8 —

Mitigating Discrimination
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Achieving a Fair Prediction

Mitigating discrimination is usually seen as paradoxical, be-
cause in order to avoid discrimination, we must create an-
other discrimination. More precisely, Supreme Court Justice
Harry Blackmun stated, in 1978, “in order to get beyond
racism, we must first take account of race. There is no
other way. And in order to treat some persons equally,
we must treat them differently,” cited in Knowlton (1978),
as mentioned in Lippert-Rasmussen (2020)).

More formally, an argument in favor of affirmative action — called “the
present-oriented anti-discrimination argument” —is simply that justice requires
that we eliminate or at least mitigate (present) discrimination by the best morally
permissible means of doing so, which corresponds to affirmative action. Freeman
(2007) suggested a “time-neutral anti-discrimination argument,” in order to
mitigate past, present, or future discrimination.
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Achieving a Fair Prediction

But there are also arguments against affirmative action, corre-
sponding to “the reverse discrimination objection,” as de-
fined in Goldman (1979): some might consider that there is an
absolute ethical constraint against unfair discrimination (in-
cluding affirmative action). To quote another Supreme Court
Justice, in 2007, John G. Roberts of the US Supreme Court
submits: “The way to stop discrimination on the basis
of race is to stop discriminating on the basis of race”
(Turner (2015) and Sabbagh (2007)).

The arguments against affirmative action are usually based on two theoretical moral
claims, according to Pojman (1998). The first denies that groups have moral status (or
at least meaningful status). According to this view, individuals are only responsible for
the acts they perform as specific individuals and, as a corollary, we should only
compensate individuals for the harms they have specifically suffered. The second
asserts that a society should distribute its goods according to merit.
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Achieving a Fair Prediction

We have defined the risk of a model m € M as R(m) = E[¢(Y, m(X))].
Define the classes of fair models,

{MDP = {me M st m(X) 1S}
Mgo = {m EMst. mX) 1S | Y}

Fairness is achieved by projection onto a fair subspace

Meaie € argmin {ﬁn(m)}
mEMfair

Definition 12.1: Price of fairness

Given a risk R, a class M and the fair subclass M,;, the price of fairness

Erair(M) = min {R(m)} — &%{R(m)}

meMgair
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Achieving a Fair Prediction

Recall that Bayes estimator is the best model,

pa(x) =E[Y|X = x,S = 4]

pu(x) =E[Y|X = x| and set {M (x)=E[Y|X=x,5=1]

From the definition of Wasserstein distance,

m€N(p,q)

1/2
Wz(p,q)=< inf /Ix—ylzdﬂ(x,y)>

Thus,
E[|m(X., ) — us(X)2|S = 5] > Wa(Pp, Ps)?
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Achieving a Fair Prediction

Proposition 12.1: Price of fairness and Wasserstein Barycenter

Erir(M) = _min {R(m)} — min {R(m)} > min {E (Wa(Ps,Ps)?) }

where PPs is the condition distribution of (X, S), given S, and Ps . is the con-
dition distribution of g(X,S), given S. Moreover, if Mg,;, = Mpp, and if P is
absolutely continuous (w.r.t. Lebesgue measure),

Epp(M) = min {E (Wa(Ps, Ps¢)?) } = gn;i/&{ > OP[S = 5] Wh(Ps, Psg)?

See Gouic et al. (2020).

The minimum is reached at the Wasserstein barycenter of Pg's.
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Pre-Processing

Write the n x k matrix S as a collection of k vectors in R", § = (51 sk), that
will correspond to k sensitive attributes. The orthogonal projection on variables
{s1,---, sk} is associate to matrix Ms = S(S'S)~1ST, while the projection on the
orthogonal of S is MNg1. =1 — Mg (Gram-Schmidt orthogonalization,).

Let S denote the collection of centered vectors (using matrix notations, S=HS
where H=1— (11")/n).

Write the n x p matrix X as a collection of p vectors in R”, X = (x1 --- x,). For
any x;, define

i ~ =T= =T
Xj = |_|§J_Xj = Xj — S(S S) S Xj.

One can easily prove that le is then orthogonal to any s, since

1

1 ~
Cov(s,le) = ESTijL = ;sTl'Ingj =0.
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Pre-Processing

And similarly the centered version of ij is then also orthogonal to any s. From an

econometric perspective, ij can be seen as the residual of the regression of x; against

s's, obtained from least square estimation

_ <73 i
xj=8 Bj+xj.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 489 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Pre-Processing

Optimal transport between distributions of m(x;, s;)'s (x-axis) to m*(xi")'s (y-axis),
for individuals in group A on the left-hand side, and in group B on the right-hand side.
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Pre-Processing

Consider the linear model y = Sae + X8 + ¢

Consider the fairness constraint

B Var[Sa] B aVar[S|a
Var[Sa + X18]  «aTVar[SJa+ BT Var[X*]|8

szair(aa IB)
Then solve

min {E[ly — S - X187} st Riu(e, B) < 2 (€ Ry).

)
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Pre-Processing

An alternative was considered in Komiyama and Shimao (2017), with a Ridge penalty

min {E[Hy — Sa— XB|7,] + A||04H?2}

)

The penalty is on « only because (by construction) there is no discriminating
information in X. There is a closed form solution

(STS+A)"'STy
(XJ_TxJ_)—li_y
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In-Processing

In a linear regression problem, y = X3 + e. Zafar et al. (2017) suggested

B* = min {E[lly - X8I} st. [Cov[XB,S]| < c (€ Ry).

m(x,s), aware m(x), unaware
< less fair more fair — < less fair  more fair —
B, (Intercept) -255 -229 -197 -151 -103 | -2.14 -198 -1.78 -1.63
ﬁl (x1) 088 088 085 0.77 0.62 1.01 0.84 0.57 0.26
,@2 (x2) 037 037 035 032 0.25 037 035 031 0.24
B3 (x3) 0.02 0.02 0.02 0.02 0.03 0.15 0.02 -0.15 -0.29
B (1) 082 044 -0.03 -0.70 -1.31 - - - -

) freakonometrics

freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course)

493 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

In-Processing

m(x,s), aware m(x), unaware
<« less fair more fair — < less fair  more fair —
Betty 0.27 0.25 0.22 0.17 0.14 0.20 0.22 0.24 0.24
Brienne 0.74 0.71 0.66 0.54 0.40 0.70 0.66 0.55 0.38
Beatrix 0.95 0.95 0.93 0.87 0.73 0.96 0.93 0.82 0.55
Alex 0.14 0.17 0.22 0.29 0.37 0.20 0.22 0.24 0.24
Ahmad 0.55 0.61 0.66 0.70 0.71 0.70 0.66 0.55 0.38
Anthony 0.90 0.92 0.93 0.93 0.91 0.96 0.93 0.82 0.55
E[m(xi,s)|S = 4] 0.23 0.26 0.31 0.36 0.42 0.25 0.30 0.37 0.41
E[m(xi,s)|S = B] 0.67 0.65 0.61 0.53 0.42 0.64 0.61 0.54 0.41
(ratio) x2.97 x2.49 x2.01 x1.46 x1.00 | x2.53 x2.02 x1.48 x1.00
AUC 0.86 0.86 0.85 0.82 0.74 0.86 0.85 0.82 0.70
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In-Processing

AUC of ﬁ’lﬁ)\ and evolution of mEA(x,-,s,-) (with a logistic regression)
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In-Processing

AUC of ﬁ’lﬁ)\ and evolution of m@(x,) (with a logistic regression)
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In-Processing

Optimal transport between distributions of ’%@ (xi,si)'s from individuals in group A

and in &, for different values of A (low value on the left-hand side and high value on
the right-hand side), associated with a demographic parity penalty criteria
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In-Processing

Adversarial learning has to do with robustness of learning algorithm, Szegedy et al.
(2013) (“are neural network stables?”).

“Adversarial examples are inputs to machine learning models that an attacker
has intentionally designed to cause the model to make a mistake”, Bengio et al.
(2017)
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In-Processing

Adversarial learning deals with the problem that the distributions we obtain IRL are
not the ones we train the model on... and we try to quantify what can go wrong

Popular in pictures (what happens if we rotate an object, add glasses to people, etc).
Brittleness of ML algorithms...

Problem of data pollution (add outliers) and problems of adversarial examples.

Machine learning perspective
min {Ex,v)~e [£(ma(X), Y)]}
Adversarial perspective
max {E(x,y)~p [((ma(X +€), V)] }

leads to robust learning...
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In-Processing

training a robust classifier

min { max {Ex,v)~p[f(me(X +€),Y)]}}

creating an adversarial example

Approaches based on robust optimization, Ben-Tal et al. (2009), e.g., Danskin's
Theorem, Danskin (1967),

Vo max {t(me(X +€),Y)} = Vol(mg(X +€),Y)
€
where e* = argmax{{(mg(X + €), Y)}.
ect

Recall the minimax theorem from von Neumann (1928)
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In-Processing

Proposition 12.2: Nash equilibrium and Minimax

Let A be some m x n real-valued matrix, there is a Nash equilibrium (x.,y,)
associated with A if

TALl — o T
y, Ax, = max ;reunn {y Ax} = mip max {y'Ax}.
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In-Processing

Consider a Minimax games: given that the discriminator will try to do the best job it
can, the generator is set to make the discriminator as wrong as possible

min max {Ex- | log(ma, (x))] + Ez~qlog(1 — m, (Co,(2)) ]}

where X ~ P denotes data sampled from the training data, while Z ~ QQ are sampled
by the opponent

See Wadsworth et al. (2018), Xu et al. (2021), Lima et al. (2022) for achieving
fairness through adversarial learning
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In-Processing

FairGAN, Xu et al. (2018)
Pre-processing approach actually, with demographic parity (DP)

Other algorithms are in-processing approaches, with demographic parity (DP) and
equalized odds (EO)
Learning adversarially fair and transferable representations, Madras et al. (2018)

x
/ \
©(x) encoder decoder 9(z,5) «——

predictor <— z — VA —— S

Adversarially learning fair representations, Beutel et al. (2017)
Fair Adversarial Debiasing Approach, Zhang et al. (2018)
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In-Processing

Uy,y) {(s,5)
x ——Qllleteld—— ¥ — > ECICEA—— S

Following Zhang et al. (2018)
the predictor predicts y given x,
the adversary tries to predict s bases on the output of the predictor

the predictor targets to increase its prediction accuracy
and tries to increase the adversary's loss
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Barycenter

Several approaches can be considered to define means, averages, centroids, barycenters
(etc.), as discussed in Fréchet (1948) and Grove and Karcher (1973),

e convex properties (from Maobius (1827) and Rockafellar (1970))
e axiomatization (from Nagumo (1930), Kolmogorov (1930) and Aczél (1948))
e optimization (from Hey (1814), Nathan (1952) and Agueh and Carlier (2011))

C CR"isconvex if x,y € C = tx+ (1 —t)y € C for all t € [0,1]
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Barycenter

Let x1, -+ ,xx € R", then a convex combination is any linear combination
W1X1 + - + weX, with (wl, s ,wk) € Sk C Ry

The convex hull of a set C is the set of all convex combinations of elements of C.

The geometric centroid of a convex object always lies in the object.
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Barycenter

Define the barycenter for two points, with equal weights as a function M : E x E — E

e Reflexivity: M(x, x) = x,
e Symmetry: M(x1,x2) = M(x2,x1),

e Continuity: M(-,) is continuous,

[ ] Bisymmetry: /\/’(/\/I(Xll,xlz)7 M(X21,X22)) = M(M(X117X21), M(X12,X22))

Then (see Aczél (1948)), there is f such that

M(x1,x5) = £ (;f(xl) + ;f(x2)> .

If E C R, consider means on each coordinate axis independently.
A natural extension is

Bf(x,w) =t (zn:w,-f(x,-)> .

i=1
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Barycenter

For the optimisation approach, given a distance d on E, set

n

By(x,w) = argmin Zw,-d(x,-,z)
zcE i=1

Consider some points {x1, X2, , X} in a metric space R?
The mean is

k
_ X1+ Xo 4+ -+ Xg 1

x= k =g %0
or equivalently

- 1 2
X = argmin ¢ o ; | x — x,||e2

But they can be defined using any distance/divergence/discrepancy
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Barycenter

Instead of points {x1,X2,---,X,} in the metric space R?, we can consider some
measures {P1, Py, -+, Py}.
The Euclidean mean is

_ 1
Q = argmin{ — ZAZ(@,]P’,-) ,
Q kim
where A2(Q, ;) = / (dQ - dPy)’.
R
But any discrepancy function can be considered

One can consider Wasserstein discrepancy

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 509 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Barycenter

Definition 12.2: Wasserstein 1, Barycenter,

K
Q = argmin {Z WiW2(@aPi)2}a
Q

i=1

This can be seen as a multi-marginal optimal transport problem.
Recall that the “push-forward” measure is

Pl(A) = T#Po(A) =Py (T_I(A)), VA CR.

An optimal transport 7* (in Brenier's sense, from Brenier (1991), see Villani (2009) or
Galichon (2016)) from Pg towards P; will be solution of

T* ¢ arginf { /R ké(x,T(x))dPo(X)}v

TZT# Po :Pl

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 510 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

Barycenter

and for univariate distributions, the optimal transport 7* is the monotone
transformation.
T i xprx1 = Ffl o Fo(Xg).
Given a reference measure, say PPq, it is possible to write the barycenter as the
"average push-forward” transformation of Py: if P; = T#H’Pl (with the convention
that 7! is the identity),

Proposition 12.3: Wasserstein |V, Barycenter,
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Barycenter

Proposition 12.4: Wasserstein /1, Barycenter,

Computation of barycenters can be computationnaly difficult, Altschuler and
Boix-Adsera (2021)

For univariate distributions, there is a simple expression, 717/ is simply a

rearrangement, defined as 7277 = F, 1 o Fy, where Fi(t) = P;((—oo0, t]) and F; 1 is its
generalized inverse
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Barycenter

Proposition 12.5: Wasserstein 1/, Barycenter, univariate distributions

T17 is simply a rearrangement, defined as 717/ = F,-_1 o Fy, where Fi(t) =
Pi((—o0, t]), and

Proposition 12.6: Wasserstein /, Barycenter, univariate distributions

Given two scores m(x,s = A) and m(x,s = 1), the “fair barycenter score” is

{m*(x,s:A):IF’[SzA]-m(x,s=A)+]P’[5= |- Fto Fa(m(x,s = 4))
m*(x,s =5) =P[S = A] - F; L o F.(m(x,s = B)) +P[S = 5] - m(x, s = B).
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Barycenter

that is generally numerically intractable (computing one subgradient requires solving

k optimal transports)

In the discrete case, if we consider a fixed grid (so that C can be computed once only)

{3 ot 70}

We can write this as a large linear program P/ 1,=b;
k
min min P;, C , Where
Q {Ph"v”kvaf;{< ' >}} PI1, = b,
Pil,=---=Pl,=a
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Barycenter

Theorem 12.1: Variance X
If kK =2, X satisfies

T =uw (}:1/2}:1}:1/2)1/2 i w2(21/2}:2}:1/2)1/2

and the explicit expression is

_1 1
2 2

3,

1
2

1 1 1
¥ = W% + WBF, + wiwn (X3 (E15,57)

Proposition 12.7: Variance X
k

Zw,-}:,- — X is a positive matrix.
i=1
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Barycenter

Proposition 12.8: Variance X

k N\ 2
If £; = PA;PT then X =P (Zw,-N) P’

i
i=1

Consider two Gaussian distributions, N'(u,, Xx) and N (pg, Xg), and weights wy =t
and wg =1 —t, with t € [0,1].
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Barycenter
Barycenter of two bivariate Gaussian distribution (¢t = 0.1,0.25,0.4,0.6,0.75,0.9)
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Application to toydatal
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Application to toydatal

Given scores m(x,s = A) and m(x,s = &),

the is
(X, S = A)

= P[S=A4] - m(x,s = A)
+ P[S=258]-F toF,(m(x,s = 1))
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Application to toydatal

Given scores m(x,s = A) and m(x,s = B),

the is

m*(x,s = B)
= P[S=4]-F o Fy(m(x,s = 7))
+ P[S=5]-m(x,s =5)
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Application to toydatal
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Application to toydatal

x s ¥y m(x,s) m(x)  mi(x)  mi(x)
Alex -1 0.475 0.250 0.219 0.154 0.094
Betty -1 0.475 0.205 0.219 0.459 0.357
Ahmad 0 A 0.475 0.490 0.465 0.341 0.279
Brienne 0 0.475 0.426 0.465 0.719 0.692
Anthony +1 A 0.475 0.734 0.730 0.571 0.521
Beatrix +1 0.475 0.681 0.730 0.842 0.932
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Application to FrenchMotor

If the two models are balanced, m* is also balanced.
Annual claim occurrence (motor insurance, Charpentier et al. (2023b))
Three models (plain GLM, GBM, Random Forest)
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Application to FrenchMotor

Predictions are different for men (= A) and (5=15)

since W5, # 0 consider post processing mitigation
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Application to FrenchMotor

Given scores m(x,s = A) and m(x,s = &), the “ "

(x,s =A) =P[S = A] - m(x,s = A) + P[S = B] - F, 1 o Fy(m(x,s = A))
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Application to FrenchMotor

Given scores m(x,s = A) and m(x,s = B), the “ is

(x,s =8)=P[S=A]- F; o F.(m(x,s = 8)) + P[S = 5] - m(x,s = &)
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Application to FrenchMotor

We can plot {(m(x;, ), m"(xi,A)} and {(m(x;,B), m"(x;,2)}
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Application to FrenchMotor

Numerical values, for initial occurence probability of 5%, 10% and 20%, we have

A (men) (women)
x0.94 GLM GBM RF x1.11 GLM GBM RF
m(x)= 5% | 473% 404% 480%  4.42%
m(x) =10% | 9.46%  083%  966%  8.92%
m(x) =20% | 18.91% 19.50% 18.68% 18.26%
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Application to FrenchMotor

We can do the same for discrimination against "old” drivers.
A (younger < 65) (old > 65)

x1.01 GLM GBM RF x0.94 GLM GBM RF

m(x)=5% | 505% 517% 510% 527%

m(x) =10% | 10.09% 10.37% 10.16% 11.00%

m(x) =20% | 20.19% 19.98% 19.65% 21.26%
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Application to FrenchMotor

Given scores m(x,s = A) and m(x,s = &), the “ "

(x,s =A) =P[S = A] - m(x,s = A) + P[S = B] - F, 1 o Fy(m(x,s = A))
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Application to FrenchMotor

Given scores m(x,s = A) and m(x,s = &), the “ "

(x,s =8)=P[S=A]- F; o F.(m(x,s = B)) + P[S = 5] - m(x,s = &)
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Application to FrenchMotor

We can plot {(m(x;, ), m"(xi,A)} and {(m(x;,B), m"(x;,2)}
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— Part 10 —

Non-Observed Sensitive Attributes
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Bayesian Surname Geocoding

Method
GO

SA

CSG

BSG

BISG
MBISCG
BIFSG
Regression

First
name

RERDOOODDO

Last
name

RERAREEED

Geo
location

NEARRAREUD N

Other

ROROO0D0O0O0

Reference

Fiscella and Fremont (2006)
Lauderdale and Kestenbaum (2000)
Fiscella and Fremont (2006)

Elliott et al. (2008)

Elliott et al. (2009)

Martino et al. (2013)

Voicu (2018)

Xue et al. (2019)

GO (Geocoding Only); SA (Surname Analysis); CSG (Categorical Surname and Geocoding); BSG
(Bayesian Surname Geocoding); BISG (Improved BSG); MBISCG (Medicare BISG); BIFSG( BISG with

First Name)
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Bayesian Surname Geocoding

First names and their associated race/ethnicity prevalences, Tzioumis (2018)
comprehensive list of 4,250 first names

Census 2010 surname list, Word et al. (2008)

160,000 surnames, covering about 90 percent of the U.S. population
Decennial Census 2010 SF1 datase

GO, SA, CSG, pre-Bayesian methods

e GO, Fiscella and Fremont (2006), Elliott et al. (2008)
Krieger et al. (2002)

e SA, Elliott et al. (2008), Word and Perkins (1996)

e CSG, Fiscella and Fremont (2006)
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Bayesian Surname Geocoding
P[BIA] - PlA] P[B|A] - P[A]

Bayes's Theorem, P[A|B] = P[B] ~ P[B|A] - P[A] + P[B|A] - P[A]

BSG, P[race = r|surname = s] is

P[surname = s|race = r] - P[race = r|

P[surname = s|race = r] - P[race = r] + P[surname = s|race # r] - P[race # r|
BIFSG, P[race = r|first name = f,surname = s, geolocalisation = g], Voicu (2018)

Plr|s] - Plg|r] - P[f|r]

P[r|f,s,g] = S P[R =t|s] - Plg|R = t] - P[f|[R =t

Plg|r,s] =Plg|rlor GLL R | S
P[f|r,s,g] = P[f|r]
“Given the race, the geolocation is not informative about the surname”

Assumption : {
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Bayesian Surname Geocoding

IP[r|s] is the probability that a person is of race/ethnicity r, given that the person has
surname s, (i.e., the surname-based probability described above); P[f|r] is the
probability that a person has first name f, given that the person is of race/ethnicity r
(i.e., the aforementioned first-name-based probability);P[g]|r] is the probability that a
person resides in geographic area g, given that the person is of race/ethnicity r (i.e.,
the aforementioned geography-based probability); and the summation in the
denominator occurs over the six race/ethnicity categories defined previously
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Bayesian Surname Geocoding

BIFSG Bayesian First Name Surname Geocode

BISG = Bayesian Improved Surname and Geocoding

BISG computes the probability of race given a voter's surname and geographic
location, P(R = r|S = s, G = g), using Bayes theorem. Assuming G 1L S|R,

P(R=r|S=s5,G6=g)xP(G=g|R=r)-P(R=r|S=5)

The probability P(G = g|R = r) can be obtained from Census summary tables by
taking the number of people of race/ethnicity R = r in neighborhood G = g divided
by the total number of people of race/ethnicity r.

The probability of race given surname, P(R = r|S = s), comes directly from the
Census Bureau's surname lists which contain the proportion of all Decennial Census
respondents with each surname in each racial-ethnic category

Decter-Frain (2022)
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Bayesian Surname Geocoding

Fully Bayesian Improved Surname Geocoding (fBISG)
BISG suffers from two data problems regarding minorities:

e the census often contains zero counts

— fBISG uses a measurement error model so that zero values mean low
probability instead of nonexistence

e many surnames are missing from the census data

< fBISG also supplemens the surname list with additional data from voter files
from six Southern states

BISG Elliott et al. (2009)
]P(R,"S;, G,) X ]P)(S,‘R,) . IP)(R,‘G,)

P(R; = r|G; = g) o< Ny, obtained from US census data.
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Bayesian Surname Geocoding

fBISG Imai and Khanna (2016)
P(R,'|5,‘, G,) X IP)(R,|5,) . ]P)(G,‘Rl)

P(R =r|G; = g,R_;) x nfgi + N +1 >0, with:

e the term +1 arises from the assumption of a Dirichlet prior distribution over the
race distribution for geolocation g,

° ”Egi is obtained using Gibbs sampling on the dataset of individuals whose race is
being predicted, by conditioning on the race of other individuals R_; in
geolocation g.

e Minorities continue to be underestimated. They are absorbed by the majority

e How can we give more power to the minorities?
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— Appendix —
Additional Results
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Appendix: Sensitive attributes in insurance (in the U.S.)

From Avraham et al. (2013),

Expressly Permit (-1) - The state has a statute ex-
pressly or impliedly permitting insurers to take the
characteristic into account.

No Law on Point (0) - The state laws are silent with
respect to the particular characteristic.

General Restriction (1) - The state has a statute
that generally prohibits "unfair discrimination,” ei-
ther across all lines of insurance or in some lines of
insurance, but that statute does not provide any ex-
planation as to what constitutes unfair discrimination
and does not single out any particular trait for limi-
tation.
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Appendix: Sensitive attributes in insurance (in the U.S.)

Characteristic-Specific Weak Limitation (2) - The
state has a statute that limits the use of a particular
characteristic in either issuance, renewal, or cancel-
lation.

Characteristic-Specific Strong Limitation (3) - The
state has a statute that prohibits the use of a par-
ticular characteristic when the policy is either issued,
renewed, or cancelled, or the state has a statute that
limits but does not completely prohibit the use of a
particular characteristic in rate setting.

Characteristic-Specific Prohibition (4) - The state
has a statute the expressly prohibits insurers from
taking into account a specific characteristic in set-
ting rates.
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Appendix: Sensitive attributes in insurance (in the U.S.)

"Race, national origin, and religion have a special
place in this country's history; and, as discussed
above, discrimination on the basis of these three
characteristics has been subject to stricter scrutiny in
American law than have other characteristics,” Avra-
ham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

" Gender-based discrimination in insurance has long
been controversial. And differential treatment on
the basis of gender is, of course, in many contexts
widely considered unacceptable or illegal. Neverthe-
less, there does not seem to be the same level of
agreement-as there is for race, religion, and national
origin-that drawing gender-based distinctions is al-
ways wrong. Federal constitutional law treats gender
as only a quasi-suspect classification; as a result, laws
that discriminate on the basis of gender are subject
to an intermediate level of scrutiny.” Avraham et al.
(2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

"With respect to life insurance, we predict that the
laws regulating gender discrimination will be on aver-
age relatively weak, since adverse selection in the life
insurance market is especially problematic.” Avraham
et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

"Regarding property/casualty insurance, as there
seems to be no conceivable correlation between those
risks and gender, we predict either states will clus-
ter around no regulation, or, alternatively, states
will cluster around forbidding the use of gender in
property/casualty insurance on symbolic or expres-
sive grounds.” Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

" The gender discrimination will be more strictly regu-
lated on average for health insurance (where gender-
rated policies often result in higher premiums for
women) than for auto insurance (where gender-rated
policies result in higher premiums for men)." Avra-
ham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

"Unlike with race, national origin, religion, and gen-
der, legal classifications on the basis of an individual’s
sexual orientation have not clearly been identified by
the Supreme Court as deserving special scrutiny. In
addition, unlike race, national origin, and gender,
there are no federal laws forbidding discrimination
on the basis of sexual orientation in employment.”
Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

"However, there are state laws that forbid discrimi-
nation on the basis of sexual orientation, and some
lower courts have held that sexual orientation should

be a suspect or quasi-suspect characterisation.” Avra-
ham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

"We expect that age will have the lowest average
regulatory score of all the risk characteristics we are
studying. First, age is not a suspect classification,
at least not by constitutional standards. Second, age
tends to correlate causally with several important ar-
eas of risk (mortality, health, and perhaps disabil-
ity risks), thereby increasing the perceived fairness of
rating on that basis.” Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

"Third, age can present serious adverse selection
problems for insurers if they are forbidden from taking
it into account, since individual insureds know their
own age and the associated risks. Fourth, social sol-
idarity arguments with respect to age are relatively
weak, since individuals can spread risk over their life-
time through various income smoothing products.”
Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

Avraham et al. (2013) suggested to visualize the distribution of scores
(Expressly Permit (-1) / No Law on Point (0) / General Restriction (1) / --- /
Characteristic-Specific Prohibition (4))
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Appendix: Sensitive attributes in insurance (in the U.S.)

"Credit score and zip code are not, by themselves, socially suspect characteristics.
However, some commentators have argued that credit score and zip code are used by
auto and home insurers as proxies for potentially socially suspect characteristics.”

W Ofreakonometrics €) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 554 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Abraham, K. (1986). Distributing risk: Insurance, legal theory and public policy. Yale University Press,.
Aczél, J. (1948). On mean values. Bulletin of the American Mathematical Society, 54(4):392-400.

Agueh, M. and Carlier, G. (2011). Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904-924.

Ajunwa, |. (2014). Genetic testing meets big data: Tort and contract law issues. Ohio State Law
Journal, 75:1225.

Ajunwa, |. (2016). Genetic data and civil rights. Harvard Civil Rights-Civil Liberties Law Review, 51:75.

Ali, S. M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution
from another. Journal of the Royal Statistical Society: Series B (Methodological), 28(1):131-142.

Altschuler, J. M. and Boix-Adsera, E. (2021). Wasserstein barycenters can be computed in polynomial
time in fixed dimension. The Journal of Machine Learning Research, 22(1):2000-2018.

Amari, S.-i. (2016). Information geometry and its applications, volume 194. Springer.

Andrus, M., Spitzer, E., Brown, J., and Xiang, A. (2021). What we can't measure, we can't
understand: Challenges to demographic data procurement in the pursuit of fairness. In Proceedings
of the 2021 ACM conference on fairness, accountability, and transparency, pages 249-260.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 555 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Angrist, J. D. and Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist's companion.
Princeton university press.

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. (2016). Machine bias: There's software used across
the country to predict future criminals and it's biased against blacks. ProPublica, May 23.

Apfelbaum, E. P., Pauker, K., Sommers, S. R., and Ambady, N. (2010). In blind pursuit of racial
equality? Psychological science, 21(11):1587-1592.

Austin, P. C. and Steyerberg, E. W. (2019). The integrated calibration index (ICl) and related metrics
for quantifying the calibration of logistic regression models. Statistics in Medicine, 38:4051 — 4065.

Austin, R. (1983). The insurance classification controversy. University of Pennsylvania Law Review,
131(3):517-583.

Avin, C., Shpitser, |., and Pearl, J. (2005). Identifiability of path-specific effects. IJCAI International
Joint Conference on Artificial Intelligence, pages 357—-363.

Avraham, R. (2017). Discrimination and insurance. In Lippert-Rasmussen, K., editor, Handbook of the
Ethics of Discrimination, pages 335—-347. Routledge.

Avraham, R., Logue, K. D., and Schwarcz, D. (2013). Understanding insurance antidiscrimination law.
Southern California Law Review, 87:195.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 556 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis. Journal of machine
learning research, 3(Jul):1-48.

Bailey, R. A. and Simon, L. J. (1960). Two studies in automobile insurance ratemaking. ASTIN
Bulletin: The Journal of the IAA, 1(4):192-217.

Baldus, D. C. and Cole, J. W. (1980). Statistical proof of discrimination. McGraw-Hill.

Banerjee, A., Merugu, S., Dhillon, 1. S., Ghosh, J., and Lafferty, J. (2005). Clustering with bregman
divergences. Journal of machine learning research, 6(10).

Barabasi, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science,
286(5439):509-512.

Barbour, V. (1911). Privateers and pirates of the west indies. The American Historical Review,
16(3):529-566.
Barocas, S., Hardt, M., and Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1:2017.

Barry, L. and Charpentier, A. (2020). Personalization as a promise: Can big data change the practice
of insurance? Big Data & Society, 7(1):2053951720935143.

Bartlett, P. L., Jordan, M. |., and McAuliffe, J. D. (2006). Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 101(473):138-156.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 557 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Bauschke, H. H., Borwein, J. M., et al. (1997). Legendre functions and the method of random
bregman projections. Journal of convex analysis, 4(1):27-67.

Becker, G. S. (1957). The economics of discrimination. University of Chicago press.

Bellemare, M. G., Dabney, W., and Munos, R. (2017a). A distributional perspective on reinforcement
learning. arXiv:1707.06887.

Bellemare, M. G., Danihelka, |., Dabney, W., Mohamed, S., Lakshminarayanan, B., Hoyer, S., and
Munos, R. (2017b). The cramer distance as a solution to biased wasserstein gradients.
arXiv:1705.10743.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust optimization, volume 28. Princeton
university press.

Bender, M., Dill, C., Hurlbert, M., Lindberg, C., and Mott, S. (2022). Understanding potential
influences of racial bias on p&c insurance: Four rating factors explored. CAS Research Paper Series
on Race and Insurance Pricing.

Bengio, Y., Goodfellow, ., and Courville, A. (2017). Deep learning, volume 1. MIT press Cambridge,
MA, USA.

Bernstein, E. (2007). Temporarily Yours: Intimacy, Authenticity, and the Commerce of Sex. University
of Chicago Press.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 558 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Bertillon, A. and Chervin, A. (1909). Anthropologie métrique: conseils pratiques aux missionnaires
scientifiques sur la maniére de mesurer, de photographier et de décrire des sujets vivants et des
piéces anatomiques. Imprimerie nationale.

Beutel, A., Chen, J., Zhao, Z., and Chi, E. H. (2017). Data decisions and theoretical implications
when adversarially learning fair representations. arXiv, 1707.00075.

Bhattacharya, A. (2015). Facebook patent: Your friends could help you get a loan - or not. CNN
Business, 2015/08/04.

Bickel, P. J., Hammel, E. A., and O'Connell, J. W. (1975). Sex bias in graduate admissions: Data
from Berkeley. Science, 187(4175):398-404.

Biddle, D. (2017). Adverse impact and test validation: A practitioner’s guide to valid and defensible
employment testing. Routledge.

Billingsley, P. (2017). Probability and measure. John Wiley & Sons.

Blanpain, N. (2018). L’espérance de vie par niveau de vie-méthode et principaux résultats. INSEE
Document de Travail, F1801.

Blier-Wong, C., Cossette, H., Lamontagne, L., and Marceau, E. (2021). Geographic ratemaking with
spatial embeddings. ASTIN Bulletin: The Journal of the IAA, pages 1-31.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 559 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Blinder, A. S. (1973). Wage discrimination: Reduced form and structural estimates. The Journal of
Human Resources, 8(4):436—455.

Blumenbach, J. F. (1775). De generis humani varietate nativa. Vandenhoek & Ruprecht.

Bogachev, V. |., Kolesnikov, A. V., and Medvedev, K. V. (2005). Triangular transformations of
measures. Sbornik: Mathematics, 196(3):309.

Bollen, K. A. (1989). Structural equations with latent variables, volume 210. John Wiley & Sons.

Bollen, K. A. and Pearl, J. (2013). Eight myths about causality and structural equation models. In
Handbook of causal analysis for social research, pages 301-328. Springer.

Bollobas, B. (1998). Random graphs. Springer.

Bonnotte, N. (2013). From Knothe's rearrangement to Brenier's optimal transport map. SIAM Journal
on Mathematical Analysis, 45(1):64-87.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasserman, L. (2019). Nuanced metrics for
measuring unintended bias with real data for text classification. In Companion proceedings of the
2019 world wide web conference, pages 491-500.

Bouk, D. (2015). How Our Days Became Numbered: Risk and the Rise of the Statistical Individual.
The University of Chicago Press.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 560 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Bourdieu, P. (2018). Distinction a social critique of the judgement of taste. In Inequality Classic
Readings in Race, Class, and Gender, pages 287-318. Routledge.

Box, G. E., Lucefio, A., and del Carmen Paniagua-Quinones, M. (2011). Statistical control by
monitoring and adjustment, volume 700. John Wiley & Sons.

Bregman, L. M. (1967). The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming. USSR computational mathematics
and mathematical physics, 7(3):200-217.

Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions.
Communications on pure and applied mathematics, 44(4):375-417.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1):1-3.

Brilmayer, L., Hekeler, R. W., Laycock, D., and Sullivan, T. A. (1979). Sex discrimination in
employer-sponsored insurance plans: A legal and demographic analysis. University of Chicago Law
Review, 47:505.

Britz, G. (2008). Einzelfallgerechtigkeit versus Generalisierung: verfassungsrechtliche Grenzen
statistischer Diskriminierung. Mohr Siebeck.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 561 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Brown, R. S., Moon, M., and Zoloth, B. S. (1980). Incorporating occupational attainment in studies of
male-female earnings differentials. Journal of Human Resources, pages 3-28.

Brualdi, R. A. (2006). Combinatorial matrix classes, volume 13. Cambridge University Press.

Calders, T. and Verwer, S. (2010). Three naive Bayes approaches for discrimination-free classification.
Data mining and knowledge discovery, 21(2):277-292.

Cantwell, G. T., Kirkley, A., and Newman, M. E. (2021). The friendship paradox in real and model
networks. Journal of Complex Networks, 9(2):cnab011.

Carlier, G., Galichon, A., and Santambrogio, F. (2010). From Knothe's transport to Brenier's map and
a continuation method for optimal transport. SIAM Journal on Mathematical Analysis,
41(6):2554-2576.

Casella, G. and Berger, R. L. (1990). Statistical Inference. Duxbury Advanced Series.

Casey, B., Pezier, J., and Spetzler, C. (1976). The Role of Risk Classification in Property and Casualty
Insurance: A Study of the Risk Assessment Process : Final Report. Stanford Research Institute.

Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between probability density
functions, intl. Journal of Mathematical Models and Methods in Applied Sciences, Issue, 4.

Chambert-Loir, A. (2023). Information Theory: Three Theorems by Claude Shannon, volume 144.
Springer Nature.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 562 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Charniak, E. (1991). Bayesian networks without tears. Al magazine, 12(4):50-50.

Charpentier, A. (2014). Mesures de risque. In Droesbeke, J.-J. and Saporta, G., editors, Approches
statistiques du risque. Editions Technip.

Charpentier, A. (2023). Insurance: biases, discrimination and fairness. Springer Verlag.

Charpentier, A., Flachaire, E., and Gallic, E. (2023a). Causal inference with optimal transport. In
Thach, N. N., Kreinovich, V., Ha, D. T., and Trung, N. D., editors, Optimal Transport Statistics for
Economics and Related Topics. Springer Verlag.

Charpentier, A., Hu, F., and Ratz, P. (2023b). Mitigating discrimination in insurance with wasserstein
barycenters. BIAS, 3rd Workshop on Bias and Fairness in Al, International Workshop of ECML
PKDD.

Cheney-Lippold, J. (2017). We are data. In We Are Data. New York University Press.

Chicco, D. and Jurman, G. (2020). The advantages of the matthews correlation coefficient (mcc) over
f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):1-13.

Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153-163.

Chzhen, E. and Schreuder, N. (2022). A minimax framework for quantifying risk-fairness trade-off in
regression. The Annals of Statistics, 50(4):2416—-2442.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 563 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Cleary, T. A. (1968). Test bias: Prediction of grades of negro and white students in integrated
colleges. Journal of Educational Measurement, 5(2):115-124.

Cohen, I. and Goldszmidt, M. (2004). Properties and benefits of calibrated classifiers. In 8th European
Conference on Principles and Practice of Knowledge Discovery in Databases, volume 3202, pages
125-136. Springer.

Conway, D. A. and Roberts, H. V. (1983). Reverse regression, fairness, and employment
discrimination. Journal of Business & Economic Statistics, 1(1):75-85.

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and Hug, A. (2017). Algorithmic decision making
and the cost of fairness. arXiv, 1701.08230.

Coulmont, B. and Simon, P. (2019). Quels prénoms les immigrés donnent-ils a leurs enfants en france?
Population Societes, (4):1-4.

Cramér, H. (1928a). On the composition of elementary errors: First paper: Mathematical deductions.
Scandinavian Actuarial Journal, 1928(1):13-74.

Cramér, H. (1928b). On the composition of elementary errors: second paper: statistical applications.
Scandinavian Actuarial Journal, 1928(1):141-180.

Crossney, K. B. (2016). Redlining. https://philadelphiaencyclopedia.org/essays/redlining/.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 564 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Csiszar, 1. (1964). Eine informationstheoretische ungleichung und ihre anwendung auf beweis der
ergodizitaet von markoffschen ketten. Magyar Tudomanyos Akadémia Matematikai Kutaté
Intézetének Koézleményei, 8:85—-108.

Csiszar, |. (1967). On information-type measure of difference of probability distributions and indirect
observations. Studia Scientiarum Mathematicarum Hungarica, 2:299-318.

Cunningham, S. (2021). Causal inference. Yale University Press.
Da Silva, N. (2023). La bataille de la Sécu: une histoire du systéme de santé. La fabrique éditions.

Dall'Aglio, G. (1956). Sugli estremi dei momenti delle funzioni di ripartizione doppia. Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze, 10(1-2):35-74.

Daniel, W. W. et al. (1968). Racial discrimination in England: based on the PEP report. Penguin
Books.

Danskin, J. M. (1967). The theory of max-min and its application to weapons allocation problems.
Springer.

Darlington, R. B. (1971). Another look at “cultural fairness”. Journal of educational measurement,
8(2):71-82.

Datta, A., Fredrikson, M., Ko, G., Mardziel, P., and Sen, S. (2017). Proxy non-discrimination in
data-driven systems. arXiv, 1707.08120.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 565 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Dawid, A. P. (1982). The well-calibrated bayesian. Journal of the American Statistical Association,
77(379):605-610.

De Baere, G. and Goessens, E. (2011). Gender differentiation in insurance contracts after the
judgment in case ¢-236/09, Association Belge des Consommateurs Test-Achats asbl v. conseil des
ministres. Colum. J. Eur. L., 18:339.

de La Fontaine, J. (1668). Fables. Barbin.

de Melo-Martin, I. (2003). When is biology destiny? biological determinism and social responsibility.
Philosophy of science, 70(5):1184-1194.

De Pril, N. and Dhaene, J. (1996). Segmentering in verzekeringen. DTEW Research Report 9648,
pages 1-56.

De Wit, G. and Van Eeghen, J. (1984). Rate making and society's sense of fairness. ASTIN Bulletin:
The Journal of the IAA, 14(2):151-163.

Dean, L. T. and Nicholas, L. H. (2018). Using credit scores to understand predictors and consequences
of disease.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 566 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Dean, L. T., Schmitz, K. H., Frick, K. D., Nicholas, L. H., Zhang, Y., Subramanian, S., and
Visvanathan, K. (2018). Consumer credit as a novel marker for economic burden and health after
cancer in a diverse population of breast cancer survivors in the usa. Journal of Cancer Survivorship,
12(3):306-315.

Decter-Frain, A. (2022). How should we proxy for race/ethnicity? comparing bayesian improved
surname geocoding to machine learning methods. arXiv, 2206.14583.

Dedecker, J. and Merlevede, F. (2007). The empirical distribution function for dependent variables:
asymptotic and nonasymptotic results in. ESAIM: Probability and Statistics, 11:102-114.

Denis, C., Elie, R., Hebiri, M., and Hu, F. (2021). Fairness guarantee in multi-class classification.
arXiv, 2109.13642.

Denuit, M. and Charpentier, A. (2004). Mathématiques de I’assurance non-vie: Tome | Principes
fondamentaux de théorie du risque. Economica.

Denuit, M., Charpentier, A., and Trufin, J. (2021). Autocalibration and tweedie-dominance for
insurance pricing with machine learning. Insurance: Mathematics & Economics.

Devroye, L., Mehrabian, A., and Reddad, T. (2018). The total variation distance between
high-dimensional gaussians with the same mean. arXiv, 1810.08693.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 567 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R., and Vyncke, D. (2002a). The concept of
comonotonicity in actuarial science and finance: applications. Insurance: Mathematics and
Economics, 31(2):133-161.

Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R., and Vyncke, D. (2002b). The concept of
comonotonicity in actuarial science and finance: theory. Insurance: Mathematics and Economics,
31(1):3-33.

Dieterich, W., Mendoza, C., and Brennan, T. (2016). Compas risk scales: Demonstrating accuracy
equity and predictive parity. Northpointe Inc, 7(7.4):1.

Dostie, G. (1974). Entrevue de michéle lalonde. Le Journal, ler juin 1974.

Dressel, J. and Farid, H. (2018). The accuracy, fairness, and limits of predicting recidivism. Science
advances, 4(1):eaa05580.

Du Bois, W. E. B. (1899). The philadelphia negro. Cosimo, Inc.
Duncan, O. D. (1975). Introduction to structural equation models. Academic Press.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In
Proceedings of the 3rd innovations in theoretical computer science conference, pages 214-226.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 568 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Elliott, M. N., Fremont, A., Morrison, P. A., Pantoja, P., and Lurie, N. (2008). A new method for
estimating race/ethnicity and associated disparities where administrative records lack self-reported
race/ethnicity. Health services research, 43(5p1):1722-1736.

Elliott, M. N., Morrison, P. A., Fremont, A., McCaffrey, D. F., Pantoja, P., and Lurie, N. (2009).
Using the census bureau’s surname list to improve estimates of race/ethnicity and associated
disparities. Health Services and Outcomes Research Methodology, 9:69-83.

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. /EEE
Transactions on Information theory, 49(7):1858-1860.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S. (2017).
Dermatologist-level classification of skin cancer with deep neural networks. nature,
542(7639):115-118.

Feeley, M. and Simon, J. (1994). Actuarial justice: The emerging new criminal law. The futures of
criminology, 173:174.

Feeley, M. M. and Simon, J. (1992). The new penology: Notes on the emerging strategy of corrections
and its implications. Criminology, 30(4):449-474.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 569 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S. (2015).
Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, volume 1412.3756, pages 259-268.

Feller, A., Pierson, E., Corbett-Davies, S., and Goel, S. (2016). A computer program used for bail and
sentencing decisions was labeled biased against blacks. it's actually not that clear. The Washington
Post, October 17.

Fiscella, K. and Fremont, A. M. (2006). Use of geocoding and surname analysis to estimate race and
ethnicity. Health services research, 41(4p1):1482-1500.

Fourcade, M. and Healy, K. (2013). Classification situations: Life-chances in the neoliberal era.
Accounting, Organizations and Society, 38(8):559-572.

Fowlkes, E. B. and Mallows, C. L. (1983). A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association, 78(383):553-569.

Fox, E. T. (2013). 'Piratical Schemes and Contracts’: Pirate Articles and Their Society 1660-1730.
PhD Thesis, University of Exeter.

Francois, P. (2022). Catégorisation, individualisation. retour sur les scores de crédit. hal, 03508245.

Fréchet, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. In Annales
de l'institut Henri Poincaré, volume 10, pages 215-310.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 570 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annales de
I"Université de Lyon, 3e serie, Sciences, Sect. A, 14:53-77.

Freeman, L. C. et al. (1979). Centrality in social networks: Conceptual clarification. Social network:
critical concepts in sociology. Londres: Routledge, 1:238-263.

Freeman, S. (2007). Rawls. Routledge.

Frees, E. W. and Huang, F. (2021). The discriminating (pricing) actuary. North American Actuarial
Journal, pages 1-23.

Gaddis, S. M. (2017). How black are lakisha and jamal? racial perceptions from names used in
correspondence audit studies. Sociological Science, 4:469-489.

Gadet, F. (2007). La variation sociale en frangais. Editions Ophrys.
Galichon, A. (2016). Optimal transport methods in economics. Princeton University Press.

Gandy, O. H. (2016). Coming to terms with chance: Engaging rational discrimination and cumulative
disadvantage. Routledge.

Gangbo, W. (1999). The monge mass transfer problem and its applications. Contemporary
Mathematics, 226:79-104.

Gannon, M. (2016). Race is a social construct, scientists argue. Scientific American, 5:1-11.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 571 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Garrioch, D. (2011). Mutual aid societies in eighteenth-century paris. French History & Civilization, 4.

Gebelein, H. (1941). Das statistische problem der korrelation als variations- und eigenwertproblem und
sein zusammenhang mit der ausgleichsrechnung. ZAMM - Journal of Applied Mathematics and
Mechanics / Zeitschrift fiir Angewandte Mathematik und Mechanik, 21(6):364—-379.

Gilbert, E. N. (1959). Random graphs. The Annals of Mathematical Statistics, 30(4):1141-1144.

Ginsburg, M. (1940). Roman military clubs and their social functions. In Transactions and Proceedings
of the American Philological Association, volume 71, pages 149-156. JSTOR.

Givens, C. R. and Shortt, R. M. (1984). A class of wasserstein metrics for probability distributions.
Michigan Mathematical Journal, 31(2):231-240.

Glenn, B. J. (2000). The shifting rhetoric of insurance denial. Law and Society Review, pages 779-808.

Glenn, B. J. (2003). Postmodernism: the basis of insurance. Risk Management and Insurance Review,
6(2):131-143.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). Probabilistic forecasts, calibration and
sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
69(2):243-268.

Gneiting, T. and Raftery, A. E. (2005). Weather forecasting with ensemble methods. Science,
310(5746):248-249.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 572 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359-378.

Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica, pages
979-1001.

Goldman, A. (1979). Justice and Reverse Discrimination. Princeton University Press.

Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society: Series B
(Methodological), 14(1):107-114.

Gosseries, A. (2014). What makes age discrimination special: A philosophical look at the ecj case law.
Netherlands Journal of Legal Philosophy, 43:59-80.

Gouic, T. L., Loubes, J.-M., and Rigollet, P. (2020). Projection to fairness in statistical learning.
arXiv, 2005.11720.

Gowri, A. (2014). The Irony of Insurance: Community and Commodity. PhD thesis, University of
Southern California.

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Belitski, A., Augath, M., Murayama, Y., Pauls, J.,
Schélkopf, B., and Logothetis, N. (2005). Kernel constrained covariance for dependence
measurement. In International Workshop on Artificial Intelligence and Statistics, pages 112-119.
PMLR.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 573 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Grove, K. and Karcher, H. (1973). How to conjugate ¢ 1-close group actions. Mathematische
Zeitschrift, 132(1):11-20.

Gupta, S., Anderson, R. M., and May, R. M. (1989). Networks of sexual contacts: implications for the
pattern of spread of hiv. Aids, 3(12):807-818.

Hacking, I. (1990). The taming of chance. Number 17. Cambridge University Press.

Hakimi, S. L. (1962). On realizability of a set of integers as degrees of the vertices of a linear graph. i.
Journal of the Society for Industrial and Applied Mathematics, 10(3):496-506.

Hall, K. M. (1970). An r-dimensional quadratic placement algorithm. Management science,
17(3):219-229.

Hannan, E. J. (1961). The general theory of canonical correlation and its relation to functional
analysis. Journal of the Australian Mathematical Society, 2(2):229-242.

Harari, Y. N. (2018). 21 Lessons for the 21st Century. Random House.

Harcourt, B. E. (2015). Risk as a proxy for race: The dangers of risk assessment. Federal Sentencing
Reporter, 27(4):237-243.

Harden, K. P. (2023). Genetic determinism, essentialism and reductionism: semantic clarity for
contested science. Nature Reviews Genetics, 24(3):197-204.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 574 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised learning. Advances
in neural information processing systems, 29:3315-3323.

Hardy, G. H., Littlewood, J. E., Pdlya, G., Pélya, G., et al. (1952). Inequalities. Cambridge university
press.

Harris, T. and Ross, F. (1955). Fundamentals of a method for evaluating rail net capacities. Technical
report.

Havel, V. (1955). A remark on the existence of finite graphs. Casopis pro péstovani’ matematiky,
80:477-480.

Havens, H. V. (1979). Issues and needed improvements in state regulation of the insurance business.
U.S. General Acounting Office.

He, X. D., Kou, S., and Peng, X. (2022). Risk measures: robustness, elicitability, and backtesting.
Annual Review of Statistics and Its Application, 9:141-166.

Hedges, B. A. (1977). Gender discrimination in pension plans: Comment. The Journal of Risk and
Insurance, 44(1):141-144.

Heimer, C. A. (1985). Reactive Risk and Rational Action. University of California Press.

Heller, D. (2015). High price of mandatory auto insurance in predominantly african american
communities. Technical report, Consumer Federation of America.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 575 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Hellinger, E. (1909). Neue begriindung der theorie quadratischer formen von unendlichvielen
veranderlichen. Journal fiir die reine und angewandte Mathematik, 1909(136):210-271.

Henrion, M. (1988). Propagating uncertainty in bayesian networks by probabilistic logic sampling. In
Machine intelligence and pattern recognition, volume 5, pages 149-163. Elsevier.

Hey, R. (1814). Xviii. propositions containing some properties of tangents to circles; and of trapeziums
inscribed in circles, and non-inscribed. together with propositions on the elliptic representations of
circles, upon a plane surface, by perspective. Philosophical Transactions of the Royal Society of
London, (104):348-396.

Higham, N. J. (2008). Functions of matrices: theory and computation. SIAM.

Hill, K. and White, J. (2020). Designed to deceive: do these people look real to you? The New York
Times, 11(21).

Hirschfeld, H. O. (1935). A connection between correlation and contingency. Mathematical
Proceedings of the Cambridge Philosophical Society, 31(4):520-524.

Hoeffding, W. (1940). Masstabinvariante korrelationstheorie. Schriften des Mathematischen Instituts
und Instituts fur Angewandte Mathematik der Universitat Berlin, 5:181-233.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55-67.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 576 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Hoffman, F. L. (1896). Race traits and tendencies of the American Negro, volume 11. American
Economic Association.

Hoffman, F. L. (1918). Mortality from respiratory diseases in dusty trades (inorganic dusts). Number
231. US Government Printing Office.

Hoffman, F. L. (1931). Cancer and smoking habits. Annals of surgery, 93(1):50.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical Association,
81(396):945-960.

Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic regression, volume
398. John Wiley & Sons.

Hubbard, G. N. (1852). De l'organisation des sociétés de bienfaisance ou de secours mutuels et des
bases scientifiques sur lesquelles elles doivent étre établies. Paris, Guillaumin.

Huttegger, S. M. (2013). In defense of reflection. Philosophy of Science, 80(3):413-433.

Imai, K. and Khanna, K. (2016). Improving ecological inference by predicting individual ethnicity from
voter registration records. Political Analysis, 24(2):263-272.

Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences.
Cambridge University Press.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 577 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Ismay, P. (2018). Trust among strangers: friendly societies in modern Britain. Cambridge University
Press.

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des alpes et des jura.
Bulletin de la Société Vaudoise de Sciences Naturelles, 37:547-579.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007):453-461.

Jensen, D. and Mayer, L. (1977). Some variational results and their applications in multiple inference.
The Annals of Statistics, pages 922-931.

Johannesson, G. T. (2013). The history of Iceland. ABC-CLIO.

Jordan, C. (1881). Sur la serie de fourier. Camptes Rendus Hebdomadaires de I'’Academie des
Sciences, 92:228-230.

Kantorovich, L. and Rubinstein, G. (1958). On the space of completely additive functions. Vestnic
Leningrad Univ., Ser. Mat. Mekh. i Astron., 13(7):52-59. In Russian.

Kantorovich, L. V. (1942). On the translocation of masses. In Doklady Akademii Nauk USSR,
volume 37, pages 199-201.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 578 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020). Analyzing and
improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8110-8119.

Kearns, M. and Roth, A. (2019). The ethical algorithm: The science of socially aware algorithm
design. Oxford University Press.

Keren, G. (1991). Calibration and probability judgements: Conceptual and methodological issues. Acta
psychologica, 77(3):217-273.
Kerner, O. (1968). Report of The National Advisory Commission on Civil Disorder. Bantam Books.

Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., and Schélkopf, B. (2017).
Avoiding discrimination through causal reasoning. arXiv, 1706.02744.

Kim, P. T. (2017). Auditing algorithms for discrimination. University of Pennsylvania Law Review,
166:189.

Kimeldorf, G., May, J. H., and Sampson, A. R. (1982). Concordant and discordant monotone
correlations and their evaluation by nonlinear optimization. Studies in the Management Sciences,
19:117-130.

Kimeldorf, G. and Sampson, A. R. (1978). Monotone dependence. The Annals of Statistics, pages
895-903.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 579 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Kitagawa, E. M. (1955). Components of a difference between two rates. Journal of the american
statistical association, 50(272):1168-1194.

Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., and Mullainathan, S. (2017). Human Decisions
and Machine Predictions. The Quarterly Journal of Economics, 133(1):237-293.

Kleinberg, J., Mullainathan, S., and Raghavan, M. (2016). Inherent trade-offs in the fair determination
of risk scores. arXiv, 1609.05807.

Knothe, H. (1957). Contributions to the theory of convex bodies. Michigan Mathematical Journal,
4(1):39-52.

Knott, M. and Smith, C. S. (1984). On the optimal mapping of distributions. Journal of Optimization
Theory and Applications, 43:39-49.

Knowlton, R. E. (1978). Regents of the university of california v. bakke. Arkansas Law Review, 32:499.

Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale
dell’lstituto Italiano degli Attuari, 4:83-91.

Kolmogorov, A. N. (1930). Sur la notion de la moyenne. G. Bardi, tip. della R. Accad. dei Lincei.

Komiyama, J. and Shimao, H. (2017). Two-stage algorithm for fairness-aware machine learning. arXiv,
1710.04924.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 580 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Kranzberg, M. (1986). Technology and history:” kranzberg's laws”. Technology and culture,
27(3):544-560.

Krieger, N., Chen, J. T., Waterman, P. D., Soobader, M.-J., Subramanian, S., and Carson, R. (2002).
Geocoding and monitoring of us socioeconomic inequalities in mortality and cancer incidence: does
the choice of area-based measure and geographic level matter? the public health disparities
geocoding project. American journal of epidemiology, 156(5):471-482.

Kriiger, F. and Ziegel, J. F. (2021). Generic conditions for forecast dominance. Journal of Business &
Economic Statistics, 39(4):972-983.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83-97.

Kuhn, H. W. (1956). Variants of the hungarian method for assignment problems. Naval research
logistics quarterly, 3(4):253-258.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical
Statistics, 22(1):79-86.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 581 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Kumar, A., Liang, P. S., and Ma, T. (2019). Verified uncertainty calibration. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Kusner, M. J., Loftus, J., Russell, C., and Silva, R. (2017). Counterfactual fairness. In Advances in
Neural Information Processing Systems, pages 4066—4076.

Lancaster, H. O. (1957). Some properties of the bivariate normal distribution considered in the form of
a contingency table. Biometrika, 44(1/2):289-292.

Lancaster, H. O. (1958). The Structure of Bivariate Distributions. The Annals of Mathematical
Statistics, 29(3):719 — 736.

Larson, J., Mattu, S., Kirchner, L., and Angwin, J. (2016). How we analyzed the compas recidivism
algorithm. ProPublica, 23-05.

Lauderdale, D. S. and Kestenbaum, B. (2000). Asian american ethnic identification by surname.
Population Research and Policy Review, 19:283-300.

Lee, A. J. (2019). U-statistics: Theory and Practice. CRC Press.

Leeson, P. T. (2009). The calculus of piratical consent: the myth of the myth of social contract.
Public Choice, 139:443-459.

Léon, P. R. (1993). Précis de phonostylistique: parole et expressivité/Pierre R. Léon,.. Nathan.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 582 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Levin, D. A. and Peres, Y. (2017). Markov chains and mixing times, volume 107. American
Mathematical Soc.

Li, G., Braver, E. R., and Chen, L.-H. (2003). Fragility versus excessive crash involvement as
determinants of high death rates per vehicle-mile of travel among older drivers. Accident Analysis &
Prevention, 35(2):227-235.

Li, K. C.-W. (1996). The private insurance industry's tactics against suspected homosexuals: redlining
based on occupation, residence and marital status. American Journal of Law & Medicine,
22(4):477-502.

Lichtenstein, S., Fischhoff, B., and Phillips, L. D. (1977). Calibration of probabilities: The state of the
art. Decision making and change in human affairs, pages 275-324.

Lima, L. F. F. P. d., Ricarte, D. R. D., and Siebra, C. d. A. (2022). An overview on the use of
adversarial learning strategies to ensure fairness in machine learning models. In XVIII Brazilian
Symposium on Information Systems, pages 1-8.

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE Transactions on Information
theory, 37(1):145-151.

Lin, P.-E. (1987). Measures of asociation between vectors. Communications in Statistics-Theory and
Methods, 16(2):321-338.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 583 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Linn, R. L. and Werts, C. E. (1971). Considerations for studies of test bias. Journal of Educational
Measurement, 8(1):1-4.

Lippert-Rasmussen, K. (2020). Making sense of affirmative action. Oxford University Press.
Lombroso, C. (1876). L'uomo delinquente. Hoepli.

Luong, B. T., Ruggieri, S., and Turini, F. (2011). k-nn as an implementation of situation testing for
discrimination discovery and prevention. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 502-510.

Macnicol, J. (2006). Age discrimination: An historical and contemporary analysis. Cambridge
University Press.

Madras, D., Creager, E., Pitassi, T., and Zemel, R. (2018). Learning adversarially fair and transferable
representations. In International Conference on Machine Learning, pages 3384-3393. PMLR.

Martin, G. D. (1977). Gender discrimination in pension plans: Author’s reply. The Journal of Risk and
Insurance, 44(1):145-149.

Martino, S. C., Weinick, R. M., Kanouse, D. E., Brown, J. A., Haviland, A. M., Goldstein, E., Adams,
J. L., Hambarsoomian, K., Klein, D. J., and Elliott, M. N. (2013). Reporting cahps and hedis data
by race/ethnicity for medicare beneficiaries. Health services research, 48(2ptl):417—-434.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 584 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Massey, D. S. (2007). Categorically unequal: The American stratification system. Russell Sage
Foundation.

McCullagh, P. and Nelder, J. (1989). Generalized linear models. Chapman & Hall.

Mcdonald, S. (2015). Indirect gender discrimination and the ‘test-achats ruling’: an examination of the
uk motor insurance market. In Royal Economic Society Conf., Manchester.

McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415-444.

Merriam-Webster (2022). Dictionary.

Mébius, A. F. (1827). Der barycentrische Calcul, ein Hiilfsmittel zur analytischen Behandlung der
Geometrie (etc.). Leipzig: J.A. Barth.

Morris, M. (1995). Data driven network models for the spread of infectious disease. Epidemic models:
their structure and relation to data, 5:302-22.

Mourier, E. (1953). Eléments aléatoires dans un espace de banach. In Annales de I'institut Henri
Poincaré, volume 13, pages 161-244.

Mowbray, A. (1921). Classification of risks as the basis of insurance rate making with special reference
to workmen's compensation. Proceedings of the Casualty Actuarial Society.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 585 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Miiller, A. (1997). Integral probability metrics and their generating classes of functions. Advances in
applied probability, 29(2):429-443.

Murphy, A. H. (1973). A new vector partition of the probability score. Journal of Applied Meteorology
and Climatology, 12(4):595-600.

Murphy, A. H. and Epstein, E. S. (1967). Verification of probabilistic predictions: A brief review.
Journal of Applied Meteorology and Climatology, 6(5):748-755.

Myers, R. J. (1977). Gender discrimination in pension plans: Further comment. The Journal of Risk
and Insurance, 44(1):144-145.

Nagumo, M. (1930). Uber eine klasse der mittelwerte. In Japanese journal of mathematics, volume 7,
pages 71-79. The Mathematical Society of Japan.

Nathan, A. (1952). College Geometry: An Introduction to the Modern Geometry of the Triangle and
the Circle. Barnes & Noble.

National Association of Insurance Commissioners (2011). A consumer’s guide to auto insurance. NAIC
Reports.

National Association of Insurance Commissioners (2022). A consumer's guide to auto insurance. NAIC
Reports.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 586 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Neumann, J. v. and Morgenstern, O. (1947). Theory of games and economic behavior. Princeton
University Press.

Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing.
Econometrica: Journal of the Econometric Society, pages 819-847.

Newman, M. (2018). Networks. Oxford university press.

Newman, M. E. (2003). Mixing patterns in networks. Physical review E, 67(2):026126.

Newman, M. E. (2012). Communities, modules and large-scale structure in networks. Nature physics,
8(1):25-31.

Newman, M. E. and Girvan, M. (2004). Finding and evaluating community structure in networks.
Physical review E, 69(2):026113.

Nielsen, F. (2022). The many faces of information geometry. Notices of the American Mathematical
Society, 69(1):36—45.

Nielsen, F. and Nock, R. (2013). On the chi square and higher-order chi distances for approximating
f-divergences. IEEE Signal Processing Letters, 21(1):10-13.

Oakes, D. (1985). Self-calibrating priors do not exist. Journal of the American Statistical Association,
80(390):339-339.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 587 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic
Review, 14(3):693-709.

of the European Union, C. (2018). Proposal for a council directive on implementing the principle of
equal treatment between persons irrespective of religion or belief, disablility, age or sexual
orientation. Proceedings of Council of the European Union, 11015/08.

Olkin, I. and Pukelsheim, F. (1982). The distance between two random vectors with given dispersion
matrices. Linear Algebra and its Applications, 48:257-263.

O’'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens
democracy. Crown.

Ortiz-Ospina, E. and Beltekian, D. (2018). Why do women live longer than men? Our World in Data.

Pakdaman Naeini, M., Cooper, G., and Hauskrecht, M. (2015). Obtaining well calibrated probabilities
using bayesian binning. Proceedings of the AAAI Conference on Artificial Intelligence,
29(1):2901-2907.

Pardo, L. (2018). Statistical inference based on divergence measures. CRC press.

Parlett, B. and Landis, T. (1982). Methods for scaling to doubly stochastic form. Linear Algebra and
its Applications, 48:53—79.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 588 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Patel, N. V. (2017). Why doctors aren't afraid of better, more efficient ai diagnosing cancer. The
Daily Beast, 11 Dec.

Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning. In
Proceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine,
CA, USA, pages 15-17.

Pearl, J. (2009). Causality. Cambridge university press.
Pearl, J. et al. (2009). Causal inference in statistics: An overview. Statistics surveys, 3:96-146.

Pearl, J. and Mackenzie, D. (2018). The book of why: the new science of cause and effect. Basic
books.

Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the
royal society of London, 58(347-352):240-242.

Perry, W. L. (2013). Predictive policing: The role of crime forecasting in law enforcement operations.
Rand Corporation.

Peters, T. (2014). Playing God?: Genetic determinism and human freedon. Routledge.

Petersen, F., Mukherjee, D., Sun, Y., and Yurochkin, M. (2021). Post-processing for individual
fairness. Advances in Neural Information Processing Systems, 34:25944-25955.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 589 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Plater, M. A. (1997). African-american insurance enterprises: An early vehicle for economic and social
development. Journal of Management History, 3(1):42-58.

Pojman, L. P. (1998). The case against affirmative action. International Journal of Applied
Philosophy, 12(1):97-115.

Polyanskiy, Y. and Wu, Y. (2022). Information theory: From coding to learning. Cambridge University
Press.

Portnoy, S. and Koenker, R. (1997). The gaussian hare and the laplacian tortoise: computability of
squared-error versus absolute-error estimators. Statistical Science, 12(4):279-300.

Prince, A. E. and Schwarcz, D. (2019). Proxy discrimination in the age of artificial intelligence and big
data. lowa Law Review, 105:1257.

Prokhorov, Y. V. (1956). Convergence of random processes and limit theorems in probability theory.
Theory of Probability & Its Applications, 1(2):157-214.

Proschan, M. A. and Presnell, B. (1998). Expect the unexpected from conditional expectation. The
American Statistician, 52(3):248-252.

Rawls, J. (1999). A theory of justice: Revised edition. Harvard university press.
Reichenbach, H. (1956). The direction of time, volume 65. University of California Press.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 590 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Rényi, A. (1959). On measures of dependence. Acta mathematica hungarica, 10(3-4):441-451.

Rényi, A. (1961). On measures of entropy and information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics, volume 4, pages 547-562. University of California Press.

Rhynhart, R. (2020). Mapping the legacy of structural racism in philadelphia. Philadelphia, Office pf
the Controller.

Riach, P. A. and Rich, J. (1991). Measuring discrimination by direct experimental methods: Seeking
gunsmoke. Journal of Post Keynesian Economics, 14(2):143-150.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135-1144.

Rizzo, M. L. and Székely, G. J. (2016). Energy distance. wiley interdisciplinary reviews: Computational
statistics, 8(1):27-38.

Robbins, L. A. (2015). The pernicious problem of ageism. Generations, 39(3):6-9.

Roberts, H. V. (1968). On the meaning of the probability of rain. In first national conference on
statistical meteorology.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 591 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Rorive, 1. (2009). Proving discrimination cases: The role of situation testing. Centre for Equal Rights
and Migration Policy Group.

Rosenbaum, P. (2018). Observation and experiment. Harvard University Press.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The annals of mathematical
statistics, 23(3):470-472.

Ross, S. M. (2014). Introduction to probability models. Academic press.

Rothstein, W. G. (2003). Public health and the risk factor: A history of an uneven medical revolution,
volume 3. Boydell & Brewer.

Rouvroy, A., Berns, T., and Carey-Libbrecht, L. (2013). Algorithmic governmentality and prospects of
emancipation. Réseaux, 177(1):163-196.

Rudin, W. (1966). Real and Complex Analysis. McGraw-hill New York.

Sabbagh, D. (2007). Equality and transparency: A strategic perspective on affirmative action in
American law. Springer.

Santambrogio, F. (2015). Optimal transport for applied mathematicians, volume 55. Springer.

Sarmanov, O. (1958a). Maximum correlation coefficient (non-symmetrical case). Doklady Akademii
Nauk SSSR, 121(1):52-55.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 592 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Sarmanov, O. V. (1958b). The maximum correlation coefficient (symmetrical case). Doklady Akademii
Nauk SSSR, 120(4):715-718.

Schanze, E. (2013). Injustice by generalization: notes on the Test-Achats decision of the european
court of justice. German Law Journal, 14(2):423-433.

Schauer, F. (2006). Profiles, probabilities, and stereotypes. Harvard University Press.

Schervish, M. J. and DeGroot, M. H. (2014). Probability and statistics, volume 563. Pearson
Education London, UK:.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal,
27(3):379-423.
Silver, N. (2012). The signal and the noise: Why so many predictions fail-but some don’t. Penguin.

Simon, J. (1987). The emergence of a risk society-insurance, law, and the state. Socialist Review,
(95):60-89.
Simon, J. (1988). The ideological effects of actuarial practices. Law & Society Review, 22:771.

Sinkhorn, R. (1962). On the factor spaces of the complex doubly stochastic matrices. Notices of the
American Mathematical Society, 9:334-335.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 593 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Sinkhorn, R. (1964). A relationship between arbitrary positive matrices and doubly stochastic matrices.
The annals of mathematical statistics, 35(2):876-879.

Sinkhorn, R. (1966). A relationship between arbitrary positive matrices and stochastic matrices.
Canadian Journal of Mathematics, 18:303-306.

Sinkhorn, R. and Knopp, P. (1967). Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343-348.

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The annals of
mathematical statistics, 19(2):279-281.

Spirtes, P., Glymour, C. N., and Scheines, R. (1993). Causation, prediction, and search. Springer
Verlag.

Squires, G. D. (2003). Racial profiling, insurance style: Insurance redlining and the uneven
development of metropolitan areas. Journal of Urban Affairs, 25(4):391-410.

Squires, G. D. and Chadwick, J. (2006). Linguistic profiling: A continuing tradition of discrimination in
the home insurance industry? Urban Affairs Review, 41(3):400-415.

Squires, G. D. and Velez, W. (1988). Insurance redlining and the process of discrimination. The
Review of Black Political Economy, 16(3):63-75.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 594 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References
Stone, D. A. (1993). The struggle for the soul of health insurance. Journal of Health Politics, Policy
and Law, 18(2):287-317.

Struyck, N. (1912). Les oeuvres de Nicolas Struyck (1687-1769): qui se rapportent au calcul des
chances, a la statistique général, la statistique des déceés et aux rentes viagéter. Société générale
néerlandaise d'assurances sur la vie et de rentes viageres.

Szegedy, C., Zaremba, W., Sutskever, |., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2013).
Intriguing properties of neural networks. arXiv, 1312.6199.

Székely, G. J. (2003). E-statistics: The energy of statistical samples. Bowling Green State University,
Department of Mathematics and Statistics Technical Report, 3(05):1-18.

Tajfel, H. (1978). Differentiation between social groups: Studies in the social psychology of intergroup
relations. Academic Press.

Tajfel, H., Turner, J. C., Worchel, S., Austin, W. G, et al. (1986). Psychology of intergroup relations.
Chicago: Nelson-Hall, pages 7-24.

Takatsu, A. (2008). On wasserstein geometry of the space of gaussian measures. arXiv, 0801.2250.

Takatsu, A. and Yokota, T. (2012). Cone structure of 12-wasserstein spaces. Journal of Topology and
Analysis, 4(02):237-253.

Telles, E. (2014). Pigmentocracies: Ethnicity, race, and color in Latin America. UNC Press Books.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 595 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

The Zebra (2022). Car insurance rating factors by state. https://www.thezebra.com/.

Thiery, Y. and Van Schoubroeck, C. (2006). Fairness and equality in insurance classification. The
Geneva Papers on Risk and Insurance-Issues and Practice, 31(2):190-211.

Thomas, L., Crook, J., and Edelman, D. (2002). Credit scoring and its applications. SIAM.

Thorndike, R. L. (1971). Concepts of culture-fairness. Journal of Educational Measurement,
8(2):63-70.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267—288.

Topkis, D. M. (1998). Supermodularity and complementarity. Princeton university press.

Tschantz, M. C. (2022). What is proxy discrimination? In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency, pages 1993—2003.

Turner, R. (2015). The way to stop discrimination on the basis of race. Stanford Journal of Civil
Rights & Civil Liberties, 11:45.

Tweedie, M. C. K. (1984). An index which distinguishes between some important exponential families.
Statistics: applications and new directions (Calcutta, 1981), pages 579-604.

Tzioumis, K. (2018). Demographic aspects of first names. Scientific data, 5(1):1-9.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 596 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

US Census (2012). Frequently occurring surnames from census 2000, census report data file a: Top
1000 names. Genealogy Data.

Vallender, S. (1974). Calculation of the wasserstein distance between probability distributions on the
line. Theory of Probability & Its Applications, 18(4):784-786.

Van Calster, B., McLernon, D. J., Van Smeden, M., Wynants, L., and Steyerberg, E. W. (2019).
Calibration: the achilles heel of predictive analytics. BMC medicine, 17(1):1-7.

Van Gerven, G. (1993). Case c-109/91, Gerardus Cornelis Ten Oever v. Stichting bedrijfspensioenfonds
voor het glazenwassers-en schoonmaakbedrijf. EUR-Lex, 61991CC0109.

Van Rijsbergen, C. (1979). Information retrieval: theory and practice. In Proceedings of the Joint
IBM/University of Newcastle upon Tyne Seminar on Data Base Systems, volume 79.

Vapnik, V. (1991). Principles of risk minimization for learning theory. Advances in neural information
processing systems, 4.

Verboven, K. (2011). Introduction: Professional collegia: Guilds or social clubs? Ancient Society,
pages 187-195.

Verma, S. and Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm international
workshop on software fairness (fairware), pages 1-7. IEEE.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 597 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Viger, F. and Latapy, M. (2005). Fast generation of random connected graphs with prescribed degrees.
arXiv, 0502085.

Villani, C. (2003). Topics in optimal transportation, volume 58. American Mathematical Society.
Villani, C. (2009). Optimal transport: old and new, volume 338. Springer.

Vogel, R., Bellet, A., Clémen, S., et al. (2021). Learning fair scoring functions: Bipartite ranking under
roc-based fairness constraints. In International Conference on Artificial Intelligence and Statistics,
pages 784-792. PMLR.

Voicu, I. (2018). Using first name information to improve race and ethnicity classification. Statistics
and Public Policy, 5(1):1-13.

von Mises, R. (1928). Wahrscheinlichkeit Statistik und Wahrheit. Springer.
von Mises, R. (1939). Probability, statistics and truth. Macmillan.
von Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295-320.

Wadsworth, C., Vera, F., and Piech, C. (2018). Achieving fairness through adversarial learning: an
application to recidivism prediction. arXiv, 1807.00199.

Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228-1242.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 598 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Wasserstein, L. N. (1969). Markov processes over denumerable products of spaces, describing large
systems of automata. Problemy Peredachi Informatsii, 5(3):64-72.

Watson, D. S., Gultchin, L., Taly, A, and Floridi, L. (2021). Local explanations via necessity and
sufficiency: Unifying theory and practice. Uncertainty in Artificial Intelligence, pages 1382-1392.

Wilkie, D. (1997). Mutuality and solidarity: assessing risks and sharing losses. Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1357):1039-1044.

Wilks, D. S. (1990). On the combination of forecast probabilities for consecutive precipitation periods.
Weather and Forecasting, 5(4):640-650.

Willson, K. (2009). Name law and gender in iceland. UCLA: Center for the Study of Women.

Winkler, J. K., Fink, C., Toberer, F., Enk, A., Deinlein, T., Hofmann-Wellenhof, R., Thomas, L.,
Lallas, A., Blum, A_, Stolz, W., et al. (2019). Association between surgical skin markings in
dermoscopic images and diagnostic performance of a deep learning convolutional neural network for
melanoma recognition. JAMA dermatology, 155(10):1135-1141.

Word, D. L., Coleman, C. D., Nunziata, R., and Kominski, R. (2008). Demographic aspects of
surnames from census 2000. Unpublished manuscript.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 599 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Word, D. L. and Perkins, R. C. (1996). Building a Spanish Surname List for the 1990’s—: A New
Approach to an Old Problem, volume 13. Population Division, US Bureau of the Census
Washington, DC.

Wortham, L. (1986). The economics of insurance classification: The sound of one invisible hand
clapping. Ohio State Law Journal, 47:835.

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20.
Wright, S. (1934). The method of path coefficients. The annals of mathematical statistics,
5(3):161-215.

Wu, Y., Zhang, L., Wu, X., and Tong, H. (2019). Pc-fairness: A unified framework for measuring
causality-based fairness. Advances in Neural Information Processing Systems, 32.

Xu, D., Yuan, S., Zhang, L., and Wu, X. (2018). Fairgan: Fairness-aware generative adversarial
networks. In 2018 IEEE International Conference on Big Data (Big Data), pages 570-575. IEEE.

Xu, H., Liu, X., Li, Y., Jain, A., and Tang, J. (2021). To be robust or to be fair: Towards fairness in
adversarial training. In International conference on machine learning, pages 11492-11501. PMLR.

Xue, Y., Harel, O., and Aseltine Jr, R. H. (2019). Imputing race and ethnic information in
administrative health data. Health Services Research, 54(4):957-963.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 600 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

References

Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of the
Royal Statistical Society, 75(6):579-652.

Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into accurate multiclass probability
estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 694-699.

Zafar, M. B., Valera, |., Gomez-Rodriguez, M., and Gummadi, K. P. (2017). Fairness constraints:
Mechanisms for fair classification. arXiv, 1507.05259.

Zafar, M. B., Valera, |., Gomez-Rodriguez, M., and Gummadi, K. P. (2019). Fairness constraints: A
flexible approach for fair classification. The Journal of Machine Learning Research, 20(1):2737-2778.

Zhang, B. H., Lemoine, B., and Mitchell, M. (2018). Mitigating unwanted biases with adversarial
learning. In Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and Society, pages
335-340.

Zolotarev, V. M. (1976). Metric distances in spaces of random variables and their distributions.
Mathematics of the USSR-Sbornik, 30(3):373.

) freakonometrics  freakonometrics.hypotheses.org — Arthur Charpentier, September 2024 (Warsaw Short Course) 601 / 601


https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/

	Introduction
	Datasets

	Insurance
	Insurance Pricing and Predictive Modeling

	Machine / Statistical Learning
	Statistical Learning
	Loss
	Optimal Transport and Wasserstein distance

	Models
	Insurance Pricing Models

	Data
	Intervention (Rung 2)
	Counterfactuals (Rung 3)

	Sensitive Variables and Proxies
	Explainability
	Racial Discrimination
	Sex and Gender Discrimination
	Age-based Discrimination
	Genetic or Social Identity
	Names, Text and Language
	Pictures
	Spatial Information
	Credit Scoring
	Networks
	Networks
	Random Graphs
	Random Graphs
	Random Graphs
	Homophily
	Networks, without networks
	Statistics with a Network Topology
	Paradoxes in Networks
	Attributed Networks
	Network Centric Fairness Perception

	Group Fairness
	Group Fairness
	Independence and Demographic Parity
	Separation and Equalized Odds
	Sufficiency and Calibration
	Relaxation and Approximate Fairness
	Impossibility theorems

	Individual Fairness
	Individual Fairness
	Mitigating Discrimination
	Mitigating Discrimination
	Pre-Processing
	Post-Processing Mitigation
	In-Processing
	Post-Processing Mitigation

	Non-Observed Sensitive Attributes
	xxxx

	Appendix
	References

