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Reference book

Insurance, Biases, Discrimination and Fairness
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Pitch: Discrimination and fairness of predictive models, in
insurance, in the context of data enrichment (”big data”)
and opaque models (”machine learning”, not to say ”artificial
intelligence”).

Warning: there are probably too many slides...
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Preliminaries

Definition 1.1: Actuaries, Schauer (2006)

To be an actuary is to be a specialist in generalization,
and actuaries engage in a form of decision making that
is sometimes called actuarial. Actuaries guide insurance
companies in making decisions about large categories
that have the e�ect of attributing to the entire cat-
egory certain characteristics that are probabilistically
indicated by membership in the category , but that
still may not be possessed by a particular member of
the category.

See Barry and Charpentier (2020) on personalization of insur-
ance prices.
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Preliminaries

“– Tu la troubles, reprit cette bête cruelle,
Et je sais que de moi tu médis l’an passé.
– Comment l’aurais-je fait si je n’étais pas né ?
Reprit l’Agneau, je tette encor ma mère.
– Si ce n’est toi, c’est donc ton frère.
– Je n’en ai point.
– C’est donc quelqu’un des tiens.”
de La Fontaine (1668), Le Loup et l’Agneau.
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Preliminaries

Definition 1.2: Discrimination, Merriam-Webster (2022)

Discrimination is the act, practice, or an instance of separating or distinguishing
categorically rather than individually.

Discrimination is “the act of treating different groups differently,” Frees and Huang
(2021)

Definition 1.3: Prejudice, Merriam-Webster (2022)

Prejudice is (1) preconceived judgment or opinion, or an adverse opinion or leaning
formed without just grounds or before su�cient knowledge; (2) an instance of
such judgment or opinion; (3) an irrational attitude of hostility directed against
an individual, a group, a race, or their supposed characteristics.
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Preliminaries

Definition 1.4: Disparate treatment, Merriam-Webster (2022)

Disparate treatment corresponds to the treatment of an individual (as an em-
ployee or prospective juror) that is less favorable than treatment of others for
discriminatory reasons (as race, religion, national origin, sex, or disability).

Definition 1.5: Disparate impact, Merriam-Webster (2022)

Disparate impact corresponds to an unnecessary discriminatory e�ect on a pro-
tected class caused by a practice or policy (as in employment or housing) that
appears to be nondiscriminatory.
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Motivation (1. Redlining)

1937 HOLC (Home Owners’ Loan Corporation)
”residential security” map of Philadelphia
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Motivation (1. Redlining)

(Fictitious maps, inspired by a Home Owners’ Loan Corporation map from 1937)
• Federal Home Loan Bank Board (FHLBB) ”residential security maps” (for

real-estate investments), Crossney (2016) and Rhynhart (2020)
• Unsanitary index and proportion of Black inhabitants
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Motivation (1. Redlining)

Redlining was used for loans
but also insurers, Kerner (1968)
“use of a red line around the question-
able areas on territorial maps centrally
located in the Underwriting Division for
ease of reference by all Underwriting
personnel [...] mark off certain areas * *
* to denote a lack of interest in business
arising in these areas In New York these
are called K.O. areas meaning knock-
out areas; in Boston they are called red-
line districts. Same thing – don’t write
the business.”
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Motivation (1. Redlining)

Definition 1.6: Redline, Merriam-Webster (2022)

To redline is (1) to withhold home-loan funds or insurance from neighborhoods
considered poor economic risks; (2) to discriminate against in housing or insur-
ance.

See https://evolutionofraceandinsurance.org/ for some historical perspective, Squires
and Velez (1988), or more recently Squires (2003)

... but still a concern see, e.g., Li (1996) about homosexuals.
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Motivation (2. “Gender directive”, 2004/113/EC)

Treaty on European Union (26.10.2012, C326)

– Article 2 –

The Union is founded on the values of respect for human dignity, free-

dom, democracy, equality, the rule of law and respect for human rights,

including the rights of persons belonging to minorities. These values

are common to the Member States in a society in which pluralism,

non-discrimination, tolerance, justice, solidarity and equality between

women and men prevail.

– Article 3 –

(...) It shall combat social exclusion and discrimination, and shall promote

social justice and protection, equality between women and men, solidarity

between generations and protection of the rights of the child.
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Motivation (2. “Gender directive”, 2004/113/EC)
Charter of Fundamental Rights of the European Union (18.12.2000 , C364)

– Article 21 (Non discrimination) –

Any discrimination based on any ground such as sex, race, colour, ethnic or

social origin, genetic features, language, religion or belief, political or any

other opinion, membership of a national minority, property, birth, disability,

age or sexual orientation shall be prohibited.

– Article 23 (Equality between men and women) –

Equality between men and women must be ensured in all areas, including

employment, work and pay.

The principle of equality shall not prevent the maintenance or adoption of

measures providing for specific advantages in favour of the under-represented

sex.
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Motivation (2. “Gender directive”, 2004/113/EC)
EU Directive (2004/113/EC), 2004 version

– Article 5 (Actuarial factors) –

1. Member States shall ensure that in all new contracts concluded after 21

December 2007 at the latest, the use of sex as a factor in the calculation of

premiums and benefits for the purposes of insurance and related financial

services shall not result in differences in individuals’ premiums and benefits.

2. Notwithstanding paragraph 1, Member States may decide before 21

December 2007 to permit proportionate differences in individuals’ premiums

and benefits where the use of sex is a determining factor in the assessment of

risk based on relevant and accurate actuarial and statistical data. The

Member States concerned shall inform the Commission and ensure that

accurate data relevant to the use of sex as a determining actuarial factor are

compiled, published and regularly updated.
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Motivation (2. “Gender directive”, 2004/113/EC)

There was initially (2004) an opt-out clause (Article 5(2)).

Where gender is a determining factor in the assessment of risk based on relevant and
accurate actuarial and statistical data then proportionate di�erences in individual
premiums or benefits are allowed.

March 2011, the European Court of Justice issued its judgement into the “Test-Achats
case”. The ECJ ruled Article 5(2) was invalid.

Insurers were no longer able to use gender as a risk factor when pricing policies,
”unisex pricing”.

”Machine learning won’t give you anything like gender neutrality ‘for free’ that you
didn’t explicitly ask for ”, Kearns and Roth (2019)
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Motivation (2. “Gender directive”, 2004/113/EC)

“Ten Oever” judgement (Gerardus Cornelis Ten Oever v
Stichting Bedrijfspensioenfonds voor het Glazenwassers – en
Schoonmaakbedrijf, in April 1993), the Advocate General
Van Gerven argued that “the fact that women generally live
longer than men has no significance at all for the life ex-
pectancy of a specific individual and it is not acceptable for
an individual to be penalized on account of assumptions which
are not certain to be true in his specific case,” as mentioned
in De Baere and Goessens (2011).

Schanze (2013) used the term “injustice by generalization,” from Britz (2008)
(”Generalisierungsunrecht”)
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Motivation (2. “Gender directive”, 2004/113/EC)

(data source: Mcdonald (2015))
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Motivation (3. Québec)

Au Québec, Charte des droits et libertés de la personne (C-12)

– Article 20.1 –

In an insurance or pension contract, a social benefits plan, a retirement,

pension or insurance plan, or a public pension or public insurance plan,

a distinction, exclusion or preference based on age, sex or civil status is

deemed non-discriminatory where the use thereof is warranted and the

basis therefor is a risk determination factor based on actuarial data
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Motivation (4. Colorado)

Andrus et al. (2021), ”What we can’t measure, we can’t un-
derstand”

September 27, 2023, the Colorado Division of Insurance ex-
posed a new proposed regulation entitled Concerning Quan-
titative Testing of External Consumer Data and Information
Sources, Algorithms, and Predictive Models Used for Life In-
surance Underwriting for Unfairly Discriminatory Outcomes
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Motivation (4. Colorado)

– Section 4 (Definitions) –

Bayesian Improved First Name Surname Geocoding, or “BIFSG” means, for
the purposes of this regulation, the statistical methodology developed by the
RAND corporation for estimating race and ethnicity.

External Consumer Data and Information Source, or “ECDIS” means, for the
purposes of this regulation, a data source or an information source that is used
by a life insurer to supplement or supplant traditional underwriting factors.
This term includes credit scores, credit history, social media habits, purchasing
habits, home ownership, educational attainment, licensures, civil judgments,
court records, occupation that does not have a direct relationship to mortality,
morbidity or longevity risk, consumer-generated Internet of Things data,
biometric data, and any insurance risk scores derived by the insurer or
third-party from the above listed or similar data and/or information source.
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Motivation (4. Colorado)

– Section 5 (Estimating Race and Ethnicity) –

Insurers shall estimate the race or ethnicity of all proposed insureds that have
applied for coverage on or after the insurer’s initial adoption of the use of
ECDIS, or algorithms and predictive models that use ECDIS, including a third
party acting on behalf of the insurer that used ECDIS, or algorithms and
predictive models that used ECDIS, in the underwriting decision-making
process, by utilizing:
1. BIFSG and the insureds’ or proposed insureds’ name and geolocation
(information included in the applications) for life insurance shall be used to
estimate the race and ethnicity of each insured or proposed insured.
2. For the purposes of BIFSG, the following racial and ethnic categories shall
be used: Hispanic, Black, Asian Pacific Islander (API), and White.
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Motivation (4. Colorado)
– Section 6 (Application Approval Decision Testing Requirements) –

Using the BIFSG estimated race and ethnicity of proposed insureds and the
following methodology, insurers shall calculate whether Hispanic, Black, and
API proposed insureds are disapproved at a statistically significant different
rate relative to White applicants for whom the insurer, or a third party acting
on behalf of the insurer, used ECDIS, or an algorithm or predictive model that
used ECDIS, in the underwriting decision-making process.
1. Logistic regression shall be used to model the binary underwriting outcome
of either approved or denied.
2. The following factors may be accounted for as control variables in the
regression model: policy type, face amount, age, gender, and tobacco use.
3. The estimated race or ethnicity of the proposed insureds shall be accounted
for by including Hispanic, Black, and Asian Pacific Islander (API) as separate
dummy variables in the regression model.
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Motivation (4. Colorado)

4. Determine if there is a statistically significant difference in approval rates for
each BIFSG estimated race or ethnicity variable as indicated by a p-value of
less than .05.

a. If there is not a statistically significant difference in approval rates, no
further testing is required.

b. If there is a statistically significant difference in approval rates, the
insurer shall determine whether the difference in approval rates is five (5)
percentage points or greater as indicated by the marginal effects value of each
BIFSG estimated race or ethnicity variable. (...)
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Motivation (4. Colorado)
– Section 7 (Premium Rate Testing Requirements) –

Using the insureds’ BIFSG estimated race and ethnicity, insurers shall
determine if there is a statistically significant difference in the premium rate
per $1,000 of face amount for policies issued to Hispanic, Black, and API
insureds relative to White insureds for whom the insurer, or a third party
acting on behalf of the insurer, used ECDIS, or an algorithm or predictive
model that used ECDIS, in the underwriting decision-making process.
1. Linear regression shall be used to model the continuous numerical outcome
of premium rate per $1,000 of face amount.
2. The following factors may be accounted for as control variables in the
regression model: policy type, face amount, age, gender, and tobacco use.
3. The estimated race or ethnicity of the proposed insureds shall be accounted
for by including Hispanic, Black, and Asian Pacific Islander (API) as separate
dummy variables in the regression model.
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Motivation (4. Colorado)

4. Determine if there is a statistically significant difference in the premium rate
per $1,000 of face amount for each BIFSG estimated race or ethnicity variable
as indicated by a p-value of less than .05.

a. If there is not a statistically significant difference in premium rate per
$1,000 of face amount, no further testing is required.

b. If there is a statistically significant difference in premium rate per $1,000
of face amount, determine whether the premium rate per $1,000 of face amount
is at least 5% more than the average premium rate per $1,000 for all policies.

i. If the difference in premium rate per $1,000 of face amount is less
than 5%, no further testing is required.

ii. If the difference in premium rate per $1,000 of face amount is 5% or
greater, further testing is required as described in Section 8.
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Motivation (4. Colorado)

In Elliott et al. (2009), BIFSG1, library(eiCompare) . �, consider 12 people living near
Atlanta, GA (Fulton & Gwinnett counties), and eiCompare::wru predict race wrapper

1 last first county city zipcode whi bla his asi
2 1 LOCKLER GABRIELLA Fulton Atlanta 30318 0 0 0 0
3 2 RADLEY OLIVIA Fulton Fairburn 30213 14 83 1 0
4 3 BOORSE KEISHA Fulton Atlanta 30331 97 0 3 0
5 4 MAZ SAVANNAH Gwinnett Norcross 30093 5 6 76 13
6 5 GAULE NATASHIA Gwinnett Snellville 30078 67 19 14 0
7 6 MCMELLEN ISMAEL Gwinnett Lilburn 30047 73 15 6 3
8 7 RIDEOUT LUQMAN Gwinnett Snellville 30078 77 18 2 0
9 8 WASHINGTON BRYN Gwinnett Norcross 30093 0 95 3 0

10 9 KULENOVIC EVELYN Gwinnett Buford 30518 100 0 0 0
11 10 HERNANDEZ SAMANTHA Gwinnett Duluth 30096 3 1 94 1
12 11 LONG BESSIE Gwinnett Duluth 30096 53 39 1 1
13 12 HE JOSE Gwinnett Lawrenceville 30045 2 3 4 89

1Bayesian Improved First Name Surname Geocoding
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Motivation (3. Colorado)

We have 12 people,
in two counties near Atlanta
(about 10 zip-codes)
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Motivation (3. Colorado)

Use eiCompare::wru predict race wrapper on a revised dataset with the same name
“Savannah Maz”

1 last first county city zipcode whi bla his asi
2 1 MAZ SAVANNAH Fulton Atlanta 30318 0 0 0 100
3 2 MAZ SAVANNAH Fulton Fairburn 30213 13 61 22 3
4 3 MAZ SAVANNAH Fulton Atlanta 30331 3 77 19 1
5 4 MAZ SAVANNAH Gwinnett Norcross 30093 5 6 76 13
6 5 MAZ SAVANNAH Gwinnett Snellville 30078 13 18 69 0
7 6 MAZ SAVANNAH Gwinnett Lilburn 30047 28 22 34 16
8 7 MAZ SAVANNAH Gwinnett Snellville 30078 53 3 40 3
9 8 MAZ SAVANNAH Gwinnett Norcross 30093 5 6 76 13

10 9 MAZ SAVANNAH Gwinnett Buford 30518 79 4 14 2
11 10 MAZ SAVANNAH Gwinnett Duluth 30096 32 8 38 22
12 11 MAZ SAVANNAH Gwinnett Duluth 30096 55 19 22 5
13 12 MAZ SAVANNAH Gwinnett Lawrenceville 30045 15 19 62 4
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Motivation (3. Colorado)

Use eiCompare::wru predict race wrapper on a revised dataset with the same name
“Bryn Washington”

1 last first county city zipcode whi bla his asi
2 1 WASHINGTON BRYN Fulton Atlanta 30318 0 0 0 100
3 2 WASHINGTON BRYN Fulton Fairburn 30213 0 99 0 0
4 3 WASHINGTON BRYN Fulton Atlanta 30331 0 99 0 0
5 4 WASHINGTON BRYN Gwinnett Norcross 30093 0 95 3 0
6 5 WASHINGTON BRYN Gwinnett Snellville 30078 0 96 1 0
7 6 WASHINGTON BRYN Gwinnett Lilburn 30047 1 98 0 0
8 7 WASHINGTON BRYN Gwinnett Snellville 30078 6 87 2 0
9 8 WASHINGTON BRYN Gwinnett Norcross 30093 0 95 3 0

10 9 WASHINGTON BRYN Gwinnett Buford 30518 7 92 1 0
11 10 WASHINGTON BRYN Gwinnett Duluth 30096 2 96 1 0
12 11 WASHINGTON BRYN Gwinnett Duluth 30096 1 96 0 0
13 12 WASHINGTON BRYN Gwinnett Lawrenceville 30045 0 98 1 0
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Motivation (3. Colorado)

Use eiCompare::wru predict race wrapper on a revised dataset with the same name
“Samantha Hernandez”

1 last first county city zipcode whi bla his asi
2 1 HERNANDEZ SAMANTHA Fulton Atlanta 30318 0 0 0 100
3 2 HERNANDEZ SAMANTHA Fulton Fairburn 30213 2 12 85 0
4 3 HERNANDEZ SAMANTHA Fulton Atlanta 30331 0 16 81 0
5 4 HERNANDEZ SAMANTHA Gwinnett Norcross 30093 0 0 99 0
6 5 HERNANDEZ SAMANTHA Gwinnett Snellville 30078 1 1 97 0
7 6 HERNANDEZ SAMANTHA Gwinnett Lilburn 30047 3 3 92 1
8 7 HERNANDEZ SAMANTHA Gwinnett Snellville 30078 5 0 94 0
9 8 HERNANDEZ SAMANTHA Gwinnett Norcross 30093 0 0 99 0

10 9 HERNANDEZ SAMANTHA Gwinnett Buford 30518 17 1 81 0
11 10 HERNANDEZ SAMANTHA Gwinnett Duluth 30096 3 1 94 1
12 11 HERNANDEZ SAMANTHA Gwinnett Duluth 30096 8 4 86 0
13 12 HERNANDEZ SAMANTHA Gwinnett Lawrenceville 30045 1 2 97 0

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 29 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Motivation (3. Colorado)

Use eiCompare::wru predict race wrapper on a revised dataset with the same name
“Jose He”

1 last first county city zipcode whi bla his asi
2 1 HE JOSE Fulton Atlanta 30318 0 0 0 100
3 2 HE JOSE Fulton Fairburn 30213 2 9 2 84
4 3 HE JOSE Fulton Atlanta 30331 1 27 3 55
5 4 HE JOSE Gwinnett Norcross 30093 0 0 2 98
6 5 HE JOSE Gwinnett Snellville 30078 13 18 30 0
7 6 HE JOSE Gwinnett Lilburn 30047 1 1 1 97
8 7 HE JOSE Gwinnett Snellville 30078 8 1 3 86
9 8 HE JOSE Gwinnett Norcross 30093 0 0 2 98

10 9 HE JOSE Gwinnett Buford 30518 19 1 2 78
11 10 HE JOSE Gwinnett Duluth 30096 1 0 0 98
12 11 HE JOSE Gwinnett Duluth 30096 6 2 1 85
13 12 HE JOSE Gwinnett Lawrenceville 30045 2 3 4 89
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Motivation (5. Motor Insurance in the U.S.)
via The Zebra (2022),

see also � Avraham et al. (2013)
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Motivation (5. Motor Insurance in the U.S.)
CA HI GA NC NY MA PA FL TX AL ON NB NL QC

Gender ⇤ ⇤ ⇤3 ⇤ ⇤3 ⇤ ⇤ ⇤3 ⇤3 ⇤3 ⇤3 ⇤ ⇤ ⇤3
Age ⇤ ⇤ ⇤3 ⇤ú ⇤3 ⇤ ⇤3 ⇤3 ⇤3 ⇤3ú ⇤3 ⇤ ⇤ ⇤3
Driving experience ⇤3 ⇤ ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3
Credit history ⇤ ⇤ ⇤3 ⇤3 ⇤3 ⇤ ⇤3ú ⇤3 ⇤3 ⇤ú ⇤ ⇤3ú ⇤ ⇤3
Education ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3
Occupation ⇤ ⇤ ⇤ ⇤3 ⇤ ⇤ ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3
Employment status ⇤ ⇤ ⇤ ⇤3 ⇤ ⇤ ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3
Marital status ⇤3 ⇤ ⇤3 ⇤3 ⇤3 ⇤ ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3
Housing situation ⇤ ⇤ ⇤3 ⇤3 ⇤3 ⇤ ⇤3 ⇤3 ⇤3 ⇤ ⇤ ⇤3 ⇤3 ⇤3
Address/ZIP code ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤ ⇤ ⇤3 ⇤3 ⇤3
Insurance history ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3 ⇤3
CA: California, HI: Hawaii, GA: Georgia, NC: North Carolina, NY: New York, MA: Massachusetts, PA:
Pennsylvania, FL: Florida, TX: Texas, AL: Alberta, ON: Ontario, NB: New-Brunswick, NL:
Newfoundland-Labrador, QC: Québec,
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Motivation (6. Admission in Graduate Program, UC Berkeley)

Bickel et al. (1975)
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Motivation (6. Admission in Graduate Program, UC Berkeley)

Total Men Women Proportions
Total 5233/12763 ≥ 41% 3714/8442 ≥ 44% 1512/4321 ≥ 35% 66%-34%
Top 6 1745/4526 ≥ 39% 1198/2691 ≥ 45% 557/1835 ≥ 30% 59%-41%

A 597/933 ≥ 64% 512/825 ≥ 62% 89/108 ≥ 82% 88%-12%
B 369/585 ≥ 63% 353/560 ≥ 63% 17/ 25 ≥ 68% 96%- 4%
C 321/918 ≥ 35% 120/325 ≥ 37% 202/593 ≥ 34% 35%-65%
D 269/792 ≥ 34% 138/417 ≥ 33% 131/375 ≥ 35% 53%-47%
E 146/584 ≥ 25% 53/191 ≥ 28% 94/393 ≥ 24% 33%-67%
F 43/714 ≥ 6% 22/373 ≥ 6% 24/341 ≥ 7% 52%-48%

Data from Bickel et al. (1975) (discussed as an illustration of ”Simpson’s paradox”)

Formalize the later, S is the (binary) genre, Y the admission and X the program
(category),
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Motivation (6. Admission in Graduate Program, UC Berkeley)

P[ Y = yes | S = men ] Ø P[ Y = yes | S = women ]

overall admission

sensitivesensitive

P[ Y = yes | X = x , S = men ] Æ P[ Y = yes | X = x , S = women ], ’x .

conditional on program

“the bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole, but
apparently from prior screening at earlier levels of the educational system.
Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects,” Bickel et al. (1975)
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Motivation (6’. Admission in hospitals)
Consider the following mortality rates in two hospitals (fake data)

Total Healthy Pre-condition Proportions
Hospital A 800/1000 = 80% 590/600 ≥ 98% 210/400 ≥ 53% 60%-40%
Hospital B 900/1000 = 90% 870/900 ≥ 97% 30/100 ≥ 30% 90%-10%

There is no mathematical ”paradox”, per se.
We could have

A
B Ø

a
b and C

D Ø
c
d

and at the same time

A + C
B + D Æ

a + c
b + d
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Motivation (6”. Mortality in Costa Rica and Sweden)

Overall mortality rate for women, 8.12‰ in Costa Rica, against 9.29‰ in Sweden.
� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 37 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Motivation (7. Propublica, Actuarial Justice)
Concept of ”actuarial justice”

as coined in Feeley and Simon (1994)
Correctional O�ender Management

Profiling for Alternative Sanctions
(COMPAS), Perry (2013)

� https://github.com/propublica/compas-analysis
Angwin et al. (2016) Machine Bias

Dressel and Farid (2018)
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Motivation (7. Propublica, Actuarial Justice)

From Feller et al. (2016),
• for White people, among those who

did not re-o�end, 22% were wrongly
classified,

• for Black people, among those who
did not re-o�end, 42% were wrongly
classified,

• problem, since 42% ∫ 22%
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Motivation (7. Propublica, Actuarial Justice)

From Dieterich et al. (2016),
• for White people, among those who

where classified as high risk, 40% did
not re-o�end,

• for Black people, among those who
where classified as high risk, 35% did
not re-o�end,

• no problem, since 40% ¥ 35%

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 40 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Motivation (7. Propublica, Actuarial Justice)

Formalize the later,
Y
__]

__[

S : race (binary), black & white
Y : re-o�ense (binary), no & yes
‚Y : classifier (risk category), low & high

P[ ‚Y = high|Y = no , S = black ] = 42% ?= P[ ‚Y = high|Y = no , S = white ] = 22%,

false positive rate

sensitivesensitive

P[ Y = no| ‚Y = high , S = black ] = 35% ?= P[ Y = no| ‚Y = high , S = white ] = 40%.

false discovery rate
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Motivation (7. Propublica, Actuarial Justice)

Look at score distributions, black and white defendant, Larson et al. (2016) �.
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Motivation (7. Propublica, Actuarial Justice)

Look at score distributions, black and white defendant, Larson et al. (2016) �.
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Motivation (7. Propublica, Actuarial Justice)

Cox Proportional Hazards model, black and white defendant, Larson et al. (2016) �.
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Motivation (7. Propublica, Actuarial Justice)

Cox Proportional Hazards model, black and white defendant, Larson et al. (2016) �.
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Motivation (8. Intention)
En France, Loi n¶ 2008-496 du 27 mai 2008

– Article 1 –

Constitue une discrimination indirecte une disposition, un critère ou une
pratique neutre en apparence, mais susceptible d’entraı̂ner, pour l’un des motifs
mentionnés au premier alinéa, un désavantage particulier pour des personnes
par rapport à d’autres personnes, à moins que cette disposition, ce critère ou
cette pratique ne soit objectivement justifié par un but légitime et que les
moyens pour réaliser ce but ne soient nécessaires et appropriés.

Extention de la ”Loi n¶ 72-546 du 1 juillet 1972”, qui supprima l’exigence de
l’intention spécifique.

”Technology is neither good nor bad; nor is it neutral ” , Kranzberg (1986)
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Motivation (9. Biases, biases everywhere...)

underwriters biases
• commercial discounts
• inferred data
• multiple decisions

claims biases
• fraud detection
• sexist mechanic
• ageist manager

policy sensitive

underwriting database

policy

claims database

id
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Datasets
toydata1
Consider a confounding Gaussian variable X0, X0 ≥ N (0, 1), and

Y
__]

__[

X = X0 + ‘, ‘ ≥ N (0, 1/22),
S = 1(X0 + ÷ > 0), ÷ ≥ N (0, 1/22), s œ {A, B},

Y = 1(X0 + ‹ > 0), ‹ ≥ N (0, 1/22), y œ {0, 1}.

x ‘æ P[Y = 0|X = x ] (left-hand side) and x ‘æ P[S = A|X = x ] (right-hand side)
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Datasets
toydata2

• binary sensitive attribute, s œ {A, B}, (60% and 40%)
• (x1, x3) ≥ N (µs , �s), rs=A = 0.4 and rs=B = 0.7
• x2 ≥ U([0, 10]), independent of x1 and x3
• ÷ = —0 + —1x1 + —2x2 + —3x2

1 + —41B(s), that does not depend on x3
• y ≥ B(p) where p = exp(÷)/[1 + exp(÷)] = µ(x1, x2, s).
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Datasets

Five models are considered
• plain GLM (logistic)
• GAM (cubic splines)
• CART (classification tree)
• RF (random forest)
• GBM (gradient boosting)
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Datasets

GermanCredit , m = 1, 000
• binary sensitive attribute, s œ {A, B}, (64% and 36%) corresponding to gender
• y denotes a default (30%)
• x1, · · · , xk denote legitimate credit variables (Duration, Purpose, Credit amount,

Age, Housing, Existing credits, Foreign worker, Resident since, etc)
FrenchMotor (policy observe over one year), n = 12, 437

• binary sensitive attribute, s œ {A, B}, (31% and 69%) corresponding to gender
• y denotes the occurrence of a car accident (8.67%, unbalanced data)
• x1, · · · , xk denote legitimate credit variables (MariStat, VehAge, SocioCateg,

DrivAge, VehBody, VehEnergy, VehMaxSpeed, Garage, VehUsage, etc)
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– Part 1 –

Insurance
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Discrimination and Insurance

”What is unique about insurance is that even statistical
discrimination which by definition is absent of any ma-
licious intentions, poses significant moral and legal chal-
lenges. Why? Because on the one hand, policy makers
would like insurers to treat their insureds equally, with-
out discriminating based on race, gender, age, or other
characteristics, even if it makes statistical sense to dis-
criminate (...) On the other hand, at the core of insurance
business lies discrimination between risky and non-risky
insureds. But riskiness often statistically correlates with
the same characteristics policy makers would like to pro-
hibit insurers from taking into account.” Avraham (2017)
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Discrimination and Insurance
Solidarity
The political philosophy of the early twentieth century, condensed into the concept
of solidarity, sought to o�er both a scientific theory of social interdependence and
a moral solution to social problems. According to some scholars, the emergence
of this new rationality was made possible by the concept of social risk and the
idea and technology of insurance developed to manage it. Social risk is defined
as the risk to a group of people, statistically speaking, which is caused in one way
or another by their living together and which can be mitigated by a technique of
joint and several liability such as insurance.
The way insurance works requires individuals to take a collective responsibility
or the events they feel the need to prepare for. Society can be said to have
become ’modern’ when insurance becomes social insurance and when, thanks to
the techniques and institutions of insurance, the insurance model becomes both
a symbolic and a functional basis for the social contract.
(...)
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Discrimination and Insurance

(...)
Solidarity and justice are key principles underpinning the insurance system, ac-
cording to Risto Pelkonen and Timo Somer. In the context of voluntary personal
insurance, solidarity means that the insured share the benefits and costs between
themselves, while justice means that each insured contributes to the costs accord-
ing to the actuarial probability. Social insurance, on the other hand, is available
to all citizens, regardless of their choice and health status, as the costs are cov-
ered by tax revenues and statutory contributions. �
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Discrimination and Insurance
Definition 2.1: Mutuality, Wilkie (1997)

Mutuality is considered as the normal form of commercial private insurance, where
participants contribute to the risk pool through a premium that relates to their
particular risk at the time of the application, i.e., the higher the risk that they
bring to the pool, the higher the premium required.

Definition 2.2: Solidarity, Wilkie (1997)

Solidarity is the basis of most national or social insurance schemes. Participation
in such state-run schemes is generally compulsory and individuals have no dis-
cretion over their level of cover. All participants normally have the same level of
cover. In solidarity schemes the contributions are not based on the expected risk
of each participant.
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Insurance Pricing and Predictive Modeling

“Humans think in stories rather than facts, numbers or equations - and the
simpler the story, the better,” Harari (2018). For insurers, it is often a mixture of
both.

For Glenn (2000), insurer’s risk selection process has two sides:
• the one presented to regulators and policyholders (numbers, statistics and

objectivity),
• the other presented to underwriters (stories, character and subjective judgment).

The rhetoric of insurance exclusion – numbers, objectivity and statistics – forms what
Brian Glenn calls “the myth of the actuary,” “a powerful rhetorical situation in
which decisions appear to be based on objectively determined criteria when they
are also largely based on subjective ones” or “the subjective nature of a
seemingly objective process”.
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Insurance Pricing and Predictive Modeling

Glenn (2003) claimed that there are many ways to rate accurately. Insurers can rate
risks in many di�erent ways depending on the stories they tell on which characteristics
are important and which are not. “The fact that the selection of risk factors is
subjective and contingent upon narratives of risk and responsibility has in the
past played a far larger role than whether or not someone with a wood stove is
charged higher premiums.” Going further, “virtually every aspect of the
insurance industry is predicated on stories first and then numbers.”

“all models are wrong but some models are useful,” Box et al. (2011) (in other
words, any model is at best a useful fable).
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Insurance Pricing and Predictive Modeling
Definition 2.3: Pure premium (homogeneous risks)

Let Y be the non-negative random variable corresponding to the total annual loss
associated with a given policy, then the pure premium is E[Y ].

Proposition 2.1: Law of Large Numbers (2)

Consider an infinite collection of i.i.d. random variables Y , Y1, Y2, · · · , Yn, · · · in
a probabilistic space (�, F ,P), with finite expected value, then

1
n

nÿ

i=1
Yi

¸ ˚˙ ˝
(empirical) average

a.s.
≠æ E(Y )

¸ ˚˙ ˝
expected value

, as n æ Œ.
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Insurance Pricing and Predictive Modeling

Expected Value
In probability theory, the expected value is a generalization of the weighted aver-
age. Informally, the expected value is the arithmetic mean of the possible values
a random variable can take, weighted by the probability of those outcomes �

Following the “law of the unconscious statistician,” in Schervish and DeGroot
(2014), for some g ,

E[g(Y )] =
⁄

Œ

≠Œ

g(y)fY (y) dy =
⁄

Œ

≠Œ

g(y) dFY (y).
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Insurance Pricing and Predictive Modeling

More realistically, population is heterogeneous (with respect to risks), with some
covariates x (legitimate, or not).

Definition 2.4: Pure premium (heterogeneous risks)

Let Y be the non-negative random variable corresponding to the total annual
loss associated with a given policy, with covariates x, then the pure premium is
µ(x) = E[Y |X = x].

In this general setting, x consist in numeric or categorical variables.
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Insurance Pricing and Predictive Modeling

Proposition 2.2: Law of Large Numbers (2’)

Consider an infinite collection of i.i.d. random pairs (X , Y ), (X1, Y1),
(X2, Y2), · · · , (Xn, Yn), · · · in a probabilistic space (�, F ,P), with finite expected
value, then for any A µ X such that P[X œ A] > 0,

nÿ

i=1
Yi1(X i œ A)

nÿ

i=1
1(X i œ A)

= 1
nA

ÿ

iœIn(A)
Yi

¸ ˚˙ ˝
conditional average

a.s.
≠æ E(Y |X œ A)

¸ ˚˙ ˝
conditional expected value

, as n æ Œ,

where In(A) = {i : X i œ A} µ {1, 2, · · · , n} and nA = Card(In(A)).
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Insurance Pricing and Predictive Modeling

Excerpt from the Men and Women life tables in 1720 (source:
Struyck (1912)). Mortality, as a function of the age and the gender
of the individual.
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Insurance Pricing and Predictive Modeling

Excerpt from the Men and Women life tables in 1720 (source: Struyck (1912))
Mortality, as a function of the age and the gender of the individual.

men
x Lx 5px x Lx 5px
0 1000 29.0% 45 371 16.6%
5 710 5.6% 50 313 19.2%

10 670 4.2% 55 253 22.9%
15 642 5.5% 60 195 27.2%
20 607 6.6% 65 142 31.7%
25 567 7.9% 70 97 37.1%
30 522 9.2% 75 61 45.9%
35 474 10.5% 80 33 51.5%
40 424 12.5% 85 16

women
x Lx 5px x Lx 5px
0 1000 28.9% 45 423 11.8%
5 711 5.2% 50 373 14.7%

10 674 3.3% 55 318 18.2%
15 652 4.3% 60 260 21.2%
20 624 5.8% 65 205 26.8%
25 588 6.8% 70 150 33.3%
30 548 7.3% 75 100 45.0%
35 508 7.9% 80 55 56.4%
40 468 9.6% 85 24
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Insurance Pricing and Predictive Modeling
Excerpt from the Men and Women life tables in 2016 (source: Blanpain (2018))

Mortality, as a function of the age, the gender and the wealth of the individual.

men
x 0-5% 45-50% 95-100%
0 100000 100000 100000
10 99299 99566 99619
20 99024 99396 99469
30 97930 98878 99094
40 95595 98058 98627
50 90031 96172 97757
60 77943 91050 95649
70 59824 79805 90399
80 38548 59103 76115
90 13337 23526 38837
100 530 1308 3231

women
x 0-5% 45-50% 95-100%
0 100000 100000 100000
10 99385 99608 99623
20 99227 99506 99526
30 98814 99302 99340
40 97893 98960 99074
50 95021 97959 98472
60 88786 95543 97192
70 79037 90408 94146
80 63224 79117 85825
90 31190 45750 55918
100 2935 5433 8717
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Force of mortality (log scale) for various income quantile, in France, Blanpain (2018).
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Mortality, gender and “race”

Frederick L. Ho�man
Ho�man (1896, 1918, 1931)
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White, men
x Lx 5px x Lx 5px
0 100000 2.3% 55 83001 8.5%
5 97671 0.2% 60 75969 12.7%

10 97441 0.2% 65 66343 18.4%
15 97208 0.7% 70 54138 25.5%
20 96480 1.0% 75 40324 35.8%
25 95524 0.8% 80 25885 47.7%
30 94716 0.9% 85 13527 62.1%
35 93843 1.3% 90 5125 75.1%
40 92631 2.1% 95 1274 85.2%
45 90725 3.3% 100 189 90.5%
50 87690 5.3% 105 18 100.0%

“Negro”, men
x Lx 5px x Lx 5px
0 100000 4.2% 55 66101 13.1%
5 95826 0.3% 60 57457 17.4%

10 95497 0.4% 65 47485 22.2%
15 95161 1.2% 70 36925 29.8%
20 94053 2.3% 75 25921 36.1%
25 91904 2.5% 80 16560 41.7%
30 89584 3.0% 85 9648 51.3%
35 86885 4.0% 90 4696 63.4%
40 83441 5.4% 95 1721 71.6%
45 78976 7.2% 100 489 74.8%
50 73282 9.8% 105 123 100.0%
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Force of mortality (log scale) white men and ”Negro” men, 1968-71, U.S.
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Example of “direct discrimination”, from Plater (1997)
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Insurance Pricing and Predictive Modeling
Definition 2.5: Balance Property

A pricing function m satisfies the balance property if EX [m(X)] = EY [Y ].

Proposition 2.3: Law of total expectations

EY [Y ] = EX

#
EY |X [Y |X ]

$
= EX

#
µ(X)

$
.

Proof Since E(Y ) =
⁄

yfy (y)dy and E(Y |X = x) =
⁄

yfy |x(y |x)dy ,

E(E(X |Y )) =
⁄ 3⁄

xP[X = x |Y = y ]dx
4
P[Y = y ]dy =

⁄ ⁄
xP[X = x , Y = y ]dxdy

=
⁄

x
3⁄

P[X = x , Y = y ]dy
4

dx =
⁄

xP[X = x ]dx = E(X ).
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Homogeneous risk sharing

Policyholder Insurer
Loss E[Y ] Y ≠ E[Y ]
Average loss E[Y ] 0
Variance 0 Var[Y ]

E[Y ] is the premium paid, and Y the total loss,
from De Wit and Van Eeghen (1984) and Denuit and Charpentier (2004)
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Insurance Pricing and Predictive Modeling
Heterogeneous risk sharing, with perfect information

Policyholder Insurer
Loss E[Y |�] Y ≠ E[Y |�]
Average loss E[Y ] 0
Variance Var[E[Y |�]] Var[Y ≠ E[Y |�]]

where � denotes the heterogeneous risk factor.

The term on the bottom right is E[Var[Y |�]], corresponding to
the standard variance decomposition (or Pythagoras theorem)

Var[Y ] = Var[E[Y |�]] + E[Var[Y |�]].
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Proposition 2.4: Variance decomposition (1)

For any measurable random variable Y with finite variance

Var[Y ] = E[Var[Y |�]]
¸ ˚˙ ˝

æ insurer

+ Var[E[Y |�]]
¸ ˚˙ ˝
æ policyholder

.

Proof:

Var[Y ] = E
Ë
Y 2

È
≠ E[Y ]2 = E

Ë
Var[Y |�] + E[Y |�]2

È
≠ E[E[Y |�]]2

= (E[Var[Y |�]]) +
1
E

Ë
E[Y |�]2

È
≠ E[E[Y |�]]2

2
= E[Var[Y |�]] + Var[E[Y |�]].
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Heterogeneous risk sharing, with imperfect information

Policyholder Insurer
Loss E[Y |X ] Y ≠ E[Y |X ]
Average loss E[Y ] 0
Variance Var[E[Y |X ]] E[Var[Y |X ]]

E[Var[Y |X ]] = E[Var[Y |�]]
¸ ˚˙ ˝

perfect ratemaking

+E{Var[E[Y |�]|X ]}
¸ ˚˙ ˝

misclassification

This “misclassification” term (on the right) is called “subsidierende solidariteit” in
De Pril and Dhaene (1996), or “subsidiary solidarity”, as opposed to
“kanssolidariteit” or “random solidarity” term (on the left).
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Proposition 2.5: Variance decomposition (2)

For any measurable random variable Y with finite variance

Var[Y ] = E[Var[Y |X ]]
¸ ˚˙ ˝

æ insurer

+ Var[E[Y |X ]]
¸ ˚˙ ˝
æ policyholder

,

where

E[Var[Y |X ]] = E[E[Var[Y |�]|X ]] + E[Var[E[Y |�]|X ]]
= E[Var[Y |�]]

¸ ˚˙ ˝
perfect ratemaking

+E{Var[E[Y |�]|X ]}
¸ ˚˙ ˝

misclassification

.
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Groups, or risk classes, are built on the basis of available data, and exist primarily as
the product of actuarial models.
For example, as mentioned in Bailey and Simon
(1960), in motor insurance five risk classes can be
considered,

• “pleasure, no male operator under 25,” (reference),
• “pleasure, non-principal male operator under 25,” +65%,
• “business use,” +65%,
• “married owner or principal operator under 25,” +65%,
• “unmarried owner or principal operator under 25,”

+140%.
There is no “physical basis” for group members to identify other members of their
group, in the sense that they usually don’t share anything, except some common
characteristics, Gandy (2016).
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Clubs, Group and Categories

solidarity
until 1930

risk classes
1930-2010

personalization
post 2010

In ancient Rome, a collegium (plural collegia) was an association, such
as military collegia, Verboven (2011).
As explained in Ginsburg (1940), upon the completion of his service a
veteran had the right to join one of the many collegia veteranorum in
each legion.
In case of retirement, upon the completion of his term of service, the
soldier would received a a lump sum which helped him somewhat to
arrange the rest of his life. The membership in a collegium gave him
a mutual insurance against “unforeseen risks.” These collegia, besides
being cooperative insurance companies, had other functions.
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In the early 1660th, the Pirate’s Code was supposedly written by Por-
tuguese buccaneer Bartolomeu Português.
A section is explicitly dedicated to insurance and benefits: “a stan-
dard compensation is provided for maimed and mutilated buc-
caneers. Thus they order for the loss of a right arm six hundred
pieces of eight, or six slaves; for the loss of a left arm five hun-
dred pieces of eight, or five slaves; for a right leg five hundred
pieces of eight, or five slaves; for the left leg four hundred pieces
of eight, or four slaves; for an eye one hundred pieces of eight,
or one slave; for a finger of the hand the same reward as for the
eye,” see Barbour (1911) (or more recently Leeson (2009) and Fox
(2013) about this piratical schemes).
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In the xix-th century, in Europe, mutual aid societies involved a group of individuals
who made regular payments into a common fund in order to provide for themselves in
later, unforeseeable moments of financial hardship or of old age. As mentioned by
Garrioch (2011), in 1848, there were in Paris 280 mutual aidsocieties with well over
20,000 members.

For example, the Société des Arts Graphiques, was created in 1808. It
admitted only men over twenty and under fifty, and it charged much
higher admission and annual fees for those who joined at a more ad-
vanced age. In return, they received benefits if they were unable to
work, reducing over a period of time, but in case of serious illness the
Society would pay the admission fee for a hospice. In England, there
were “friendly societies,” as described in Ismay (2018).
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The money collected through contributions came to the rescue of un-
fortunate workers, who would no longer have any reason to radicalize.
It was proposed that insurance should become compulsory (Bismark
proposed this in Germany in 1883), but the idea was rejected in favor
of giving workers the freedom to contribute, as the only way to moral-
ize the working classes, as Da Silva (2023) explains.
In 1852, of the 236 mutual funds created, 21 were on a professional
basis, while the other 215 were on a territorial basis. And from 1870
onwards, mutual funds diversified the professional profile of contribu-
tors beyond blue-collar workers, and expanded to include employees,
civil servants, the self-employed and artists.
The amount of the premium is not linked to the risk.
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As Da Silva (2023) puts it, “mutual insurers see in the actuarial figure the
programmed end of solidarity.” For mutual funds, solidarity is essential, with
everyone contributing according to their means and receiving according to their needs.
Around the same time, in France, the first insurance companies appeared, based on
risk selection, and the first mathematical approaches to calculating premiums.
Hubbard (1852) advocates the introduction of an “English-style scientific
organization” in their management. For its members, they had to be able to know
“the probable average of the claims” that they should cover, like insurance
companies. The development of tables should lead insurers to adopt the principle of
contributions varying according to the age of entry and the specialization of
contributions and funds (health/retirement).
For Stone (1993) and Gowri (2014) the defining feature of “modern insurance” is its
reliance on segmenting the risk pool into distinct categories, each receiving a price
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corresponding to the particular risk that the individuals assigned to that category are
expected to represent (as accurately as can be estimated by actuaries).
Once heterogeneity with respect to the risk was observed in portfolios, insurers have
operated by categorizing individuals into risk classes and assigning corresponding
tari�s. This ongoing process of categorization ensures that the sums collected, on
average, are su�cient to address the realized risks within specific groups.
The aim of risk classification, as explained in Wortham (1986), is to identify the
specific characteristics that are supposed to determine an individual’s propensity to
su�er an adverse event, forming groups within which the risk is (approximately) equally
shared. The problem, of course, is that the characteristics associated with various
types of risk are almost infinite; as they cannot all be identified and priced in every risk
classification system, there will necessarily be unpriced sources of heterogeneity
between individuals in a given risk class.
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In 1915, as mentioned in Rothstein (2003), the president of the Association of Life
Insurance Medical Directors of America noted that the question asked almost
universally of the Medical Examiner was “What is your opinion of the risk? Good,
bad, first-class, second-class, or not acceptable?” Historically, insurance prices were
a (finite) collection of prices (maybe more than than the two classes mentioned,
“first-class” and “second-class”).

In the early 1920’s, Albert Henry Mowbray, who worked for
New York Life Insurance Company and later Liberty Mu-
tual (and was also an actuary for state-level insurance com-
missions in New Carolina and California, and the National
Council on Workmen’s Insurance) gives his perspective on
insurance rate making. See Mowbray (1921).
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“Classification of risks in some manner forms the ba-
sis of rate making in practically all branches of in-
surance. It would appear therefore that there should
be some fundamental principle to which a correct sys-
tem of classification in any branch of insurance should
conform (...) As long ago as the days of ancient Greece
and Rome the gradual transition of natural phenom-
ena was observed and set down in the Latin maxim,
‘natura non agit per altum’. If each risk, therefore is
to be precisely rated, it would be necessary to recognize
very minute differences and precisely measure them.
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“Since we are not capable of covering a large field fully and at the same time
recognizing small differences in all parts of the field, it is natural that we resort
to subdivision of the field by means of classification, thereby concentrating our
attention on a smaller interval which may again be subdivided by further
classification, and the system so carried on to the limit to which we find it
necessary or desirable to go. But however far we may go in any system of
classification, whether in the field of pure or applied science including the
business or insurance, we shall always find difficulties presented by the
borderline case, difficulties which arise from the continuous character of
natural phenomena which we are attempting to place in more or less arbitrary
divisions. While thus acknowledging that classification will never completely
solve the problem of recognizing differences between individuals, nevertheless
classification seems to be necessary at least as a preliminary step toward such
recognition in any field of study. The fact that a complete and final solution
cannot be made is, therefore, no justification for completely discarding
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classification as a method of approach. Since it is insurance hazards that we
undertake to measure and classify, the preliminary step in studying
classification theory may well be to ask what is an insurance hazard and how it
may be determined. It must be evident to the members of this Society that an
insurance hazard is what is termed ”a mathematical expectation,” that is a
product of a sum at risk and the probability of loss from the conditions insured
against, e.g., the destruction of a piece of property by fire, the death of an
individual, etc. If the net premiums collected are so determined on the basis of
the true natural probability a n d there is a sufficient spread then the sums
collected will just cover the losses and this is what should be,” Mowbray (1921)
“1. The classification should bring together risks which have inherent in their
operation the same causes of loss.
2. The variation from risk to risk in the strength of each cause or at least of the
more important should not be greater than can be handled by the formula by
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which the classification is subdivided, i.e., the Schedule and / or Experience
Rating Plan used.
3. The classification should not cover risks which include, as important
elements of their hazard, causes which are not common to all.
4. The classification system and the formula for its extension (Schedule
and / or Experience Rating Plans) should be harmonious.
5. The basis throughout should be the outward, recognizable indicia of the
presence and potency of the several inherent causes of loss including extent as
well as occurrence of loss,” Mowbray (1921).
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Several articles and textbooks in sociology tried to understand how classification
mechanisms establish symbolic boundaries that reinforce group identities, such as
Bourdieu (2018), Massey (2007), Fourcade and Healy (2013).
But here, those “groups” or “classes” do not share any identity,
and Simon (1988) or Harcourt (2015) use the term “actuarial
classification” (where “actuarial” designates any decision-making
technique that relies on predictive statistical methods, replacing
more holistic or subjective forms of judgment). In those class-
based systems, based on insurance rating table (or grid), results
are determined by assigning individuals to a group in which each
person is positioned as “average” or “typical”.
[Most] “actuaries cannot think of individuals except as members of groups”

claimed Brilmayer et al. (1979). Each individual is assigned the same value as all other
members of the group to which it is assigned.
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Simon (1987, 1988), and then Feeley and Simon (1992), defined “actuarialism,” that
designate the use of statistics to guide “class-based decision-making,” used to price
pensions and insurance. As explained in Harcourt (2015), this “actuarial classification”
is the constitution of groups with no experienced social significance for the
participants. A person classified as a particular risk by an insurance company shares
nothing with the other people so classified, apart from a series of formal characteristics
(e.g. age, sex, marital status, etc.).
For Austin (1983) and Simon (1988), categories used by the

insurance company when grouping risks are “singularly ster-
ile,” resulting in inert, immobile and deactivated communities,
corresponding to “artificial” groups. These are not groups or-
ganized around a shared history, common experiences or active
commitment, forming some “aggregates” – living only in the
imagination of the actuary who calculates and tabulates, not
in any lived form of human association.
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If Hacking (1990) observed that standard classes creates coherent group identities

(causing possible stereotypes and discrimination, Simon (1988), provocatively suggests
that actuarial classifications can in turn “undo people’s identity.”
As mentioned in Abraham (1986), the goal for actuaries is to create groups, or

“classes” made up of individuals who share a series of common characteristics and are
therefore presumed to represent the same risk. Following François (2022), we could
claim that actuarial techniques reduce individuals to a series of formal roles that have
no “moral density” and therefore do not grant an “identity” that organizes a coherent
sense of self. And the inclusion of nominally “demoralized categories,” such as gender,
in class-based rating systems makes their total demoralization di�cult to achieve – and
is in itself an issue of struggle. Heimer (1985) used the term “community of fate.”
Rouvroy et al. (2013) and Cheney-Lippold (2017) point out that scoring technologies

are continually swapping predictors, “shu�ing the cards,” so that there is no stable
basis for constructing group memberships, or a coherent sense.
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“The price which a person pays for automobile insurance depends on age, sex,
marital status, place of residence and other factors. This risk classification
system produces widely differing prices for the same coverage for different
people. Questions have been raised about the fairness of this system, and
especially about its reliability as a predictor of risk for a particular individual.
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While we have not tried to judge the propriety of these groupings, and the
resulting price differences, we believe that the questions about them warrant
careful consideration by the State insurance departments. In most States the
authority to examine classification plans is based on the requirement that
insurance rates are neither inadequate, excessive, nor unfairly discriminatory.
The only criterion for approving classifications in most States is that the
classifications be statistically justified – that is, that they reasonably reflect loss
experience. Relative rates with respect to age, sex, and marital status are based
on the analysis of national data. A youthful male driver, for example, is charged
twice as much as an older driver all over the country (...) It has also been
claimed that insurance companies engage in redlining – the arbitrary denial of
insurance to everyone living in a particular neighborhood. Community groups
and others have complained that State regulators have not been diligent in
preventing redlining and other forms of improper discrimination that make
insurance unavailable in certain areas. In addition to outright refusals to
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insure, geographic discrimination can include such practices as: selective
placement of agents to reduce business in some areas, terminating agents and
not renewing their book of business, pricing insurance at un-affordable levels,
and instructing agents to avoid certain areas. We reviewed what the State
insurance departments were doing in response to these problem. To determine if
redlining exists, it is necessary to collect data on a geographic oasis. Such data
should include current insurance policies, new policies being written,
cancellations, and non-renewals. It is also important to examine data on losses
by neighborhoods within existing rating territories because marked
discrepancies within territories would cast doubt on the validity of territorial
boundaries. Yet, not even a fifth of the States collect anything other than loss
data, and that data is gathered on a territory-wide basis,” Havens (1979)
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“On the other hand, the opinion that distinctions based on sex, or any other
group variable, necessarily violate individual rights reflects ignorance of the
basic rules of logical inference in that it would arbitrarily forbid the use of
relevant information. It would be equally fallacious to reject a classification
system based on socially acceptable variables because the results appear
discriminatory. For example, a classification system may be built on use of car,
mileage, merit rating, and other variables, excluding sex. However, when
verifying the average rates according to sex one may discover significant
differences between males and females. Refusing to allow such differences
would be attempting to distort reality by choosing to be selectively blind. The
use of rating territories is a case in point. Geographical divisions, however
designed, are often correlated with socio-demographic factors such as income
level and race because of natural aggregation or forced segregation according to
these factors. Again we conclude that insurance companies should be free to
delineate territories and assess territorial differences as well as they can. At the
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Clubs, Group and Categories
same time, insurance companies should recognize that it is in their best interest
to be objective and use clearly relevant factors to define territories lest they be
accused of invidious discrimination by the public. (...) ” Casey et al. (1976)
“One possible standard does exist for exception to the counsel that particular
rating variables should not be proscribed. What we have called ‘equal
treatment’ standard of fairness may precipitate a societal decision that the
process of differentiating among individuals on the basis of certain variables is
discriminatory and intolerable. This type of decision should be made on a
specific, statutory basis. Once taken, it must be adhered to in private and public
transactions alike and enforced by the insurance regulator. This is, in effect, a
standard for conduct that by design transcends and preempts economic
considerations. Because it is not applied without economic cost, however,
insurance regulators and the industry should participate in and inform
legislative deliberations that would ban the, use of particular rating variables
as discriminatory.” Casey et al. (1976)
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Price Optimization

Decision theory under uncertainty (see Charpentier (2014)),

X ∞ Y ≈∆ R(X ) Æ R(Y ),

A classical representation is R(Y ) = E[u(Ê ≠ Y )], as in Neumann and Morgenstern
(1947), where Ê is the initial wealth.
u denotes the utility of the agent
Let fi denote the premium asked to transfer risk (loss) Y ,

I
u(Ê ≠ fi) > E

#
u(Ê ≠ Y )

$
: purchases insurance

u(Ê ≠ fi) < E
#
u(Ê ≠ Y )

$
: does not purchase insurance

Find fi such that u(Ê ≠ fi) = E
#
u(Ê ≠ Y )

$
.
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Price Optimization

fi such that u(Ê ≠ fi) = E
#
u(Ê ≠ Y )

$
could be seem as the willingness to pay to

transfer the risk.

Willingness to Pay
In behavioral economics, willingness to pay (WTP) is the maximum price at
or below which a consumer will definitely buy one unit of a product.[1] This
corresponds to the standard economic view of a consumer reservation price. �
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Price Optimization

Definition 2.6: Indi�erence utility principle

Let Y be the non-negative random variable corresponding to the total annual loss
associated with a given policy, for a policyholder with utility u and wealth w , the
indi�erence premium is fi = Ê ≠ u≠1 !

E
#
u(Ê ≠ Y )

$"
.
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Price Optimization

Price Walking
Price walking, or the loyalty penalty, is a form of price discrimination whereby
longstanding, loyal customers of a service provider are charged higher prices for
the same services compared to customers that have just switched to that provider.
The pricing strategy is common in the insurance and telecommunications indus-
tries. It is used to acquire new customers with artificially low rates or other
incentives not available to existing clients, e�ectively using existing customers to
subsidize the prices o�ered to new clients. �
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– Part 2 –

Machine / Statistical Learning
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Statistical Learning
Proposition 3.1: Law of Large Numbers (1)

Consider an infinite collection of i.i.d. random variables Y , Y1, Y2, · · · , Yn, · · · in
a probabilistic space (�, F ,P), then

1
n

nÿ

i=1
1(Yi œ A)

¸ ˚˙ ˝
(empirical) frequency

a.s.
≠æ P({Y œ A})

¸ ˚˙ ˝
probability

= P[Y œ A], as n æ Œ.

“law of the unconscious statistician,” (Ross (2014) and Casella and Berger (1990)),
“statisticians make liberal use of conditioning arguments to shorten what
would otherwise be long proofs,” Proschan and Presnell (1998).

P
!
Y œ A

--X = x
"

= lim
‘æ0

P({Y œ A} fl {|X ≠ x | Æ ‘})
P({|X ≠ x | Æ ‘}) = lim

‘æ0
P

!
Y œ A

--|X ≠ x | Æ ‘
"
.
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Statistical Learning

This frequentist approach is unable to make sense of the probability of a ”single
singular event”, as noted by von Mises (1928, 1939).
“When we speak of the ‘probability of death’, the exact
meaning of this expression can be defined in the fol-
lowing way only. We must not think of an individual,
but of a certain class as a whole, e.g., ‘all insured men
forty-one years old living in a given country and not en-
gaged in certain dangerous occupations’. A probability
of death is attached to the class of men or to another
class that can be defined in a similar way. We can say
nothing about the probability of death of an individ-
ual even if we know his condition of life and health in
detail. The phrase ‘probability of death’, when it refers
to a single person, has no meaning for us at all.”
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Statistical Learning

Definition 3.1: Loss ¸

A loss function ¸ is a function defined on Y ◊ Y such that ¸(y , y Õ) Ø 0 and
¸(y , y) = 0.

Definition 3.2: Risk R

For a fitted model ‚m, its risk is

R( ‚m) = EP
Ë
¸ (Y , ‚m(X))

È
=

⁄
¸
!
y , ‚m(x)

"
dP(y , x).
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Statistical Learning

Definition 3.3: Empirical risk ‚Rn

Given a sample {(yi , x i), i = 1, · · · , n}, define the empirical risk

‚Rn( ‚m) = 1
n

nÿ

i=1
¸ ( ‚m(x i), yi) .

Following Vapnik (1991), the ”empirical risk minimization principle” states that the
learning algorithm ‚mú is

‚mú = argmin
‚mœM

) ‚Rn( ‚m)
*
.
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Statistical Learning
Proposition 3.2: Optimal Decision, ”Bayes decision rule”

For each x choose the prediction mı
x that minimizes the conditional expected

loss,
mı

x œ argmin
zœY

;⁄
¸(y , z)dPY |X(y |x)

<

It is straightforward since dPY ,X(y , x) = dPY |X(y |x) · dPX(x),

R( ‚m) =
⁄ Ë ⁄

¸
!
y , ‚m(x)

"
dPY |X(y |x)

È
dPX(x).

by definition, mı
x minimizes the term in blue, i.e., for any ‚m

R( ‚m) Ø

⁄ Ë ⁄
¸
!
y , mı

x)dPY |X(y |x)
È
dPX(x) = R(mı).
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Statistical Learning
It is coined ”Bayes decision rule” because the conditional distribution Y |X is

sometimes be referred to as the ”posterior” distribution of Y given data X .

Definition 3.4: Misclassification loss, ¸0/1

¸0/1(y , ‚y) = 1(y ”= ‚y).

In the case of a binary classifier, observe that

R( ‚m) = E[¸( ‚m(X), Y )] = E
#
E[¸( ‚m(X), Y ) | X ]

$

= E
#

¸( ‚m(X), 1) · P(Y = 1 | X) + ¸( ‚m(X), 0) · P(Y = 0 | X)
$

= E
#
1[ ‚m(X) ”= 1] · µ(X) + 1[ ‚m(X) ”= 0] · (1 ≠ µ(X))

$

= E
#
1[ ‚m(X) ”= 1] · µ(X ) + (1 ≠ 1[ ‚m(X) ”= 1]) · (1 ≠ µ(X))

$

= E
#

1[ ‚m(X) ”= 1] · (2µ(X) ≠ 1) + 1 ≠ µ(X)
$
.
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Statistical Learning
Since ‚m : X æ {0, 1}, this expectation is minimized by choosing ‚m = mı, where

mı(x) = 1(µ(x) > 1/2) =
I

1 if µ(x) > 1/2

0 if µ(x) Æ 1/2

The optimal risk (”Bayes risk”) is R(mı) = infm {R(m)}.

Definition 3.5: Excess of risk of ‚m

For any model ‚m, the excess of risk is R( ‚m) ≠ R(mı).

For a classifier

R( ‚m) ≠ R(mı) = E
#--2µ(X) ≠ 1

-- · 1( ‚m(X) ”= mı(X))
$
.

Since we do not know µ consider a classifier based on ‚m ......
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Statistical Learning

Definition 3.6: Plug-in Estimator

Estimate ‚µ and use, as a classifier, 1(‚µ(x) > 1/2).

Proposition 3.3

For any model ‚µ, the risk of the plug-in classifier ‚m(x) = 1(‚µ(x) > 1/2) satisfies

R( ‚m) ≠ R(mı) Æ 2E
--µ(X) ≠ ‚µ(X)

--.

Proof We have seen that

R( ‚m) ≠ R (mú) = E
!
1[ ‚m(X) ”= 1] ≠ 1 [mú(X) ”= 1]

"
· (2µ(X) ≠ 1).
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Statistical Learning
But

(1[ ‚m(X) ”= 1] ≠ 1 [mú(X) ”= 1]) (2µ(X) ≠ 1)
= 1 [ ‚m(X) ”= mú(X)] (1[ ‚m(X) ”= 1] ≠ 1 [mú(X) ”= 1]) (2µ(X) ≠ 1)

=
I

1 [ ‚m(X) ”= mú(X)] (2µ(X) ≠ 1) if 2µ(X) ≠ 1 > 0,

1 [ ‚m(X) ”= mú(X)] (≠1)(2µ(X) ≠ 1) if 2µ(X) ≠ 1 Æ 0.

(from the definition of mú )

= 1 [ ‚m(X) ”= mú(X)] · |2µ(X) ≠ 1|,

R( ‚m) ≠ R (mú) = E
!
1 [ ‚m(X) ”= mú(X)]

"
· 2|µ(X) ≠ 1/2|.

If ‚m(x) ”= mú(x), it means that ‚µ(x) and µ(x) lie on opposite sides of 1/2,

|‚µ(x) ≠ µ(x)| = |‚µ(x) ≠ 1/2| + |1/2 ≠ µ(x)|
¸ ˚˙ ˝

Ø0

Ø |‚µ(x) ≠ 1/2|
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Statistical Learning

i.e.
|‚µ(x) ≠ µ(x)| Ø |‚µ(x) ≠ 1/2| · 1 [ ‚m(X) ”= mú(X)]

which is also valid when ‚m(x) = mú(x), thus

R( ‚m) ≠ R (mú) = 2E
!
1 [ ‚m(X) ”= mú(X)]

"
· |µ(X) ≠ 1/2| Æ 2E

#
|‚µ(X) ≠ µ(X)|

$
.

This ¸0/1 loss function may be di�cult to directly optimize, as shown in Bartlett
et al. (2006). One could consider some surrogate loss ˜̧ which is easier to optimize.
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Statistical Learning

Definition 3.7: Elicitation, Brier (1950), Good (1952)

A statistical functional I(Y ) is said to be elicitable if it minimizes expected loss
for some loss function s, in the sense that

I(Y ) = argmin
yœR

)
E

#
s(Y , y)

$*

“The elicitability of a risk measure means that the risk measure can be obtained
by minimizing the expectation of a forecasting objective function. Elicitability is
closely related to backtesting, whose objective is to evaluate the performance of a
risk forecasting model. If a risk measure is elicitable, then the sample average
forecasting error based on the objective function can be used for backtesting the
risk measure,” He et al. (2022).
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Loss Functions
In a regression problem, a quadratic loss function ¸2 is used

Definition 3.8: Quadratic loss, ¸2

¸2(y , ‚y) = (y ≠ ‚y)2, and the risk is then R2( ‚m) = E
Ë

(Y ≠ ‚m(X))2
È
.

Observe that

E[Y ] = argmin
mœR

)
R2(m)

*
= argmin

mœR

Ó
E

Ë
¸2 (Y , m)

ÈÔ
.

The expected value is “ellicitable” (for the s = ¸2 loss).

The empirical risk minimizer is the ”least-square” estimate.
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Loss Functions

See Huttegger (2013), explaining why the expected value is also called “best estimate”.

Up to a monotonic transformation (the square root function), the distance here is the
expectation of the quadratic loss function. With the terminology of Angrist and
Pischke (2009), the regression function µ is the function of x that serves as “the best
predictor of y , in the mean-squared error sense.”

Proposition 3.4: Optimal Decision, ”Bayes decision rule”

For the quadratic loss ¸2, Bayes decision rule is the (conditional) expected value,
mı

x = E
#
Y

--X = x
$

= µ(x).
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Loss Functions
Definition 3.9: Inner product

An inner product on H is the application (f , g) ‘æ Èf , gÍH (taking value in R)
bilinear, symmetric, definite positive:

• Èf , gÍH = Èg , f ÍH

• È–f + —g , hÍH = –Èf , hÍH + —Èg , hÍH

• Èf , f ÍH Ø 0 and Èf , f ÍH = 0 if and only if f = 0.

Example : H = Rn, Èx, yÍ = x
€

y

Example : H = Rn, let � denote some symmetric n ◊ n positive definite matrix. Then

Èx, yÍ� = x
€�≠1

y is an inner product on Rn.

Example : H = ¸2 =
I

u :
Œÿ

i=1
u2

i < Œ

J

, Èu, vÍ =
Œÿ

i=1
uivi
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Loss Functions

Example : H = L2(µ) =
;

f :
⁄

f (x)2dµ(x) < Œ

<
, Èf , gÍ =

⁄
f (x)g(x)dµ(x)

Example : Consider the vector space V that consists of all real-valued random
variables defined on (�, F ,P). Given k œ [1, Œ), define

ÎXÎk =
Ë
E

1
|X |

k
2È1/k

.
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Loss Functions
A norm Î · Î, in Rn, satisfies

• homogeneity, ÎaųÎ = |a| · ÎųÎ, ’a
• triangle inequality, Îų + v̨Î Æ ÎųÎ + Îv̨Î

• positivity, ÎųÎ Ø 0
• definiteness, ÎųÎ = 0 ≈∆ ų = 0̨

¸1 norm: ÎxÎ¸1 = |x1| + · · · + |xn|,

¸2 norm: ÎxÎ¸2 =
Ò

x2
1 + · · · + x2n ,

¸p norm: with p Ø 1, ÎxÎ¸p = (|x1|
p + · · · + |xn|

p)1/p

¸Œ norm: ÎxÎ¸Œ = max{xi}

Unit balls (ÎxÎ¸p Æ 1) are convex sets

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 117 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Loss Functions
Proposition 3.5: Gradient of ¸p norms

ˆ

ˆxj
ÎxÎ¸p = 1

p

A
ÿ

i
|xi |

p
B 1

p ≠1
· p|xj |

p≠1 sign(xj) =
A

|xj |
ÎxÎ¸p

Bp≠1
sign(xj).

ˆ

ˆxj
||x||¸p = ˆ

ˆxj

A nÿ

i=1
|xi |

p
B1/p

= 1
p

A nÿ

i=1
|xi |

p
B(1/p)≠1

ˆ

ˆxj

A nÿ

i=1
|xi |

p
B

=

S

U
A nÿ

i=1
|xi |

p
B 1

p
T

V
1≠p nÿ

i=1
|xi |

p≠1”ij
xi
|xi |

=
A

|xj |
ÎxÎ¸p

Bp≠1
sign(xj).
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Loss Functions

Definition 3.10: Quantile loss, ¸q,–

The quantile loss ¸q,– for some – œ (0, 1) is

¸q,–(y , ‚y) = max
)
–(y ≠ ‚y), (1 ≠ –)(‚y ≠ y)

*
= (y ≠ ‚y)

!
– ≠ 1(y<‚y)

"
.

This loss is not symmetric ¸q,–(y , ‚y) ”= ¸q,–(‚y , y) (if – ”= 1/2).

It is called “quantile” loss since

Q(–) = F ≠1(–) œ argmin
qœR

Ó
E

Ë
¸q,– (Y , q)

ÈÔ
,

(quantiles are also “ellicitable” functionals, elicited by
s(y , ŷ) = –(y ≠ ŷ)+ + (1 ≠ –)(y ≠ ŷ)≠)
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Loss Functions

Indeed, the first order condition of

min
qœR

;
(– ≠ 1)

⁄ q

≠Œ

(y ≠ q)dFY (y) + –
⁄

Œ

q
(y ≠ q)dFY (y)

<
,

can be written, using Leibniz integral rule,

(1 ≠ –)
⁄ qı

≠Œ

dFY (y) ≠ –
⁄

Œ

qı
dFY (y) = 0

i.e. FY (qı) ≠ – = 0.
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Loss Functions

Definition 3.11: Expectile loss, ¸e,–

The expectile loss ¸e,–, for some – œ (0, 1) is

¸e,–(y , ‚y) = (y ≠ ‚y)2
·
!
– ≠ 1(y<‚y)

"

E (–) = argmin
eœR

Ó
E

Ë
¸e,– (Y , e)

ÈÔ
,

(expectiles are elicited by s(x , y) = –(y ≠ x)2
+ + (1 ≠ –)(y ≠ x)2

≠).

“Expectiles have properties that are similar to quantiles,” Newey and Powell
(1987)
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Loss Functions

“The Gaussian Hare and the Laplacian Tortoise,” Portnoy and Koenker (1997)
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Loss and Generalized Linear Models
In GLM, the scaled deviance (≠2◊ the log-likelihood) of the exponential model is

Dı =
nÿ

i=1
dı (yi , ‚yi) , where dı (yi , ‚yi) = 2

!
log Li(yi) ≠ log Li(‚yi)

"
.

that can be related to in-sample empirical risk

‚Rn( ‚m) =
nÿ

i=1
¸ (yi , ‚m(x i)) ,

For the Poisson distribution (with a log-link), the loss would be

¸(yi , ‚yi) =
I

2 (yi log yi ≠ yi log ‚yi ≠ yi + ‚yi) yi > 0
2‚yi yi = 0,

while for a logistic regression, we have the standard binary cross-entropy loss

¸(yi , ‚yi) = ≠
!
yi log[‚yi ] + (1 ≠ yi) log[1 ≠ ‚yi ]

"
.
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Distance Between Distributions

Definition 3.12: Distance (or metric)

A distance d on a set E is a function E ◊ E æ R+ such that
• d is symmetric, ’(a, b) œ E 2, d(a, b) = d(b, a) ,

• d is separable, ’(a, b) œ E 2, d(a, b) = 0 … a = b ,

• d satisfies ’(a, b, c) œ E 3, d(a, c) Æ d(a, b) + d(b, c)

In a vector space, with norm Î · Î the induced distance is d(x , y) = Îy ≠ xÎ.
Conversely, if

• d invariant by translation, d(x , y) = d(x + a, y + a)
• d is homogeneous, d(–x , –y) = |–|d(x , y)

then ÎxÎ = d(x , 0) is a norm.
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Distance Between Distributions

Proposition 3.6

If d is a distance on E , and if Â : R+ æ R+ is an increasing function such that
Â(0) = 0 and Â(t) > 0 for all t > 0. If Â if subadditive (Â(s +t) Æ Â(s)+Â(t)),
then ”(a, b) = Â

!
d(a, b)

"
is also a distance on E .

Proposition 3.7: �

If d is a distance on E , then d2 is not necessarily a distance.
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Distance Between Distributions
Consider the Euclidean distance in E = R2, i.e.

d(z1, z2) =
Ò

(x2 ≠ x1)2 + (y2 ≠ y1)2. d2 is not a distance, see
Y
__]

__[

d2(≠1, +1) = 22 + 22 = 8
d2(≠1, 0) = 12 + 12 = 2
d2(0, +1) = 12 + 12 = 2

i.e. d2 does not satisfy the triangular inequality

d2(≠1, +1) > d2(≠1, 0) + d2(0, +1),

while
d(≠1, +1) Æ d(≠1, 0) + d(0, +1).

(functions that generalize squared distance are sometimes referred to as divergences)
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Distance Between Distributions

In addition to ”distance”, similar terms are used, including ”dissimilarity”,
”deviance”, ”deviation”, ”discrepancy”, ”discrimination”, and ”divergence”

(... all denoted ”d”, or ”D”)

A fundamental problem in statistics and machine learning is to come up with useful
measures of “distance” between pairs of probability distributions. Two desirable
properties of a distance function are symmetry and the triangle inequality.

Unfortunately, many notions of “distance” between probability distributions do not
satisfy these properties. Weaker notions of distance are often used, such as
dissimilarity measures and divergences.

See Cha (2007) for a comprehensive list of distances...
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Distance Between Distributions

Definition 3.13: Dissimilarity measure

A dissimilarity measure D on a set E is a function E ◊ E æ R+ such that D is
positive and separable, i.e., ’(a, b) œ E 2, D(a, b) = 0 … a = b,

Definition 3.14: Divergence on Rn

A divergence D on a set E µ Rn is a function E ◊ E æ R+ such that
• D is separable, ’(x, y) œ E 2, D(x, y) = 0 … x = y ,

• D admits development ’(x, x + ‘) œ E 2, D(x, x + ‘) = 1
2

ÿ
Ai ,j(‘)‘i‘j +

O(|‘|3),
where A(‘) is definite positive.
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Distance Between Distributions

Definition 3.15: Scale sensitive divergence, Zolotarev (1976)

A divergence D is scale sensitive (of order — > 0) if D(cx, cy) Æ |c|
—D(x, y)

Definition 3.16: Bregman Divergence, Bregman (1967)

Let Â : X æ R be a strictly convex function that is continuously di�erentiable.
Then the Bregman divergence DÂ(x, y) is defined as

DÂ(x, y) = Â(x) ≠ Â(y) ≠ ÈÒÂ(y), x ≠ yÍ.

If Â(x) = 1
2ÎxÎ

2 (strictly convex), then DÂ(x, y) = 1
2Îx ≠ yÎ

2.

(recall that ÒÎxÎ
2 = 2x)
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Distance Between Distributions

Proposition 3.8: Bregman Divergence

Let Â : X æ R be a strictly convex function that is continuously di�erentiable.
Then Bregman divergence DÂ(x, y) is

• strictly convex in x,
• (generally) non-convex in y ,
• non-negative DÂ(x, y) Ø 0,
• separable, DÂ(x, y) = 0 if and only if x = y ,
• (generally) asymmetric.
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Distance Between Distributions

If X = Rn, and Â(x) = 1
2

ÿ

ij
Aijxixj = 1

2x
€A(x for some n ◊ n matrix A definite

positive, then

DÂ(x, y) = 1
2

ÿ

ij
Aij(xi ≠ yi)(xj ≠ yj) = (x ≠ y)€A(x ≠ y)

(see Mahalanobis distance).

If X = Rn, and Â(x) = ≠

ÿ

i
log(xi) then

DÂ(x, y) =
ÿ

i

xi
yi

≠ log xi
yi

≠ 1

See Banerjee et al. (2005) for more examples.
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Distance Between Distributions
We have defined norms

on Rn, e.g.,

ÎxÎ¸2 =
1
|x1|

2 + · · · + |xn|
2
21/2

=
A nÿ

i=1
|xi |

2
B1/2

that could be extended
on R-valued random variables, e.g.,

ÎXÎ2 =
1
E

Ë
|X |

2
È21/2

=
1ÿ

|x |
2p(x)

21/2
=

3⁄
|x |

2f (x)dx
41/2

We can also define ”distances”, ”dissimilarity” measures, and ”divergences”
on Rn, e.g.,

¸2(x, y) = d(x, y) =
1
|x1 ≠ y1|

2 + · · · + |xn ≠ yn|
2
21/2

=
A nÿ

i=1
|xi ≠ yi |

2
B1/2
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Distance Between Distributions
that could be extended
on R-valued random variables as components of a random vector, e.g.,

D(X , Y ) =
1
E

Ë
|X ≠ Y |

2
È21/2

=
1ÿ

|x ≠ y |
2p(x , y)

21/2
=

3⁄
|x ≠ y |

2f (x , y)dxdy
41/2

where p or f is the joint distribution of (X , Y ), e.g., for a Gaussian vector

D(X , Y ) = (µx ≠ µy )2 + (‡x ≠ ‡y )2 + 2‡x‡y (1 ≠ fl).

on R-valued random variables assuming that random variables are independent, e.g.,

D‹(X , Y ) =
1ÿ

|x ≠ y |
2px (x)py (y)

21/2
=

3⁄
|x ≠ y |

2fx (x)fy (y)dxdy
41/2

e.g., for two Gaussian distributions

D‹(X , Y ) = (µx ≠ µy )2 + ‡2
x + ‡2

y .
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Distance Between Distributions

and one can consider some distance
on R-valued distributions, e.g.,

D
!
N (µx , ‡2

x ), N (µy , ‡2
y )

"
= (µx ≠ µy )2 + (‡x ≠ ‡y )2.

In the context of ”probabilistic forecasts” (as in Gneiting et al. (2007)), a ”distance”
on pairs R ◊ R-valued distributions, e.g.,

D
!
x , N (µy , ‡2

y )
"

= (x ≠ µy )2 + ‡2
y .
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Distance Between Distributions

Definition 3.17: Sum invariant divergence, Zolotarev (1976)

A divergence D is sum invariant if D(X + Z , Y + Z ) Æ D(X , Y ) whenever
Z ‹‹ X , Y

Example: if D is 1-scale sensitive, D(10, 11) Æ
1
2D(10, 12)

Example: if D is sum invariant, D(10, 11) = D(11, 12)

See Bellemare et al. (2017a).
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Distance Between Distributions

Consider sample {x1, · · · , xn} an i.i.d. sample, with empirical measure ‚pn = 1
n

nÿ

i=1
1xi

Definition 3.18: Divergence based inference

Consider some parametric family Q = {q◊, ◊ œ �}. Given a divergence D, we
want to find

◊ı = argmin
◊œ�

{D( p , q◊ )}

unknown p q◊ œ Qor its empirical version

‚◊n = argmin
◊œ�

{D( ‚pn , q◊ )}

estimated ‚pn
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Distance Between Distributions

Definition 3.19: Unbiased sample gradients, Bellemare et al. (2017a)

A divergence D has unbiased sample gradients when the expected gradient of the
sample loss equals the gradient of the true loss for all p and n,

E (Ò◊D(‚pn, q◊)) = Ò◊D(p, q◊).

Then D is a proper scoring rule (see Gneiting and Raftery (2007)).

If this is not satisfied, stochastic gradient descent may not converge...
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Distance Between Distributions

Definition 3.20: Integral probability metric, Müller (1997)

Integral probability metrics (IPMs) are distances on the space of distributions
over a set X , defined by a class F of real-valued functions on X as

DF (p, q) = sup
f œF

--E[f ( X )] ≠ E[f ( Y )]
--.

X ≥ p Y ≥ q

Discussed also in Dedecker and Merlevède (2007)
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Distance Between Distributions
Note that it is still possible to define projections with deviance (that will not be

”orthogonal” projections since divergence are not related to inner products)

Definition 3.21: Projection, Bregman (1967), Bauschke et al. (1997)

Given a strictly convex function continuously di�erentiable Â and the associated
Bregman divergence DÂ, a closed closed convex K µ X and a point x œ X . The
Bregman projection of x onto K is

x
ı = argmin

yœK

)
DÂ(x, y)

*

If Â(x) = ÎxÎ
2
¸2 , Bregman projection is the standard orthogonal projection onto a

convex set,
x

ı = argmin
yœK

)
Îx ≠ yÎ

2
¸2

*
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Distance Between Distributions

Definition 3.22: Hellinger distance, Hellinger (1909)

For two discrete distributions p and q, Hellinger distance is

dH(p, q)2 = 1
2

ÿ

i

3Ò
p(i) ≠

Ò
q(i)

42
= 1 ≠

ÿ

i

Ò
p(i)q(i) œ [0, 1],

and for absolutely continuous distributions, if p and q are densities,

dH(p, q)2 = 1
2

⁄

R

3Ò
p(x) ≠

Ò
q(x)

42
dx or 1

2

⁄

Rk

3Ò
p(x) ≠

Ò
q(x)

42
dx.

See Pardo (2018).
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Distance Between Distributions

Proposition 3.9: Distance between Beta variables

Consider two Beta distribution, then d2
H (B(a1, b1), B(a2, b2)) is

1 ≠
1


B(a1, b1)B(a2, b2)

B
3a1 + a2

2 ,
b1 + b2

2

4

Proof

1 ≠

⁄ 1

0

Ò
f1(t)f2(t)dt = 1 ≠

1


B(a1, b1)B(a2, b2)

⁄ 1

0
t(a1+a2)/2≠1(1 ≠ t)(b1+b2)/2≠1dt,

then use B(a, b) = B(a, b) =
⁄ 1

0
ta≠1(1 ≠ t)b≠1dt = �(a) �(b)

�(a + b) .
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Distance Between Distributions

Proposition 3.10: Distance between Gaussian vectors

Consider two Gaussian distributions, then d2
H (N (µ1, �1) , N (µ2, �2)) is

2 ≠ 2 |�1|
1
4 |�2|

1
4

|�̄|
1
2

exp
3

≠
1
8 (µ1 ≠ µ2)€ �̄≠1 (µ1 ≠ µ2)

4

where �̄ = 1
2(�1 + �2).

Note that it is a Bregman divergence DÂ with Â(x) =
ÿ

i=1
xi

2
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Distance Between Distributions

Definition 3.23: Pearson/Neyman ‰-square divergences Nielsen and Nock
(2013)

For two discrete distributions p and q, Pearson chi-square divergence is

dP‰(pÎq)2 =
ÿ

i

#
p(i) ≠ q(i)

$2

q(i) ,

while Neyman chi-square divergence is

dN‰(pÎq)2 =
ÿ

i

#
(i) ≠ q(i)

$2

p(i) = dP‰(qÎp),
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Distance Between Distributions

Note that both are Bregman divergences DÂ with ÂP(x) = ≠2
ÿ

i=1

Ôxi and

ÂN(x) =
ÿ

i=1
xi

≠1.

d‰ can be extended to the case of continuous distributions, e.g.,

dP‰(pÎq)2 =
⁄ 3p(x)

q(x) ≠ 1
42

p(x)dx
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Distance Between Distributions
Definition 3.24: Total Variation, Jordan (1881); Rudin (1966)

For two distributions p and q, the total variation distance between p and q is

dTV(p, q) = sup
A

)
|p(A) ≠ q(A)|

*
.

Proposition 3.11: Total Variation

For two univariate distributions p and q, the total variation distance between p
and q is

dTV(p, q) = 1
2

ÿ

i
|p(i) ≠ q(i)| = 1

2Îp ≠ qÎ¸1 =
ÿ

i :p(i)Øq(i)

!
p(i) ≠ q(i)

"

See Proposition 4.2 in Levin and Peres (2017).
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Distance Between Distributions

Equivalently,
dTV(p, q) = 1

2 sup
f :Rkæ{0,1}

;⁄
f dp ≠

⁄
f dq

<

(see e.g. https://djalil.chafai.net/blog/, with f : Rk
æ {≠1, 1}, f = 1A ≠ 1Ac )

It is an IPM with F = {f : X æ {0, 1}}, so that F is a set of indicator functions for
any event.

For Gaussian distributions, the distance has no explicit formula, see, e.g., Devroye
et al. (2018).
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Distance Between Distributions

Proposition 3.12: Total Variation, Sche�é theorem, Billingsley (2017)

For two distributions p and q on Rk ,

dTV(p, q) = 1
2

⁄

Rd
|p(x) ≠ q(x)|dx,

dTV(p, q) = 1 ≠

⁄

Rd
min

)
p(x) ≠ q(x)

*
dx,

dTV(p, q) = p(A) ≠ q(A) where A = {x : p(x) Ø q(x)}.
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Distance Between Distributions

In the univariate case, we can restrict A to half-lines (≠Œ, t]

Definition 3.25: Kolmorov-Smirnov, Kolmogorov (1933); Smirnov (1948)

For two distributions p and q, Kolmorov-Smirnov distance between p and q is

dKS(p, q) = sup
tœR

)
|p((≠Œ, t])≠q((≠Œ, t])|

*
= sup

tœR

)
|Fp(t)≠Fq(t)|

*
= ÎFp≠FqÎŒ,

where Fp and Fq are the respective cumulative distribution functions.
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Distance Between Distributions

Definition 3.26: Entropy, Shannon (1948)

The entropy associated with distribution p is

Ep(p) = ≠

ÿ

i
p(i) log p(i) = Ep

#
≠ log p(X )

$
.

and define cross-entropy (of q relative to p) as

Eq(p) = ≠

ÿ

i
p(i) log q(i) = Ep

#
≠ log q(X )

$
.

See Amari (2016) or Chambert-Loir (2023) for more details.
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Distance Between Distributions

Definition 3.27: Kullback–Leibler, Kullback and Leibler (1951)

For two discrete distributions p and q, Kullback–Leibler divergence of p, with
respect to q is

DKL(pÎq) =
ÿ

i
p(i) log p(i)

q(i),

and for absolutely continuous distributions,

DKL(pÎq) =
⁄

R
p(x) log p(x)

q(x) dx or
⁄

Rk
p(x) log p(x)

q(x) dx,

in higher dimension.

Also called relative entropy, since DKL(pÎq) = Eq(p) ≠ Ep(p).
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Distance Between Distributions

Proposition 3.13: KL divergence for Gaussian vectors

Consider two Gaussian distributions, then DKL(N (µ1, �1)ÎN (µ2, �2)) is

1
2

5
(µ2 ≠ µ1)€�≠1

2 (µ2 ≠ µ1) + tr(�≠1
2 �1) ≠ log |�1|

|�2|
≠ k

6

where k is the dimension, see Polyanskiy and Wu (2022).
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Distance Between Distributions
The entropy of X according to p is smaller than or equal to the cross-entropy of p and
q, or equivalently

Proposition 3.14: Gibbs’ inequality

DKL(pÎq) is positive and separable, i.e. DKL(pÎq) Ø 0 and DKL(pÎq) = 0 if
and only if p = q.

Proof:
ÿ

xœI
p(x) log p(x)

q(x) Ø 0 where I is the set of all x for which p(x) > 0. Recall

that log x Æ x ≠ 1 (with equality only when x = 1), thus log(1/x) Ø 1 ≠ x , and

ÿ

xœI
p(x) ln p(x)

q(x) Ø

ÿ

xœI
p(x)

3
1 ≠

q(x)
p(x)

4
=

ÿ

xœI
p(x) ≠

ÿ

xœI
q(x) Ø 0.

= 1 Æ 1
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Distance Between Distributions
Proposition 3.15: Additivity for independence distributions

DKL(pÎq) = DKL(pxÎqx ) + DKL(py Îqy ) if p(x , y) = px (x)py (y) and q(x , y) =
qx (x)qy (y).

Proof By definition

DKL(pÎq) =
⁄

X

⁄

Y

p(x , y) · log p(x , y)
q(x , y) dy dx .

and since p(x , y) = px (x)py (y) and q(x , y) = qx (x)qy (y),

DKL(pÎq) =
⁄

X

⁄

Y

p1(x) p2(y) · log p1(x) p2(y)
q1(x) q2(y) dy dx .
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Distance Between Distributions
DKL(pÎq) =

⁄

X

⁄

Y

px (x) py (y) ·

A

log px (x)
qx (x) + log py (y)

qy (y)

B

dy dx

=
⁄

X

⁄

Y

px (x) py (y) · log px (x)
qx (x) dy dx +

⁄

X

⁄

Y

px (x) py (y) · log py (y)
qy (y) dy dx

=
⁄

X

px (x) · log px (x)
qx (x)

⁄

Y

py (y) dy dx +
⁄

Y

py (y) · log py (y)
qy (y)

⁄

X

px (x) dx dy

=
⁄

X

px (x) · log px (x)
qx (x) dx +

⁄

Y

py (y) · log py (y)
qy (y) dy

= DKL(pxÎqx ) + DKL(py Îqy ).

But for other distances,
I

dH(p, q)2
Æ dH(px , qx )2 + dH(py , qy )2

dTV(p, q) Æ dTV(px , qx ) + dTV(py , qy ).
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Distance Between Distributions
It is only defined in this way if, for all x , q(x) = 0 implies p(x) = 0 (“absolute

continuity” with respect to p).

Proposition 3.16

The KL divergence has unbiased sample gradients, but is not scale sensitive.

Proof Bellemare et al. (2017b).
In a Bayesian setting, DKL(pÎq) is a measure of the information gained by revising

one’s beliefs from the prior probability distribution q to the posterior probability
distribution p (it is the amount of information lost when q is used to approximate p).

If Â(x) =
ÿ

xi log(xi) (strictly convex), then Bregman divergence is

DÂ(x, y) =
ÿ

xi log xi
yi

= DKL(xÎy)
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Distance Between Distributions

DKL(B(p)ÎB(q)) = p log p
q + (1 ≠ p) log 1 ≠ p

1 ≠ q

DKL(B(n, p)ÎB(n, q)) = np log p
q + n(1 ≠ p) log 1 ≠ p

1 ≠ q = nDKL(B(p)ÎB(q))

DKL(U([a1, b1])ÎU([a2, b2])) = log b2 ≠ a2
b1 ≠ a1

DKL(N (µ1, ‡2
1)ÎN (µ2, ‡2

2)) = 1
2

C
(µ1 ≠ µ2)2

‡2
2

+ ‡2
1

‡2
2

≠ log ‡2
1

‡2
2

≠ 1
D

DKL(N (µ1, �1)ÎN (µ2, �2)) = 1
2

5
(µ2 ≠ µ1)€�≠1

2 (µ2 ≠ µ1) + tr(�≠1
2 �1) ≠ log |�1|

|�2|
≠ n

6
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Distance Between Distributions

Consider some distribution p◊, as in Nielsen (2022). Using Taylor expansion,

DKL(p◊Îp◊+d◊) = 1
2d◊€I(◊)d◊ ¥

1
2ds2

◊ .

Definition 3.28: Je�reys (symmetric) divergence Je�reys (1946)

The Je�rey divergence is a symmetric divergence induced by Kullback-Liebler
divergence,

DJ(p1, p2) = 1
2DKL(p1Îp2) + 1

2DKL(p2Îp1).
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Distance Between Distributions

Definition 3.29: Jensen-Shannon, Lin (1991)

The Jensen-Shannon divergence is a symmetric divergence induced by Kullback-
Liebler divergence,

DJS(p1, p2) = 1
2DKL(p1Îq) + 1

2DKL(p2Îq),

where q = 1
2(p1 + p2).

Endres and Schindelin (2003) proved that
Ò

DJS(p1, p2) is a proper distance.

See philentropy package.
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Distance Between Distributions
Definition 3.30: f -divergence, Rényi (1961),Ali and Silvey (1966)

Given a continuous convex function f : [0, Œ) æ R, define

Df (pÎq) =
ÿ

i
q(i) · f

3p(i)
q(i)

4

and for absolutely continuous function

Df (pÎq) =
⁄

R
q(x)f

3
log p(x)

q(x)

4
dx or

⁄

Rk
q(x)f

3p(x)
q(x)

4
dx,

Df (pÎq) is properly defined when p π q, see also Csiszár (1964, 1967).
If f (u) = u log u, Df (pÎq) = DKL(p, q)
If f (u) = |u ≠ 1|, Df (pÎq) = dTV(p, q)
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Distance Between Distributions

If f (u) = 1
2

!Ô
u ≠ 1

"2, Df (pÎq) = dH(p, q)2

If f (u) = 1
2

3
u log u ≠ (u + 1) log

3u + 1
2

44
, Df (pÎq) = dJS(p, q)

One can define Df (pÎq) when p ”π q: Since f is convex, and f (1) = 0, the function
f (x)
x ≠ 1 must nondecrease, so there exists f Õ(Œ) := limxæŒ

f (x)/x , taking value in

(≠Œ, +Œ]. And since for any p(x) > 0, we have lim
q(x)æ0

q(x)f
3p(x)

q(x)

4
= p(x)f Õ(Œ).

Proposition 3.17

Df (pÎq) is linear in f , Daf +bg(pÎq) = aDf (p, q) + bDg(pÎq).
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Distance Between Distributions

Proposition 3.18

Df = Dg if and only if f (x) = g(x) + c(x ≠ 1) for some c œ R.

The only f -divergence that is also a Bregman Â-divergence is the KL divergence
The only f -divergence that is also an integral probability metric is the total variation.
There is a variational representation of Df , in Polyanskiy and Wu (2022).
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Distance Between Distributions

Since f is convex, let f ı be the convex conjugate of f . Let e�dom(f ı) be the
e�ective domain of f ı (i.e., e�dom(f ú) = {y : f ú(y) < Œ})

Df (p; q) = sup
g :�æe�dom(f ı)

Ep[g ] ≠ Eq[f ı
¶ g ]

For example, with the total variation, f (x) = 1
2 |x ≠ 1|, its convex conjugate is

f ú(xú) =
I

xú on [≠1/2, 1/2],
+Œ else.

, and we obtain

dTV(p, q) = sup
|g |Æ1/2

Ep[g(X )] ≠ Eq[g(X )].
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Distance Between Distributions

Extending Rényi entropy of order –, H–(X ) = 1
1 ≠ –

log
A

ÿ

i
p(i)–

B

, define

Definition 3.31: Rényi –-divergence, Rényi (1961)

Given – œ (0, Œ), define

D–(pÎq) = 1
– ≠ 1 log

A
ÿ

i

p(i)–

q(i)–≠1

B

and for absolutely continuous function

D–(pÎq) = 1
– ≠ 1 log

A ⁄

R

p(x)–

q(x)–≠1 dx
B

or 1
– ≠ 1 log

A ⁄

Rk

p(x)–

q(x)–≠1 dx

B

.
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Distance Between Distributions

Recall that

D–(pÎq) = 1
– ≠ 1 log

A
ÿ

i

p(i)–

q(i)–≠1

B

when – œ (0, Œ).

One can define limiting cases, D0(PÎQ) = ≠ log Q({i : pi > 0}) and
DŒ(PÎQ) = log supi

pi
qi

Observe also that D1(pÎq) = DKL(pÎq)
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Distance Between Distributions
Definition 3.32: Cramér, Cramér (1928a,b) and Székely (2003)

Consider two measures on p and q on R. Then define Cramér distance

Ck(p, q) =
1 ⁄

Œ

≠Œ

|Fp(x) ≠ Fq(x)|kdx
21/k

, for k Ø 1

C2 is named ”energy-distance” in Székely (2003) and Rizzo and Székely (2016), and
”continuous ranked probability score” in Gneiting et al. (2007).

It is an Integral Probability Metrics (IPM), since

C k (p, q) = sup
f œ FkÕ

--E[f ( X )] ≠ E[f ( Y )]
--.

X ≥ p Y ≥ qk≠1 + k Õ≠1 = 1
where FkÕ is the set of absolutely continuous functions such that ÎÒf ÎkÕ Æ 1.
For example, if k = 1, ÎÒf ÎŒ Æ 1 (corresponding to 1-Lipschitz functions).
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Distance Between Distributions
Definition 3.33: Wasserstein, Wasserstein (1969)

Consider two measures on p and q on R. Then define Wasserstein distance

Wk(p, q) =
1 ⁄ 1

0
|F ≠1

p (u) ≠ F ≠1
q (u)|kdu

21/k
, for k Ø 1

1 > c2 = function (x) (pnorm(x ,0 ,1) -pnorm
(x ,1 ,2))ˆ2

2 > w2 = function (u) (qnorm(u ,0 ,1) -qnorm
(u ,1 ,2))ˆ2

3 > sqrt( integrate (c2 ,-Inf ,Inf) $value )
4 [1] 0.5167714
5 > sqrt( integrate (w2 ,0 ,1) $value )
6 [1] 1.414214

where F ≠1 denotes the generalized inverse of F , F ≠1(u) = inf
xœR

{F (x) Ø u}.
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Distance Between Distributions
1 > c1 = function (x) abs(pnorm(x ,0 ,1) -

pnorm(x ,1 ,2))
2 > w1 = function (x) abs(qnorm(x ,0 ,1) -

qnorm(x ,1 ,2))
3 > integrate (c1 ,-Inf ,Inf) $value
4 [1] 1.166631
5 > integrate (w1 ,0 ,1) $value
6 [1] 1.166636

Proposition 3.19: C1 and W1

Consider two measures on p and q on R.

W1(p, q) =
⁄ 1

0
|F ≠1

p (u) ≠ F ≠1
q (u)|du =

⁄
Œ

≠Œ

|Fp(x) ≠ Fq(x)|dx = C1(p, q).

Proof See Prokhorov (1956), Dall’Aglio (1956) and Vallender (1974).
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Distance Between Distributions

Instead of the geometric proof (see plot above), observe that

⁄ 1

0
|F ≠1

p (u) ≠ F ≠1
q (u)|du =

⁄ 1

0

⁄
Œ

≠Œ

g(u, x)dxdu, g(u, x) = 1 if
I

x œ [F ≠1
p (u), F ≠1

q (u)]
x œ [F ≠1

q (u), F ≠1
p (u)]

=
⁄

Œ

≠Œ

⁄ 1

0
h(u, x)dudx , h(u, x) = 1 if

I
u œ [Fp(x), Fq(x)]
u œ [Fq(x), Fp(x)]

=
⁄

Œ

≠Œ

|Fp(x) ≠ Fq(x)|dx

(see Proposition 2.17 in Santambrogio (2015) for a proper justification)
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Distance Between Distributions

µ: multinomial distribution on {0, 1, 10}, with p = (.5, .1, .4)
‹◊: binomial type distribution on {0, 10}, with q◊ = (1 ≠ ◊, ◊)
Let ◊ı = argmin{d(p, q◊)} or ◊ı = argmin{d(pÎq◊)}

with dKL(pÎq◊), dJS(p, q◊), dH(p, q◊) and dH‰2 (pÎq◊).
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Distance Between Distributions

µ: multinomial distribution on {0, 1, 10}, with p = (.5, .1, .4)
‹◊: binomial type distribution on {0, 10}, with q◊ = (1 ≠ ◊, ◊)
Let ◊ı = argmin{d(p, q◊)}

with C1(p, q◊), C2(p, q◊), W1(p, q◊) and W2(p, q◊).
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Distance Between Distributions

Proposition 3.20

The Wasserstein metric is scale and sum invariant, but does not have unbiased
sample gradients.

Proof Bellemare et al. (2017b)

Example If xi are drawn from a Bernoulli distribution
Non-vanishing minimax bias: ’n, ÷p, q◊,

--E
!
Ò◊W k

k (‚pn, q◊)
"

≠ Ò◊W k
k (p, q◊)

-- Ø 2e≠2

Wrong minimum: in general,
‚◊n = argmin

Ó
E(

!
W k

k (‚pn, q◊)
"
)
Ô

”= argmin
Ó

W k
k (P,Q◊)

"
)
Ô

= ◊
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Distance Between Distributions

Proposition 3.21

The Cramér metric is scale and sum invariant.

Ck(X + Z , Y + Z ) Æ Ck(X , Y ) whenever Z ‹‹ X , Y and k Ø 1, and
Ck(cX , cY ) Æ |c|

1/kCk(X , Y ).

Proposition 3.22

C2 has unbiased sample gradients (only k = 2),

E (Ò◊C2(‚pn, q◊)) = Ò◊C2(p, q◊).
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Distance Between Distributions
Consider first W1 (earth mover’s distance), which was the only distance discussed in

Wasserstein (1969). See also Vallender (1974) for an extensive review.
W1 is an IPM where F the set of 1-Lipschitz functions, Kantorovich and Rubinstein

(1958), i.e., if p and q have bounded support,

W1(p, q) = sup
f œF

;⁄ +Œ

≠Œ

f (x) d(p ≠ q)(x)
<

,

F being the class of 1-Lipschitz functions

Proposition 3.23: W1 and First Order Dominance

Suppose that X1 ∞ X2 (first order dominance, F ≠1
2 (u) Ø F ≠1

1 (u), ’u œ (0, 1)),

W1(p1, p2) = E[X2] ≠ E[X1].
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Distance Between Distributions
Proof

W1(p1, p2) =
⁄ 1

0
| F ≠1

2 (u) ≠ F ≠1
1 (u) |du =

⁄ 1

0
F ≠1

2 (u)du ≠

⁄ 1

0
F ≠1

1 (u)du

Ø 0 E[X2] E[X1]

then (property discussed later)

W1(p1, p2) = inf
C

⁄ ⁄
|x2≠x1|dC(F1(x1), F2(x2)) = inf

C

⁄ ⁄
|F ≠1

2 (v) ≠ F ≠1
1 (u)|dC(u, v)

E
#
|X1 ≠ X2|

$

As discussed in Vallender (1974),

E
#
|X1 ≠ X2|

$
=

⁄ #
P[X1 < t, X2 Ø t] + P[X1 Ø t, X2 < t]

$
dt

=
⁄ #

P[X1 < t] + P[X2 < t] ≠ 2P[X1 < t, X2 < t]
$
dt
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Distance Between Distributions

E
#
|X1 ≠ X2|

$
=

#
F1(t) + F2(t) ≠ 2C(F1(t), F2(t))]

$
dt

From Fréchet-Hoe�ding bounds, C(u, v) Æ M(u, v) = min{u, v} and

F1(t) + F2(t) ≠ 2C(F1(t), F2(t)) Ø F1(t) + F2(t) ≠ 2M(F1(t), F2(t))

E
#
|X1 ≠ X2|

$
Ø

⁄ ⁄
|F ≠1

2 (v) ≠ F ≠1
1 (u)|dM(u, v)

⁄
|F ≠1

2 (u) ≠ F ≠1
1 (u)|du

Example let p1 Æ p2
W1

!
B(p1), B(p2)

"
= p2 ≠ p1.
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Distance Between Distributions

We can also consider W2

Proposition 3.24: C2 and W2

Consider two measures on p and q on R.

W2(p, q)2 =
⁄ 1

0
|F ≠1

p (u)≠F ≠1
q (u)|2du while C2(p, q) =

⁄
Œ

≠Œ

|Fp(x)≠Fq(x)|2dx .
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Distance Between Distributions

Proposition 3.25: W2 for Gaussian / Bernoulli distributions

Consider two Gaussian distributions, then

W2
!
N (µ1, ‡2

1), N (µ2, ‡2
2)

"2 = (µ1 ≠ µ2)2 + (‡1 ≠ ‡2)2,

and for two Bernoulli distributions, if p1 Æ p2

W2
!
B(p1), B(p2)

"
=

Ô
p2 ≠ p1.
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Distance Between Distributions
Proposition 3.26: Representation for W2

Consider two measures on p and q on R.

W2(p, q)2 =
⁄

Œ

≠Œ

⁄
Œ

≠Œ

!
Fp(min{x , y}) ≠ Fq(max{x , y})

"
+

+
!
Fq(min{x , y}) ≠ Fp(max{x , y})

"
+dxdy

or

W2(p, q)2 = 2
⁄

Œ

≠Œ

⁄
Œ

x

Ë!
Fp(x) ≠ Fq(y)

"
+ +

!
Fq(x) ≠ Fp(y)

"
+

È
dxdy

Proof Since W2(p, q)2 =
⁄ 1

0
|F ≠1

p (u) ≠ F ≠1
q (u)|2du observe that

F ≠1
p (u)≠F ≠1

q (u) = F ≠1
p (u)≠F ≠1

p (Fp(F ≠1
q (u))) = F ≠1

p (u)≠F ≠1
p (G(u)) where G = Fp¶F ≠1

q .
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Distance Between Distributions
Since Fq is continuously di�erentiable, so that H = F Õ

p ¶ F ≠1
p , then

F ≠1
p (u) ≠ F ≠1

q (u) =
⁄ u

G(u)

dt
H(t)

and write
!
F ≠1

p (u) ≠ F ≠1
q (u)

"2 =
⁄ u

G(u)

dt
H(t)

dv
H(v)

and depending on whether G(u) Æ u or u Æ G(u), we can write
⁄ 1

0

!
F ≠1

p (u) ≠ F ≠1
q (u)

"2du =
⁄ 1

0

⁄ 1

0

!
G≠1(min{t, v}) ≠ max{r , v}

"
+

+
!

min{t, v} ≠ G≠1(max{t, v})
"

+dtdv .

And finally, let t = Fp(x) and v = Fq(v), so that G≠1(t) = Fq(x) and
G≠1(v) = Fq(y), and we get the desired expression.
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Distance Between Distributions

We can finally consider WŒ

Proposition 3.27: WŒ

Consider two measures on p and q on R.

WŒ(p, q) = sup
uœ(0,1)

--F ≠1
p (u) ≠ F ≠1

q (u)
--.

Furthermore, WŒ(p, q) is the infimum over all h Ø 0 such that

Fq(x ≠ h) Æ Fp(x) Æ Fq(x + h), for all x œ R.
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Optimal transport and Wasserstein distance
Definition 3.34: Wasserstein, Wasserstein (1969)

Consider two measures on p and q on Rk , with a norm Î ·Î (on Rk). Then define

Wk(p, q) =
A

inf
fiœ�(p,q)

⁄

Rk◊Rk
Îx ≠ yÎ

kdfi(x, y)
B1/k

,

where �(p, q) is the set of all couplings of p and q.
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Optimal transport and Wasserstein distance

Definition 3.35: Kantorovich Problem

Kantorovich Problem is defined as

Wc(p, q) = inf
fiœ�(p,q)

⁄

X ◊Y

c(x, y)dfi(x, y),

for cost function c (or loss function).
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Optimal transport and Monge mapping

Definition 3.36: Push-Forward and Transport Map

Given two metric spaces X and Y, a measurable map T : X æ Y and a measure
µ on X . The push-forward of µ by T is the measure ‹ = T#µ on Y defined by

’B µ Y, T#µ(B) = µ
!
T ≠1(B)

"
.

By the change-of-variable formula

Proposition 3.28: Push-Forward and Transport Map

For all measurable and bounded Ï : Y æ R,
⁄

Y

Ï(y)dT#µ(y) =
⁄

X

Ï
!
T (x)

"
dµ(x).
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Optimal transport and Monge mapping
If Y is a finite set {y1, · · · , yn},

T#µ =
nÿ

i=1
µ

!
T ≠1({y i})

"
· ”{y i }

If X is a single atom, {x}, µ = ”x and T#µ(B) = µ
!
T ≠1(B)

"
= ”T (x). If

Card(support(‹)) > 1, there is no transport map.
One solution is to allow mass to split, leading to Kantorovich’s relaxation of Monge’s

problem

Proposition 3.29: Existence of a map

If X = Y is a compact subset of Rk , if µ and ‹ are two measures, and if µ is
atomless, then there exists T such that ‹ = T#µ.

see Santambrogio (2015).
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Optimal transport and Monge mapping
If X and Y are two sets of Rk , and if measures µ and ‹ are absolutely continuous,

with densities f and g (w.r.t. Lebesgue measure),
⁄

Y

Ï(y)g(y)dy =
⁄

X

Ï
!
T (x)

"
· g(T (x)) det ÒT (x)
¸ ˚˙ ˝

=f (x)

·dx.

Definition 3.37: Monge Problem

Monge problem

inf
T#p=q

⁄

X

c
!
x, T (x)

"
dPA(x),

for cost function c.

Note that the constraint and the objective function are non-convex.
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Optimal transport and Monge mapping

Theorem 3.1: Optimal map for continuous univariate distributions

The optimal Monge map T ı for some strictly convex cost c such that T ı
#PA = PB

is T ı = F ≠1
B ¶ FA.

T ı is an increasing mapping.

Example Univariate Gaussian

xB = T
ı(xA) = µB + ‡B‡≠1

A (xA ≠ µA).
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Optimal transport and Monge mapping

Theorem 3.2: Optimal map for continuous multivariate distributions, Bre-
nier (1991)

With a quadratic cost, the optimal Monge map T ı is unique, and it is the gradient
of a convex function, T ı = ÒÏ.

Example Multidimensional Gaussian

xB = T
ı(xA) = µB + A(xA ≠ µA),

where A is a symmetric positive matrix that satisfies A�AA = �B, which has a unique
solution given by A = �≠1/2

A
!
�1/2

A �B�1/2
A

"1/2�≠1/2
A , where M

1/2 is the square root of
the square (symmetric) positive matrix M based on the Schur decomposition (M1/2 is
a positive symmetric matrix), as described in Higham (2008).
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Optimal transport and Monge mapping

Gangbo (1999) proved, when X = Y is a compact subset of R, the infimum in Monge
problem and the minimum in Kantorovich problem coincide, if µ is atomless,

Proposition 3.30: Monge/Kantorovich Problems

X = Y is a compact subset of Rk and if µ is atomless,

min{Monge problem, see Def. 3.37} = min{Kantorovich problem, see Def. 3.35}.
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Optimal transport (discrete)

(via Harris and Ross (1955))
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Optimal transport (discrete)

One can consider optimal transport for empirical measures, P =
nÿ

i=1
Êi”x i .

With uniform weights and n points for PA and PB, W k
k is the optimal matching cost

(Hungarian algorithm, Kuhn (1955, 1956)), cast as a linear program

Wk(PA,PB) =
A

min
sœSn

1
n

nÿ

i=1
d(xi , ys(i))k

B1/k
,

where Sn is the set of permutations on {1, 2, · · · , n}.
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Optimal transport (discrete)
Consider the set of n ◊ n doubly-stochastic matrices,

Dn =
)
M œ Rn◊n

+ : M1n = 1n and M€1n = 1n
*
,

and the subset of permutation matrices,

Un =
)
M œ {0, 1}

n◊n : M1n = 1n and M€1n = 1n
*
.

Let C denote the cost matrix, Ci ,j = d(xi , yj)k , then

Wk(x, y)k = argmin
PœUn

Ó
ÈP, CÍ

Ô
, where ÈP, CÍ =

nÿ

i=1

nÿ

j=1
Pi ,jCi ,j (1)

and “optimal transport” permutation matrix

Pú
œ argmin

PœUn

Ó
ÈP, CÍ

Ô
(2)
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Optimal transport (discrete)
1 7 8 9 10 11 12

1 0.41 0.55 0.22 0.64 0.04 0.25
2 0.28 0.24 0.73 0.22 0.64 0.80
3 0.28 0.47 0.32 0.52 0.16 0.37
4 0.28 0.62 0.81 0.25 0.64 0.85
5 0.41 0.37 0.89 0.25 0.81 0.97
6 0.66 0.76 0.21 0.89 0.22 0.14

7 8 9 10 11 12
1 1 · · · · 1 ·

1 2 · 1 · · · ·

1 3 · · 1 · · ·

1 4 1 · · · · ·

1 5 · · · 1 · ·

1 6 · · · · · 1

1 1 ¡ 11
1 2 ¡ 8
1 3 ¡ 9
1 4 ¡ 7
1 5 ¡ 10
1 6 ¡ 12
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Optimal transport (discrete)

Consider wo samples, with the
height of men and women (both
groups of size n).

On the following graph, we can vi-
sualize the optimal matching of in-
dividuals in the two groups.

It is a monotone mapping.
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Optimal transport (discrete)

Two groups, with black and non-black mothers, delivering babies (in the U.S.)
x1 ¡ x1 (newborn weight) and x2 ¡ x2 (weight gain of the mother)
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Optimal transport (discrete)

Proposition 3.31: Hardy–Littlewood–Pólya
inequality, Hardy et al. (1952)

Given x1 Æ · · · Æ xn and y1 Æ · · · Æ yn n pairs of
ordered real numbers, for every permutation ‡ of
{1, 2, · · · , n},

nÿ

i=1
xiyn+1≠i Æ

nÿ

i=1
xiy‡(i) Æ

nÿ

i=1
xiyi .

various implications, e.g. bounds on the covariance, and the
correlation, see Proposition 5.1.

This can be extended to more general function �(xi , yj).
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Optimal transport (discrete)

Definition 3.38: Supermodular, Topkis (1998)

Function � : Rk
◊ Rk

æ R is supermodular if for any z, z
Õ
œ Rk ,

�(z · z
Õ) + �(z ‚ z

Õ) Ø �(z) + �(z Õ),

where z · z
Õ and z ‚ z

Õ denote respectively the maximum and the minimum
componentwise. If ≠� is supermodular, � is said to be submodular.
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Optimal transport (discrete)
Proposition 3.32: Hardy–Littlewood–Pólya inequality, Hardy et al. (1952)

Given x1 Æ · · · Æ xn and y1 Æ · · · Æ yn n pairs of ordered real numbers, and some
supermodular function � : R◊R æ R, for every permutation ‡ of {1, 2, · · · , n},

nÿ

i=1
�(xi , yn+1≠i) Æ

nÿ

i=1
�(xi , y‡(i)) Æ

nÿ

i=1
�(xi , yi),

while if � : R ◊ R æ R is submodular,
nÿ

i=1
�(xi , yi) Æ

nÿ

i=1
�(xi , y‡(i)) Æ

nÿ

i=1
�(xi , yn+1≠i).

Functions �(x , y) = “(x ≠ y) for some concave function “ : R æ R, such as
�(x , y) = ≠|x ≠ y |

k with k Ø 1, are supermodular.
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Optimal transport (discrete)

1 > permutations = function (n){
2 + if(n==1){
3 + return ( matrix (1))
4 + } else {
5 + sp = permutations (n -1)
6 + p = nrow(sp)
7 + A = matrix (nrow=n*p,ncol=n)
8 + for(i in 1:n){
9 + A[(i -1)*p+1:p,] =

10 + cbind (i,sp+(sp >=i))
11 + }
12 + return (A)
13 + }
14 + }

�(x , y) = (x ≠ y)2, submodular function,

Consider x1 Æ · · · Æ xn

1 > Phi = function (x,y) sum ((x-y)ˆ2)
2 > set.seed (1)
3 > x = sort(x)
4 > y = y[1:6]
5 > vect = permutations (6)
6 > MY = matrix (vect , ncol =6)
7 > MPhi = function (i) Phi(x, y[MY[i ,]])
8 > S = Vectorize (MPhi)(1: nrow(MY))
9 > y[MY[which.min(S) ,]]

10 [1] 0.046 0.288 0.409 0.788 0.883 0.940
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Optimal transport (discrete)
In a very general setting (with nA ”= nB), if aA œ RnA

+ and aB œ RnB
+ satisfy

a
€
A 1nA = a

€
B 1nB (identical sums), define

U(aA, aB) =
)
M œ RnA◊nB

+ : M1nB = aA and M€1nA = aB
*
.

This set of matrices is a convex transportation polytope (see Brualdi (2006)).
In our case, let UnA,nB denote U

3
1nA ,

nA
nB

1nB

4
(Un,n is the set of permutation

matrices associated with Sn). Let C denote the cost matrix, Ci ,j = d(xi , yj)k .

Wk(x, y)k = argmin
PœUnA,nB

Ó
ÈP, CÍ

Ô
, where ÈP, CÍ =

nAÿ

i=1

nBÿ

j=1
Pi ,jCi ,j (3)

and “optimal transport”
Pú

œ argmin
PœUnA,nB

Ó
ÈP, CÍ

Ô
(4)
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Optimal transport (discrete)
7 8 9 10 11 12 13 14 15 16

1 0.41 0.55 0.22 0.64 0.04 0.25 0.24 0.77 0.74 0.55
2 0.28 0.24 0.73 0.22 0.64 0.80 0.76 0.76 0.12 0.10
3 0.28 0.47 0.32 0.52 0.16 0.37 0.27 0.68 0.63 0.45
4 0.28 0.62 0.81 0.25 0.64 0.85 0.58 0.32 0.51 0.48
5 0.41 0.37 0.89 0.25 0.81 0.97 0.91 0.81 0.05 0.25
6 0.66 0.76 0.21 0.89 0.22 0.14 0.33 0.96 0.99 0.79

7 8 9 10 11 12 13 14 15 16
1 · · 1/5 · 3/5 · 1/5 · · ·

2 · 2/5 · · · · · · · 3/5
3 3/5 · · · · · 2/5 · · ·

4 · · · 2/5 · · · 3/5 · ·

5 · 1/5 · 1/5 · · · · 3/5 ·

6 · · 2/5 · · 3/5 · · · ·
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Optimal transport (discrete)

From Kantorovich (1942), one can use the dual linear programming problem

Wk(a, b)k =

Y
____]

____[

primal(a, b, C) = min
PœUa,b

)
ÈP, CÍ

*

or
dual(a, b, C) = max

(u,v)œMC

)
u

€
a + v

€
b

*

where MC =
)
(u, v) œ RnA+nB

--ui + vj Æ C i ,j
*
.

If nA ≥ nB ≥ n, O(n3 log(n)) problem.

Set Âb(a, C) = max
(u,v)œMC

)
u

€
a + v

€
b

*
, a ‘æ Âb(a, C) is a convex non-smooth map.

The dual optimum u
ı is subgradient of a ‘æ Âb(a, C).

If k = 2 (Euclidean distance), convex quadratic problem.
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Optimal transport (discrete)

Given P œ UnA,nB , define the entropy as

E(P) = ≠

nAÿ

i=1

nBÿ

j=1
Pi ,j log Pi ,j or E

Õ(P) = ≠

nAÿ

i=1

nBÿ

j=1
Pi ,j

#
log Pi ,j ≠ 1

$

and consider the “-regularized optimal transport problem

Pú

“ = argmin
PœUnA,nB

Ó
ÈP, CÍ ≠ “E(P)

Ô
(5)

since the problem is strictly convex.
The Lagrangian is here

L(P, ⁄A, ⁄B) = ÈP, CÍ ≠ “E(P) ≠ È⁄A, P1nB ≠ 1nAÍ ≠ È⁄B, P€1nA ≠ 1nBÍ
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Optimal transport (discrete)
and the first order conditions are

Ci ,j + “ log(Pi ,j) ≠ ⁄A,i ≠ ⁄B,j = 0,

i.e.
Pi ,j = exp[⁄A,i ≠ Ci ,j + ⁄B,j ] or P = DA exp[≠C ]DB

where DA and DB are diagonal matrices.

This can be related to the Doubly Stochastic Scaling Problem: let A be some n ◊ n
matrix with positive coe�cients, we want to find DA and DB two positive diagonal
matrices (n ◊ n) such that DAADB is doubly stochastic (see Parlett and Landis (1982))

More generally, this corresponds to the Matrix Scaling Problem: Let A be some
nA ◊ nB matrix with positive coe�cients, we want to find DA and DB two positive
diagonal matrices (respectively nA ◊ nA and nB ◊ nB) such that DAADB is in U(aA, aB).
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Optimal transport (discrete)

Theorem 3.3: Sinkhorn - Matrix Scaling, Sinkhorn (1962)

For any matrix A n ◊ m with positive entries, for any a and b in the simplex,
there exist unique u œ Rn

+ and v œ Rm
+ such that

diag[u] A diag[v ] œ Ua,b.

Sinkhorn and Knopp (1967) (extending Sinkhorn (1962, 1964, 1966)) suggested the
following algorithm (updating alternatively DA and DB)

Y
]

[
D(t)

A = diag(aA/(ADB)(t≠1))
D(t)

B = diag(aB/(ADA)(t))

(where the division here is element-wise).
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Optimal transport (discrete)

An alternative way to write the entropic optimization problem is

Pú

“ = argmin
PœUaA,aB

Ó
ÈP, CÍ + “ · dKL(P||aA ¢ aB)

Ô
(6)

Using mutual information here makes it easier to extend to the continuous case...

The extension of Sinkhorn algorithm is the coordinate descent/ascent algorithm.
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Optimal transport (discrete)

1 > set.seed (123)
2 > x = (1:6) /7
3 > y = runif (9)
4 > x
5 [1] 0.14 0.29 0.43 0.57 0.71 0.86
6 > y [1:6]
7 [1] 0.29 0.79 0.41 0.88 0.94 0.05
8 > library ( T4transport )
9 > Wxy = wasserstein (x,y [1:6])

10 > Wxy$plan
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Optimal transport (discrete)

1 > Wxy = wasserstein (x,y [1:6])
2 > Wxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn (x, y[1:6] , p = 2, lambda = 0.001)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn (x, y[1:6] , p = 2, lambda = 0.005)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn (x, y[1:6] , p = 2, lambda = 0.05)
2 > Sxy$plan
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Optimal transport (discrete)

1 > y
2 [1] 0.29 0.79 0.41 0.88 0.94 0.05
3 [7] 0.53 0.89 0.55
4 > library ( T4transport )
5 > Wxy = wasserstein (x,y)
6 [,1] [,2] [,3] [,4] [,5] [,6]
7 [1,] 0.5 0.5 0.0 0.0 0.0 0.0
8 [2,] 0.0 0.0 0.0 1.0 0.0 0.0
9 [3,] 0.0 1.0 0.0 0.0 0.0 0.0

10 [4,] 0.0 0.0 0.0 0.0 1.0 0.0
11 [5,] 0.0 0.0 0.0 0.0 0.0 1.0
12 [6,] 1.0 0.0 0.0 0.0 0.0 0.0
13 [7,] 0.0 0.0 1.0 0.0 0.0 0.0
14 [8,] 0.0 0.0 0.0 0.0 0.5 0.5
15 [9,] 0.0 0.0 0.5 0.5 0.0 0.0
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Optimal transport (discrete)

1 > Wxy = wasserstein (x,y)
2 > Wxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn (x, y, p = 2, lambda = 0.001)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn (x, y, p = 2, lambda = 0.005)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn (x, y, p = 2, lambda = 0.02)
2 > Sxy$plan
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Optimal transport (discrete)

1 > Sxy = sinkhorn (x, y, p = 2, lambda = 0.05)
2 > Sxy$plan
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Optimal transport (discrete)

Theorem 3.4: Optimal transport for discrete univariate distributions

Consider n points each group, on R, {x1, · · · , xn} and {y1, · · · , yn}, ordered in
the senses that x1 Æ x2 Æ · · · Æ xn and y1 Æ y2 Æ · · · Æ yn, for any k Ø 1,

Wk =
A

1
n

nÿ

i=1

--xi ≠ yi
--k

B1/k

Theorem 3.5: Optimal transport for continuous univariate distributions

Wk =
3⁄ 1

0
|F ≠1

x (u) ≠ F ≠1
y (u)|kdu

41/k
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Optimal transport (discrete)
Theorem 3.6: Optimal transport for continuous univariate distributions

Let PA and PB be two probability measures on R, and suppose that c(x , y) = h(x≠

y) for some strictly convex function h. The there exists a unique fi œ �(PA,PB)
such that

• fi is optimal to Kantorovich problem (3.35)
• fi is the comonotone joint distribution with marginals PA and PB.

If c(x , y) = |x ≠ y |, the optimal transport solution might be non-unique.

Theorem 3.7: Optimal map for continuous univariate distributions

The optimal Monge map T ı such that T ı
#PA = PB is T ı = F ≠1

B ¶ FA.
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Optimal transport (discrete)
Consider nA = 25 and nB = 25 points in R, nB = 32 and nB = 50

‚FnA(x) = 1
nA

nAÿ

i=1
1(xi Æ x) and ‚FnB(x) = 1

nB

nBÿ

i=1
1(xi Æ x)
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Optimal transport (discrete)

Consider nA = 25 and nB = 25 points in R, nB = 32 and nB = 50

‚FnA(x) = 1
nA

nAÿ

i=1
1(xi Æ x) and ‚FnB(x) = 1

nB

nBÿ

i=1
1(xi Æ x)
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Optimal transport (discrete)

In the univariate case, if k = 1,

W1 = 1
n

nÿ

i=1

--xi ≠ y‡(i)
--
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Multivariate Optimal Transport

Consider n and n points in R2

Consider n and 2n points in R2
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Multivariate Optimal Transport

Consider n and n points in R2, and k = 1, 2, 3, 4, T#PA = PB

Consider n and n points in R2, and p = 1, 2, 3, 4, T#PB = PA
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Multivariate Optimal Transport

Theorem 3.8: Optimal map for continuous multivariate distributions, Bre-
nier (1991)

With a quadratic cost, the optimal Monge map T ı is unique, and it is the gradient
of a convex function, T ı = ÒÏ.

Example Multidimensional Gaussian

xB = T
ı(xA) = µB + A(xA ≠ µA),

where A is a symmetric positive matrix that satisfies A�AA = �B, which has a unique
solution given by A = �≠1/2

A
!
�1/2

A �B�1/2
A

"1/2�≠1/2
A , where M

1/2 is the square root of
the square (symmetric) positive matrix M based on the Schur decomposition (M1/2 is
a positive symmetric matrix), as described in Higham (2008).
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Multivariate Optimal Transport
Proposition 3.33: W2 for Gaussian vectors

Consider two Gaussian distributions, then

W2
!
N (µ1, �1), N (µ2, �2)

"2 = Îµ1 ≠ µ2Î
2
2 + tr

!
�1 + �2 ≠ 2(�1/2

1 �2�1/2
1 )1/2"

Proof: Let X1 ≥ N (µ1, �1), X2 ≥ N (µ2, �2), and � define the covariance matrix of
(X1, X2),

� =
A

�1 C
C€ �2

B

where (generally), C is some n1 ◊ n2 matrix. Recall that n1 ◊ n2 matrices can have a
pseudo-inverse, in the sense that (Penrose conditions)

I
AA≠A = A
A≠AA≠ = A≠,

I
(AA≠)€ = AA≠

(A≠A)€ = A≠A,
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Multivariate Optimal Transport
Observe that E(ÎX1 ≠ X2Î

2
¸2) = tr(�1 + �2 ≠ 2C). Recall that C must satisfy the

Schur complement constraint, �1 ≠ C�≠1
2 C€

≤ 0, so that we want to solve

Cı = argmin{≠2tr(C)} s.t. �1 ≠ C�≠1
2 C€

≤ 0,

as studied in Olkin and Pukelsheim (1982), where �1 and �2 are positive (≤ 0)
matrices.
Let G = {C , n1 ◊ n2 : �1 ≠ C�≠1

2 C€
≤ 0}, S = {S : SS≠�2 = �2}, one can prove

(standard duality and convexity arguments) that

max
CœG

{2tr(C)} = max
SœS

{tr(�1S + �2S≠)} = 2tr
!
�1/2

2 �1�1/2
2

"

with respective (unique) solutions
I

Cı = �1Sı

Sı = �1/2
2

#
(�1/2

2 �1�1/2
2 )1/2$

�1/2
2
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Multivariate Optimal Transport

See Olkin and Pukelsheim (1982), Givens and Shortt (1984) and Knott and Smith
(1984), or more recently Takatsu (2008) and Takatsu and Yokota (2012), with more
geometric interpretations.

To illustrate, consider the previous example, with newborn weight and weight gain of
mothers, in the U.S., with Black and non-Black mothers, with here a joint mapping
R+

2 æ R+
2 .
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Multivariate Optimal Transport

(x1, x2) ¡ (x1, x2) (newborn weight, weight gain of the mother)
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– Part 3 –

Models
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Generalized Linear Model

Definition 4.1: Exponential family, McCullagh and Nelder (1989)

The distribution of Y is in the exponential family if its density (with respect to
some appropriate measure) is

f◊,Ï(y) = exp
3y◊ ≠ b(◊)

Ï
+ c(y , Ï)

4
,

where ◊ is the canonical parameter, Ï is a nuisance parameter, and b : R æ R is
some R æ R function.

Such as the binomial, Poisson, Gaussian, gamma distributions, etc.

Also compound Poisson / Tweedie (from Tweedie (1984)).
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Generalized Linear Model
Given some dataset (yi , x i), suppose that µ(x) = g≠1(x€—)

y

x1

x2

x3

x4

model

—1

—2

—3

—4
x

€—

g≠1

OLS, µ(x) = x
€— and ‚—

ols = argmin
I nÿ

i=1
(yi ≠ x

€

i —)2
J

= (X€
X)≠1

X
€

y .
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Generalized Linear Model

Consider problems

min
xœRk

{f (x)}
under constraint g(x) = 0

or
min
xœRk

{f (x)}
under constraint g(x) Æ 0

Karush-Kuhn-Tucker condition is
I

ÒxL(xı, z
ı) = 0

ÒzL(xı, z
ı) = 0

where
L(x, z) = f (x) + z

€g(x)

is the Lagrangian problem (parameter z are multipliers)
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Generalized Linear Model

Definition 4.2: Ridge Estimator (OLS), Hoerl and Kennard (1970)

‚—
ridge
⁄ = argmin

—œRk

Y
]

[
1
2

nÿ

i=1
(yi ≠ x

€

i —)2 + ⁄
kÿ

j=1
—2

j

Z
^

\.

‚—
ridge
⁄ = (X€

X + ⁄I)≠1
X

€
y

Definition 4.3: Ridge Estimator (GLM)

‚—
ridge
⁄ = argmin

—œRk

Y
]

[≠

nÿ

i=1
log f (yi |µi = g≠1(x€

i —)) + ⁄
kÿ

j=1
—2

j

Z
^

\.
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Generalized Linear Model

Definition 4.4: lasso Estimator (OLS), Tibshirani (1996)

‚—
lasso
⁄ = argmin

Y
]

[
1
2

nÿ

i=1
(yi ≠ x

€

i —)2 + ⁄
kÿ

j=1
|—j |

Z
^

\.

Definition 4.5: lasso Estimator (GLM)

‚—
lasso
⁄ = argmin

Y
]

[≠

nÿ

i=1
log f (yi |µi = g≠1(x€

i —)) + ⁄
kÿ

j=1
|—j |

Z
^

\.
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Generalized Linear Model

1 > library ( glmnet )
2 > fit_ridge = glmnet (x, y, alpha = 0)
3 > fit_lasso = glmnet (x, y, alpha = 1)

Elastic net

min

Y
]

[
1
2

nÿ

i=1
(yi ≠ x

€

i —)2 + ⁄1
kÿ

j=1
|—j | + ⁄2

2

kÿ

j=1
—2

j

Z
^

\,

e.g. ⁄1 = –⁄ and ⁄2 = (1 ≠ –)⁄ (two parameters — one for the global regularization,
one for the trade-o� between Ridge (Tikhonov) vs. Lasso)
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Accuracy

Consider the case where y œ {0, 1}, and a score m(x) (classically in [0, 1]).

E.g., for a logistic regression, m(x) = exp[x€—]
1 + exp[x€—] .

Receiver operating characteristic
A receiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the performance of a binary classifier model (can be used for multi
class classification as well) at varying threshold values. The true-positive rate is
also known as sensitivity, recall or probability of detection. The false-positive rate
is also known as the probability of false alarm and equals (1 - specificity). �
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Accuracy

Definition 4.6: ROC curve

The ROC curve is the parametric curve
)
P[m(X) > t|Y = 0],P[m(X) > t|Y = 1]

*
for t œ [0, 1],

when the score m(X) and Y evolve in the same direction (a high score indicates
a high risk).

C(t) = TPR ¶ FPR≠1(t),

where I
FRP(t) = P[m(X) > t|Y = 0] = P[m0(X) > t]
TPR(t) = P[m(X) > t|Y = 1] = P[m1(X) > t].
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Accuracy

1 > library (ROCR)
2 > pred = prediction (df$yhat , df$y)
3 > roc = performance (pred ," tpr "," fpr ")
4 > plot(roc)
5 > auc = performance ( pred ," auc ")

see also
1 > library (pROC)

Definition 4.7: AUC, area under the ROC curve

The area under the curve is defined as the area below the ROC curve,

AUC =
⁄ 1

0
C(t)dt =

⁄ 1

0
TPR ¶ FPR≠1(t)dt.
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Accuracy
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Calibration
Well-calibration was initially discussed in forecasting

Definition 4.8: Well-calibrated (1), Van Calster et al. (2019), Krüger and
Ziegel (2021)

The forecast X of Y is a well-calibrated forecast of Y if E(Y |X ) = X almost
surely, or E[Y |X = x ] = x , for all x .

one can define “well-calibration” in prediction

Definition 4.9: Well-calibrated (2), Zadrozny and Elkan (2002); Cohen and
Goldszmidt (2004)

The prediction m(X) of Y is a well-calibrated prediction if E[Y |m(X) = ‚y ] = ‚y ,
for all ‚y .
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Calibration

“[S]uppose the Met Office says that the probability of rain tomorrow in your
region is 80%. They aren’t saying that it will rain in 80% of the land area of
your region, and not rain in the other 20%. Nor are they saying it will rain for
80% of the time. What they are saying is there is an 80% chance of rain
occurring at any one place in the region, such as in your garden. [...] [A]
forecast of 80% chance of rain in your region should broadly mean that, on
about 80% of days when the weather conditions are like tomorrow’s, you will
experience rain where you are. [...] If it doesn’t rain in your garden tomorrow,
then the 80% forecast wasn’t wrong, because it didn’t say rain was certain. But
if you look at a long run of days, on which the Met Office said the probability of
rain was 80%, you’d expect it to have rained on about 80% of them.” McConway
(2021)
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Calibration

“Well calibrated classifiers are probabilistic classifiers for which the output can
be directly interpreted as a confidence level. For instance, a well calibrated
(binary) classifier should classify the samples such that among the samples to
which it gave a[predicted probability] value close to 0.8, approximately 80%
actually belong to the positive class,” scikit learn: Probability calibration
“Suppose that a forecaster sequentially assigns probabilities to events. He is
well calibrated if, for example, of those events to which he assigns a probability
30 percent, the long-run proportion that actually occurs turns out to be 30
percent,” Dawid (1982)
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Calibration

“Out of all the times you said there was a 40 percent chance of rain, how often
did rain actually occur? If, over the long run, it really did rain about 40 percent
of the time, that means your forecasts were well calibrated,” Silver (2012)
“we desire that the estimated class probabilities are reflective of the true
underlying probability of the sample,” Kuhn and Johnson (2013)
See Murphy and Epstein (1967), Roberts (1968), Gneiting and Raftery (2005) on
ensemble methods for weather forecasting, or more generally Lichtenstein et al. (1977),
Oakes (1985), Gneiting et al. (2007).
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Calibration

As explained in Van Calster et al. (2019), ”among patients
with an estimated risk of 20%, we expect 20 in 100 to
have or to develop the event”,

• If 40 out of 100 in this group are found to have the
disease, the risk is underestimated

• If we observe that in this group, 10 out of 100 have the
disease, we have overestimated the risk.

Hosmer-Lemeshow test, from Hosmer Jr et al. (2013) (logis-
tic regression), and Bier score, from Brier (1950) and Murphy
(1973)
Function plotted in psychological papers Keren (1991)
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Calibration

• “reliability diagrams”, Wilks (1990)
Used in scikit-learn (calibration curve )
see Pakdaman Naeini et al. (2015) and Kumar
et al. (2019), with quantile-based bins
(average of yi ’s against average of m̂(xi)’s)

• “local regression”, Denuit et al. (2021)
See also Austin and Steyerberg (2019)
regression of yi ’s against m̂(xi)’s
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Calibration

Definition 4.10: Calibration plot

The calibration plot associated with model m is the function ‚y ‘æ E(Y |m(X) =
‚y). The empirical version is some local regression on {yi , m(x i)}.

Definition 4.11: Globally unbiased model m, Denuit et al. (2021)

Model m is globally unbiased if E[Y ] = E[m(X)].

Definition 4.12: Locally unbiased model m, Denuit et al. (2021)

Model m is locally unbiased at ‚y if E[Y |m(X) = ‚y ] = ‚y .
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Calibration
Consider claims (annual) frequency, corrected from the exposure, freMTPL2freq from
CASDataset package, as in Denuit et al. (2021).

‚mglm ‚mgam ‚mbst

average ‚m(x)’s 0.1087 0.1092 0.0820
10% quantile 0.0605 0.0598 0.0498
90% quantile 0.1682 0.1713 0.1244
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Calibration

Evolution of p ‘æ E[Y | ‚m(X) = p] and u ‘æ E[Y | ‚m(X) = F ≠1
‚m (u)]
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Calibration
For GLM, remember that

f (yi) = exp
3yi◊i ≠ b(◊i)

Ï
+ c(yi , Ï)

4
,

ˆ log Li
ˆ—j

= ˆ log Li
ˆ◊i

·
ˆ◊i
ˆµi

·
ˆµi
ˆ÷i

·
ˆ÷i
ˆ—j

= ˆ log Li
ˆ—j

= yi ≠ µi
Ï

·
1

V (µi)
· xi ,j ·

3
ˆ÷i
ˆµi

4≠1

When g is the canonical link (gı = bÕ≠1 or ÷i = x
€

i — = ◊i)

Ò log L = X
€(y ≠ ‚y) = 0

Proposition 4.1: Calibration of GLM

In the GLM framework with the canonical link function, ‚m(x) = g≠1
ı (x€

i
‚—) is

globally unbiased (on the training dataset), but possibly locally biased.
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Calibration

Otherwise
Ò log L = X

€�(y ≠ ‚y) = 0,

where � is a diagonal matrix (� = W �, where
W = diag

!
(V (µi)g Õ(µi)2)≠1"

and � = diag
!
g Õ(µi)

"
, so that we recognize Fisher

information - corresponding to the Hessian matrix (up to a negative sign) – X
€

W X).

training data validation data
y GLM CART GAM RF y GLM CART GAM RF

‚m(x, s) 8.73 8.73 8.73 8.73 8.27 8.55 9.05 9.03 8.84 8.70
‚m(x) 8.73 8.73 8.73 8.73 8.29 8.55 9.05 9.03 8.84 8.73
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Calibration

Definition 4.13: Brier score (binary classifier) Brier (1950)

Brier score is the mean squared error of probability estimate,

BS = 1
n

nÿ

i=1

!
‚m(x i), yi

"2

Consider “confidence” value given by Picpurify, using pictures generate by a GAN
(a generative adversarial network, used in Hill and White (2020)).
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Calibration

female (0.984) female (0.983) female (0.982) female (0.960)
male (0.016) male (0.017) male (0.018) male (0.040)

female (0.009) female (0.013) female (0.014) female (0.015)
male (0.991) male (0.987) male (0.986) male (0.985)
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Standard modeling architecture

y

x1

x2

x3

x4

model

layer 1 layer 2
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Standard modeling architecture

y

x1

x2

x3

x4

model

m1

m2

m3

m4

m5
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Standard modeling architecture

y

x1

x2

x3

x4

model

m4m3m2m1
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– Part 4 –

Data
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Data (the two types)
“It is often said, ‘You cannot prove causality with statis-
tics.’ One of my professors, Frederick Mosteller, liked to
counter, ‘You can only prove causality with statistics.’ (...)

The title, ‘Observation and Experiment,’ marks the mod-
ern distinction between randomized experiments and ob-
servational studies,” Rosenbaum (2018)

Correlation, Randall Munroe, 2009 https://xkcd.com/552/
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Data (the three rung ladder)

“Ladder of causation” from Pearl et al. (2009)

3. Counterfactuals
(Imagining, “what if I had done...”)

2. Intervention
(Doing, “what if I do...”)

1. Association
(Seeing, “what if I see...”)

Picture source: Pearl and Mackenzie (2018)

What would be the impact of a treatment T
on a variable of interest Y ?
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Proxy
“OK, let’s not use race, but should we use zip code, which of course is a proxy for
race in our segregated society?,” O’Neil (2016).

Definition 5.1: Proxy, Merriam-Webster (2022)

A proxy is a person authorized to act for another (from a contracted form of the
Middle English word procuracie (from French “procuration”)).

Definition 5.2: Perfect proxy, Datta et al. (2017)

A variable X is a perfect proxy for Z if there exist functions Ï : X æ Z and
Â : Z æ Y such that

P
#
X = Â(Z )

$
= P

#
Ï(X ) = Z

$
= 1.
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Proxy

Definition 5.3: Comonotonicity, Hoe�ding (1940); Fréchet (1951)

Variables X and Y are comonotonic if (X , Y ) = (F ≠1
x (U), F ≠1

y (U)) for some
U ≥ U([0, 1]).

Comonotonicity
In probability theory, comonotonicity mainly refers to the perfect positive depen-
dence between the components of a random vector, essentially saying that they
can be represented as increasing functions of a single random variable. �

See also Dhaene et al. (2002a,b) on comonotonic vectors.

See also Prince and Schwarcz (2019), or Tschantz (2022) for discrimination by proxy.

Range of possible situation between independence and perfect proxy.
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Independence
Independence
Independence is a fundamental notion in probability theory, as in statistics and
the theory of stochastic processes. Two events are independent if, informally
speaking, the occurrence of one does not a�ect the probability of occurrence of
the other or, equivalently, does not a�ect the odds. �

Definition 5.4: Independence (dimension 2)

X and Y are independent, denoted X ‹‹ Y , if for any sets A, B µ R,

P
#
X œ A, Y œ B

$
= P

#
X œ A

$
· P

#
Y œ B

$
.

Definition 5.5: Linear Independence (dimension 2)

Consider two random variables X and Y . X ‹ Y if and only if Cov[X , Y ] = 0.
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Independence

Correlation
in the broadest sense, ”correlation” may indicate any type of association, in
statistics it usually refers to the degree to which a pair of variables are linearly
related. �

Definition 5.6: Correlation (dimension 2), Pearson (1895)

X and Y are two random variables

Corr [X , Y ] = Cov[X , Y ]


Var[X ] · Var[Y ]
.

where Cov[X , Y ] = E
#
(X ≠ E[X ]) (Y ≠ E[Y ])

$
= E[XY ] ≠ E[X ]E[Y ].
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Independence

From Cauchy-Schwarz theorem, ≠1 Æ Corr[X , Y ] Æ +1 but those bounds are rarely
sharp,

Proposition 5.1: Correlation bounds (dimension 2)

For any random variables X and Y (with finite variances),
rmin Æ Corr[X , Y ] Æ rmax, where

rmin =
Cov[F ≠1

x (U), F ≠1
y (1 ≠ U)]


Var[X ] · Var[Y ]

and rmax =
Cov[F ≠1

x (U), F ≠1
y (U)]


Var[X ] · Var[Y ]

Maximal correlation is obtained when X and Y are comonotonic (minimal correlation
when X and ≠Y are comonotonic).

Related to optimal transport, see also Knott and Smith (1984).
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Independence

Proposition 5.2

Consider two random variables X and Y . X ‹‹ Y if and only if for any functions
Ï : R æ R and Â : R æ R (such that the expected values below exist and are
well-defined) Cov[Ï(X ), Â(Y )] = 0, i.e.,

E[Ï(X ) · Â(Y )] = E[Ï(X )] · E[Â(Y )].

Definition 5.7: Maximal Correlation, HGR

Consider two random variables X and Y ,

rı(X , Y ) = max
Ï,Â

)
Corr[Ï(X ), Â(Y )]

*
.
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Independence

HGR because of Hirschfeld (1935), Gebelein (1941) and Rényi (1959) (also
Sarmanov (1958a,b)).

rı(X , Y ) = max
ÏœFx , ÂœGy

E[Ï(X )Â(Y )],

where I
Fx = {Ï : X æ R : E[Ï(X )] = 0 and E[Ï2(X )] = 1}

Gy = {Â : Y æ R : E[Â(Y )] = 0 and E[Â2(Y )] = 1}

See either ccaPP or acepack package,
1 > ccaPP :: maxCorProj (x = x, y = y, method = " pearson ")
2 > corstar = acepack :: ace(x = x, y = y)
3 > cor(corstar$tx , corstar$ty )

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 265 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Independence
Proposition 5.3

Consider two random variables X and Y . X ‹‹ Y if and only if rı(X , Y ) = 0.

Proof: Given a random variable X , its characteristic function is „X (t) = E[eitX ].
Recall that

Y
]

[
„X (t) = „Y (t), ’t œ R if and only if X L= Y
„X ,Y (s, t) = E[ei(sX+tY )] = „X (s) · „Y (t), ’s, t œ R if and only if X ‹‹ Y

If rı(X , Y ) = 0, let s, t œ R and consider Ï(x) = „X (x) = E[eixX ] and
Â(y) = „Y (y) = E[eisY ], then Cov[eisX , eitY ] = Cov[X Õ

s , Y Õ
t ] = 0, i.e.

E[X Õ
sY Õ

t ] = E[X Õ
s ]E[Y Õ

t ],

E[ei(sX+tY )]
¸ ˚˙ ˝

„XY (s,t)

= E[eisX ] · E[eitY ]
¸ ˚˙ ˝

„X (s)·„Y (t)

, ’s, t œ R i.e. X ‹‹ Y .
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Independence

Proposition 5.4

Consider two random variables X and Y such that (X , Y ) is a Gaussian vector.
Then rı(X , Y ) = |Corr[X,Y]|.

See Lancaster (1957, 1958), and Gauss-Hermite decomposition

f (x , y) = 1
2fi


1 ≠ fl2 exp

A

≠
x2

≠ 2flxy + y2

2 [1 ≠ fl2]

B

= „(x)„(y) ·

Œÿ

i=0
r iHi(x)Hi(y)

where Hi ’s are Hermite polynomial.
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Independence

Instead of
rı(X , Y ) = max

ÏœFx , ÂœGy
E[Ï(X )Â(Y )],

where I
Fx = {Ï : X æ R : E[Ï(X )] = 0 and E[Ï2(X )] = 1}

Gy = {Â : Y æ R : E[Â(Y )] = 0 and E[Â2(Y )] = 1}

Definition 5.8: Constrained Maximal Correlation, Bach and Jordan (2002),
Gretton et al. (2005)

Consider two random variables X and Y , as well as some Hilbert spaces F̄x µ Fx
and Ḡy µ Gy ,

r̄ı(X , Y ) = max
ÏœF̄x ,ÂœḠy

)
Corr[Ï(X ), Â(Y )]

*
.
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Independence

Kimeldorf and Sampson (1978) and Kimeldorf et al. (1982) suggested to consider for
F̄x and Ḡy as subsets of monotone functions.

I
F̄x = {Ï œ Fx : Ï monotone}

Ḡy = {Â œ Gy : Â monotone}

See Mourier (1953), Hannan (1961), Jensen and Mayer (1977) and Lin (1987).
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Independence

Definition 5.9: Linear Independence

In a general context, consider two random vectors X and Y , in Rdx and Rdy ,
respectively. X ‹ Y if and only if for any a œ Rdx and b œ Rdy

Cov[a€
X , b

€
Y ] = 0.

Definition 5.10: Independence

In a general context, consider two random vectors X and Y . X ‹‹ Y if and only
if for any A µ Rdx and B µ Rdy ,

P[{X œ A} fl {Y œ B}] = P[{X œ A}] · P[{Y œ B}].
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Independence

Proposition 5.5: Independence

Consider two random vectors X and Y . X ‹‹ Y if and only if for any functions
Ï : Rdx æ R and Â : Rdy æ R (such that the expected values below exist and
are well-defined)

E[Ï(X)Â(Y )] = E[Ï(X)] · E[Â(Y )],

or equivalently
Cov[Ï(X), Â(Y )] = 0.
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Independence
Definition 5.11: Mutual Independence

Let Y = (Y1, · · · , Yk) denote some random vector. All components of Y are
(mutually) independent if for any A1, · · · , Ak µ R

P
C

{(Y1, · · · , Yk) œ

k‹

i=1
Ai}

D

=
kŸ

i=1
P[{Yi œ Ai}].

Definition 5.12: Conditional Independence (dimension 2)

X and Y are independent conditionally on Z , denoted X ‹‹ Y | Z , if for any
sets A, B, C µ R,

P
#
X œ A, Y œ B

--Z œ C
$

= P
#
X œ A

--Z œ C
$

· P
#
Y œ B

--Z œ C
$
.
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Independence

Definition 5.13: Conditional Independence

In a general context, consider three random vectors X , Y and Z . (X ‹‹ Y )|Z if
and only if for any A µ Rdx , B µ Rdy and C µ Rdz ,

P[{X œ A} fl {Y œ B}|Z œ C] = P[{X œ A}|Z œ C] · P[{Y œ B}|Z œ C].

Proposition 5.6

Consider three random variables X , Y , and Z . If X ‹ Z and Y ‹ Z , then
aX + bY ‹ Z , for any a, b œ R.
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Independence
Proposition 5.7: X ‹ Z , Y ‹ Z ”=∆ Â(X , Y ) ‹ Z

Consider three random variables X , Y , and Z . If X ‹ Z and Y ‹ Z , it does not
imply that Â(X , Y ) ‹ Z , for any Â : R2

æ R.

(X , Y , Z ) =

Y
___]

___[

(0, 0, 0) with probability 1/4,
(0, 1, 1) with probability 1/4,
(1, 0, 1) with probability 1/4,
(1, 1, 0) with probability 1/4.

Proposition 5.8

Consider a random vector X in Rk , and a random variable Z .
X ‹ Z does not imply that Â(X) ‹ Z , for any Â : Rk

æ R.
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Independence

Proposition 5.9

Consider three random variables X , Y , and Z . Even if X ‹‹ Z and Y ‹‹ Z ,
it does not imply either that Â(X , Y ) ‹ Z or that Â(X , Y ) ‹‹ Z , for any
Â : R2

æ R.

Proposition 5.10

Consider a random vector X in Rk , and a random variable Z .
X ‹‹ Z does not imply either that Â(X) ‹ Z or Â(X) ‹‹ Z , for any Â : Rk

æ R.
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Causation

Definition 5.14: Common cause, Reichenbach (1956)

If X and Y are non-independent, X ”‹‹ Y , then, either
Y
__]

__[

X causes Y
Y causes X
there exists Z such that Z causes both X and Y .

See also Bollen and Pearl (2013)

SCM, Goldberger (1972), Duncan (1975) or Bollen (1989)

Bayesian network, Pearl (1985), Henrion (1988), Charniak (1991)

Causal path diagrams and probabilistic DAGs, Spirtes et al. (1993)
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Causation

Sewall Wright (see Wright (1921, 1934)) use directed graphs to
represent probabilistic cause and e�ect relationships among a set
of variables, and developed path diagrams and path analysis

(a) (b) (c)
confounder mediator collider

x2 x3

x1

x2 x3

x1

x2 x3

x1

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 277 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Causation
Definition 5.15: Path

A path fi from a node xi to another node xj is a sequence of nodes and edges
starting at xi and ending at xj .

Definition 5.16: d-separation

A set of nodes x i is said to be d-separated with another set of nodes x j by xc
whenever every path from any xi œ x i to any xj œ x j is blocked by xc . We will
simply denote x i ‹G x j | xc .

Proposition 5.11

Two nodes xi and xj are d-separated by xc if and only members of xc block all
paths from xi to xj .
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Causation

Chain rule :
I
P[x1, x2, x3, x4] = P[x1] ◊ P[x2|x1] ◊ P[x3|x1, x2] ◊ P[x4|x1, x2, x3]
P[x1, x2, x3, x4] = P[x4] ◊ P[x3|x4] ◊ P[x2|x3, x4] ◊ P[x1|x2, x3, x4]

Definition 5.17: Directed acyclic graph, DAG (or causal graph)

A directed acyclic graph (DAG) G is a directed graph with no directed cycles.

Definition 5.18: Markov Property

Given a causal graph G with nodes x, the joint distribution of X satisfies the
(global) Markov property with respect to G if, for any disjoints x1, x2 and xc

x1 ‹G x2 | xc ∆ X1 ‹‹ X2 | Xc .
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Causation
Proposition 5.12: Probabilistic graphical model

If X satisfies the (global) Markov property with respect to G

P[x1, · · · , xn] =
nŸ

i=1
P[xi |parents(xi)]

where parents(xi) are nodes with edges directed towards xi

x1

x2 x3

Path from x1 to x3 is blocked by x2, i.e., x1 ‹G x3 | x2,
or X1 ‹‹ X3 | X2. From the chain rule,

P[x1, x2, x3] = P[x1] ◊ P[x2|x1] ◊ P[x3|x2, x1]
¸ ˚˙ ˝

P[x3|x2]
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Causation

x1

x2 x3

x4 From the chain rule, for the causal graph on the left (top),

P[x1, x2, x3, x4] = P[x1] ◊ P[x2|x1] ◊ P[x3|x2] ◊ P[x4|x3]

x1

x2 x3

x4 From the chain rule, for the causal graph on the left (middle),

P[x1, x2, x3, x4] = P[x1] ◊ P[x2] ◊ P[x3|x1, x2] ◊ P[x4|x3]

x1

x2 x3

x4 From the chain rule, for the causal graph on the left (bottom),

P[x1, x2, x3, x4] = P[x1] ◊ P[x2] ◊ P[x3|x1, x2, x4] ◊ P[x4]
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Intervention

P[Y œ A|X = x ] : how Y œ A is likely to occur if X happened to be equal to x
Therefore, it is an observational statement.
P[Y œ A|do(X = x)] : how Y œ A is likely to occur if X is set to x
It is here an intervention statement.

Using causal graphs, intervention do(X = x) means that all incoming edges to x are
cut.
If P[Y œ A|do(X = x)] ”= P[Y œ A|X = x ], it means that X and Y are confounded,

see Pearl (2009).
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Intervention
Definition 5.19: Structural Causal Models (SCM)

In a simple causal graph, with two nodes C (the cause) and E (the e�ect), the
causal graph is C æ E , and the mathematical interpretation can be summarized
in two assignments I

C = hc(UC )
E = he(C , UE ),

where UC and UE are two independent random variables, UC ‹‹ UE .

(a) observation (b) intervention

C E

uC uE
I

C = hc(UC )
E = he(C , UE )

C E

uE

I
C = c (or do(C = c))
E ı

c = he(c, UE )
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Intervention

(a) (b) (c) (d)
m mediator variable w confounding variable

um

x

m

y

ux uy

um

x

m

y

uy

uw

x

w

y

ux uy

uw

x

w

y

uy

I
mediator : P[Y ı

x = 1] = P[Y = 1|do(X = x)] = P[Y = 1|X = x ]
confusion : P[Y ı

x = 1] = P[Y = 1|do(X = x)] ”= P[Y = 1|X = x ].
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Intervention

In fact, in the presence of a confounding factor, P[Y ı
x = 1] which corresponds to

P[Y = 1|do(X = x)] should be written
ÿ

w
P[Y = 1|W = w , X = x ] · P[W = w ] = E(P[Y = 1|W , X = x ]).
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Causal Inference and counterfactuals
Define potential outcomes to quantify the treatment e�ect, TE = yı

i ,TΩ1 ≠ yı
i ,TΩ0

I
observation : yı

i ,TΩ1 when ti = 1 is observed, and x i
counterfactual : yı

i ,TΩ0 when ti = 1 is observed, and x i

Here we want to observe counterfactuals yı
i ,TΩtÕ at the individual level.

Gender Name Treatment Outcome (Weight) Height · · ·

ti 0 1 yi yı
i ,TΩ0 yı

i ,TΩ1 TE xi · · ·

1 H Alex 0 ⇤3 ⇤ 75 75 64 11 172 · · ·

2 F Betty 1 ⇤ ⇤3 52 67 52 15 161 · · ·

3 F Beatrix 1 ⇤ ⇤3 57 71 57 14 163 · · ·

4 H Ahmad 0 ⇤3 ⇤ 78 78 61 17 183 · · ·

Di�erent notations are used y(1) and y(0) in Imbens and Rubin (2015), y1 and y0 in
Cunningham (2021), or yt=1 and yt=0 in Pearl and Mackenzie (2018).
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Causal Inference and counterfactuals
Define potential outcomes to quantify the treatment e�ect, TE = yı

i ,TΩ1 ≠ yı
i ,TΩ0

I
observation : yı

i ,TΩ1 when ti = 1 is observed, and x i
counterfactual : yı

i ,TΩ0 when ti = 1 is observed, and x i

Here we want to observe counterfactuals yı
i ,TΩtÕ at the individual level.

Gender Name Treatment Outcome (Weight) Height · · ·

ti 0 1 yi yı
i ,TΩ0 yı

i ,TΩ1 TE xi · · ·

1 H Alex 0 ⇤3⇤ 75 75 ? ? 172 · · ·

2 F Betty 1 ⇤ ⇤3 52 ? 52 ? 161 · · ·

3 F Beatrix 1 ⇤ ⇤3 57 ? 57 ? 163 · · ·

4 H Ahmad 0 ⇤3⇤ 78 78 ? ? 183 · · ·

Di�erent notations are used y(1) and y(0) in Imbens and Rubin (2015), y1 and y0 in
Cunningham (2021), or yt=1 and yt=0 in Pearl and Mackenzie (2018).
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Causal Inference and counterfactuals

Definition 5.20: Average Treatment E�ect, Holland (1986)

Given a treatment T , the average treatment e�ect on outcome Y is

· = ATE = E
#
Y ı

tΩ1 ≠ Y ı
tΩ0

$
.

Definition 5.21: Conditional Average Treatment E�ect, Wager and Athey
(2018)

Given a treatment T , the conditional average treatment e�ect on outcome Y ,
given some covariates X ,is

·(x) = CATE(x) = E
#
Y ı

tΩ1 ≠ Y ı
tΩ0

--X = x
$
.
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Causal Inference and counterfactuals

Definition 5.22: Individual Average Treatment E�ect

Given a treatment T , the conditional average treatment e�ect on outcome Y ,
for individual i , given covariates X i , is

IATE(i) = E
#
Y ı

i ,tΩ(1≠ti ) ≠ Y ı
i ,tΩti

$
.
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– Part 5 –

Sensitive Variables and Proxies

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 290 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Context
There exists list of variables considered (by law) as sensitive (e.g., in Québec)

• race,
• color,
• sex,
• gender identity or expression,
• pregnancy,
• sexual orientation,
• civil status,
• age,
• religion,
• political convictions,
• language,
• ethnic or national origin,
• social condition,
• disability.
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Explainability

“On a collection of additional
60 images, the classifier predicts
“Wolf” if there is snow (or light
background at the bottom), and
“Husky” otherwise, regardless of
animal color, position, pose, etc.”,
Ribeiro et al. (2016)
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Explainability
Esteva et al. (2017) and Winkler et al. (2019) use deep-classifiers to detect skin cancer

“So in the set of biopsy images, if an image
had a ruler in it, the algorithm was more
likely to call a tumor malignant, because the
presence of a ruler correlated with an in-
creased likelihood a lesion was cancerous,”
Patel (2017)

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 293 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Racial Discrimination
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Racial Discrimination
Definition 6.1: Racism, Merriam-Webster (2022)

A belief that race is a fundamental determinant of human traits and capacities
and that racial di�erences produce an inherent superiority of a particular race;
also behavior or attitudes that reflect and foster this belief.

Du Bois (1899)
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Racial Discrimination
Gannon (2016) “race is a social construct”

In the U.S., “an individual’s response to the race
question is based upon self-identification”

• White American, European American, or
Middle Eastern American (59.3%)

• “Hispanic or Latino Americans (18.9%)”
• Black or African American (12.6%)
• American Indian or Alaska Native (0.7%)
• Asian American (5.9%)
• Native Hawaiian or Other Pacific Islander

(0.2%)

See maps on https://www.arcgis.com/apps/mapviewer/index.html
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Racial Discrimination

By comparing skull anatomy and skin color, “generis humani varietates quinae
principes, species vero unica” (one species, and five principle varieties of humankind),
Blumenbach (1775)

- the “Caucasian” (or white race, for Europeans, including Middle Easterners and
South Asians in the same category),

- the “Mongolian” (or yellow race, including all East Asians)
- the “Malayan” (or brown race, including Southeast Asians and Pacific Islanders)
- the “Ethiopian” (or black race, including all sub-Saharan Africans)
- the “American” (or red race, including all Native Americans)
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Racial Discrimination
Definition 6.2: Colourism, Merriam-Webster (2022)

Prejudice or discrimination especially within a racial or ethnic group favoring
people with lighter skin over those with darker skin.

Fitzpatrick Skin Scale (six levels), Telles (2014).
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Racial Discrimination

In the context of insurance, several reference in the late XIX-th Century

“industrial insurers operated a high-volume business; so to simplify sales they
charged the same nickel to everyone. The home office then calculated benefits
according to actuarially defensible discrimination, by age initially and then by
race. In November 1881, Metropolitan decided to mimic Prudential, allowing
policies to be sold to African Americans once again, but with the understanding
that black policyholders’ survivors only received two-thirds of the standard
benefit,” Bouk (2015)

1884, Massachusetts state legislature passed the Act to Prevent Discrimination by
Life Insurance Companies Against People of Color

See Frederick L. Ho�man (1896) (discussed earlier)
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Racial Discrimination
In auto insurance, Heller (2015) observed that African American neighbourhood pay

70% more, on average, for auto insurance premiums than other neighbourhoods.

via https://www.michiganautolaw.com/wp-content/uploads/2017/08/Consumer-
Federation-of-America-High-Price-of-Mandatory-Auto-Insurance-in-Predominantly...
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Racial Discrimination

The Property Casualty Insurers Association of America responded that “insurance
rates are color-blind and solely based on risk.”

via https://www.pciaa.net/pciwebsite/cms/content/viewpage?sitePageId=43349
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Sex and Gender Discrimination
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Sex and Gender Discrimination
See slides with life tables per gender (exist since 1720, see Struyck (1912))

Definition 6.3: Sexism, Merriam-Webster (2022)

Prejudice or discrimination based on sex especially, discrimination against women;
also behavior, conditions, or attitudes that foster stereotypes of social roles based
on sex.

Martin (1977), Hedges (1977) and Myers (1977) in the U.S. In Los Angeles,
Department of Water and Power vs. Manhart, the Supreme Court considered a
pension system in which female employees made higher contributions than males for
the same monthly benefit because of longer life expectancy.

See slides about the “Gender Directive” in Europe (and Thiery and Van Schoubroeck
(2006)).
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Sex and Gender Discrimination

Data Ortiz-Ospina and Beltekian (2018).
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Age-based Discrimination

Age is not a club in which one enters at birth, and it will change with
time, Macnicol (2006)

“If you are not already part of a group disadvantaged by prejudice,
just wait a couple of decades––you will be,” Robbins (2015).

Definition 6.4: Ageism, Merriam-Webster (2022)

Prejudice or discrimination against a particular age-group and
especially the elderly.

COVID-19 Decision Support Tool used in England, in March 2020, provided by the
NHS (National Health System).
https://www.nhsdghandbook.co.uk/wp-content/uploads/2020/04/COVID-Decision-
Support-Tool.pdf
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Age-based Discrimination
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Age-based Discrimination

“on the grounds of age do not constitute discrimination (...) if age is a
determining factor in the assessment of risk for the service in question and this
assessment is based on actuarial principles and relevant and reliable statistical
data,” of the European Union (2018)

“a society that relentlessly discriminates against people because of their age
can still treat them equally throughout their lives. Everyone’s turn [to be

discriminated against]is coming,” Gosseries (2014)

Number of crashes (left) and number of fatalities (right), per million miles driven, for
both males and females (males in blue and females in red), by driver age. The
reference (0) are men aged 30-60 years. The number of accidents is three times higher
(+200%) for those over 85, and the number of deaths more than ten times higher
(+900%). (data source: Li et al. (2003))
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Age-based Discrimination
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Genetic or Social Identity

Definition 6.5: Genetic discrimination, Ajunwa (2014,
2016)

Genetic discrimination should be defined as when an individ-
ual is subjected to negative treatment, not as a result of the
individual’s physical manifestation of disease or disability, but
solely because of the individual’s genetic composition

Related to “genetic determinism” (as defined in de Melo-Mart́ın
(2003) and Harden (2023)) or more recently “genetic essentialism”
(as in Peters (2014)).
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Genetic or Social Identity

According to Rawls (1999), the starting point for each person in society is the result of
a social lottery (the political, social, and economic circumstances in which each person
is born) and a natural lottery (the biological potentials with which each person is born)

“Those suffering from disease, a genetic defect, or disability on the basis of a
natural lottery should not be penalized in insurance,” Wortham (1986)

Social identity refers to a person’s membership in a social group. The common groups
that make up a person’s social identity are age, ability, ethnicity, race, gender, sexual
orientation, socioeconomic status and religion, as discussed by Tajfel (1978) and Tajfel
et al. (1986).
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Names, Text and Language
Icelandic surnames are di�erent from most other naming systems in the modern

Western world by being patronymic or occasionally matronymic, as mentioned in
Willson (2009) and Johannesson (2013): they indicate the father (or mother) of the
child and not the historic family lineage. Generally, with few exceptions, a person’s last
name indicates the first name of their father (patronymic) or in some cases mother
(matronymic) in the genitive, followed by –son “(son”) or –dóttir (“daughter”).

For instance, in 2017, Iceland’s national Women’s soccer team players were Agla
Maria Albertsdóttir, Sigridur Gardarsdóttir, Ingibjorg Sigurdardóttir, Glodis
Viggosdóttir, Dagny Brynjarsdóttir, Sara Bjork Gunnarsdóttir, Fanndis Fridriksdóttir,
Hallbera Gisladóttir, Gudbjorg Gunnarsdóttir, Sif Atladóttir or Gunnhildur Jonsdóttir.
In the national Men’s soccer team, players were Hákon Rafn Valdimarsson, Patrik
Gunnarsson, Höskuldur Gunnlaugsson, Júĺıus Magnússon, Viktor Örlygur Andrason or
Kristall Máni Ingason.

From Gaddis (2017), (data from US Census (2012)
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Names, Text and Language
Name Rank White (%) Black (%) Hispanic (%)
Washington 138 5.2% 89.9% 1.5%
Je�erson 594 18.7% 75.2% 1.6%
Booker 902 30.0% 65.6% 1.5%
Banks 278 41.3% 54.2% 1.5%
Jackson 18 41.9% 53.0% 1.5%
Becker 315 96.4% 0.5% 1.4%
Meyer 163 96.1% 0.5% 1.6%
Walsh 265 95.9% 1.0% 1.4%
Larsen 572 95.6% 0.4% 1.5%
Orozco 690 3.9% 0.1% 95.1%
Velazquez 789 4.0% 0.5% 94.9%
Gonzalez 23 4.8% 0.4% 94.0%
Hernandez 15 4.6% 0.4% 93.8%
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Names, Text and Language

As discussed in Riach and Rich (1991) and Rorive (2009), a popular technique to test
for discrimination (in a real life context) is to use “practice testing” or “situation
testing”. This started probably in the 60’s in the U.K., with Daniel et al. (1968)

In France, Top 3 first names by sex and generations in France, according to the origin
(Southern Europe or Maghreb) of grandparents, Coulmont and Simon (2019)

immigrants children grandchildren
Southern José, Antonio, Manuel Jean, David, Alexandre Thomas, Lucas, Enzo
Europe Maria, Marie, Ana Marie, Sandrine, Sandra Laura, Léa, Camille

Maghreb Mohamed, Ahmed, Rachid Mohamed, Karim, Mehdi Yanis, Nicolas, Mehdi
Fatima, Fatiha, Khaduja Sarah, Nadia, Myriam Sarah, Ines, Lina
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Names, Text and Language

White Black Asian Hispanic
Cost estimators Postal service Manicurists Drywall installers
Farmers, ranchers Nursing assistants Medical scientists Roofers
Construction Security guards Software developers Carpet installers
Surveying Probation o�cers Computer engineers Painters and paperhangers
Heavy vehicle Orderlies aides Database administrators Maids-housekeeping cleaners
Property appraisers Bus drivers Computer programmers Construction laborers
Floral designers Vocational nurses Chemists Cement masons
Electrical installers Barbers Pharmacists Brickmasons
Logging workers Shuttle drivers Supervisors of personal care Pipelayers
Brickmasons Home health aides Other physicians Landscaping workers
Aircraft pilots Social workers Taxi drivers Agricultural workers

https://flowingdata.com/2024/01/31/occupation-and-race/
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Names, Text and Language

Jobs can also be related to gender (see https://translate.google.com/) in Turkish
2017 2023

o bir öğretmen � she is a teacher he is a teacher
o bir hemşire � she is a nurse she is a nurse
o bir doktor � he is a doctor she is a doctor
o bir Şarkıcı � she is a singer he is a singer

o bir sekreter � she is a secretary she is a secretary
o bir dişçi � he is a dentist he is a dentist

o bir çiçekçi � she is a florist she is a florist
o çalışkan � he is hard working he is hard working
o tembel � she is lazy he is lazy

o güzel � she is beautiful she is beautiful
o çirkin � he is ugly he is ugly
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Names, Text and Language

“Speak White is the protest of white Negroes in Amer-
ica. Language here is the equivalent of colour for the
American Negro. The French language is our black
colour,”

Michèle Lalonde, author of the 1968 poem “Speak White”
(reported by Dostie (1974))

“phonostyle discrimination,” Léon (1993), or of “diastratic
variation,” with di�erences between usages by gender, age
and social background (in the broad sense), in Gadet (2007).

“linguistic profiling,” (identification of a person’s race from
the sound of their voice),Squires and Chadwick (2006)
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Pictures
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Pictures

More than a century ago, first Lombroso (1876), and then Bertillon and Chervin
(1909), laid the foundations of phrenology and the “born criminal” theory, which
assumes that physical characteristics are correlated with psychological traits and
criminal inclinations (“prima facie”).
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Pictures

Faces generated by Karras et al. (2020). Gender and age were provided by
gender.toolpie, facelytics, picpurify with a “confidence,” cloud.google,
howolddoyoulook and facialage

female, age: 38 female, age: 23 male, age: 37 male, age: 53
female (0.997) female (0.989) male (0.967) male (0.985)

age: 34 age: 20 age: 27 age: 38
joy (74%) joy (85%) joy (81%) joy (73%)
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Pictures

Faces generated by Karras et al. (2020). Gender and age were provided by
gender.toolpie, facelytics, picpurify with a “confidence,” cloud.google,
howolddoyoulook and facialage

female, age: 30 male, age: 27 male, age: 43 male, age: 37
female (0.985) male (0.983) male (0.984) male (0.996)

age: 28 age:33 age: 38 age: 38
joy (82%) joy (69%) joy (78%) joy (56%)
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Pictures

Faces generated by Karras et al. (2020). Gender and age were provided by
gender.toolpie, facelytics, picpurify with a “confidence,” cloud.google,
howolddoyoulook and facialage

male, age: 24 male, age: 33 male, age: 34 male, age: 48
male (0.944) male (0.981) female (0.905) male (0.989)

age: 26 age: 32 age: 34 age: 48
joy (70%) joy (81%) joy (82%) joy (83%)
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Spatial Information

“Geographic location is a well-established variable in many lines of insurance,”

Bender et al. (2022).
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Spatial Information

“Geographic information is crucial for estimating the future costs of an
insurance contract,” Blier-Wong et al. (2021).
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Credit Scoring

“Credit scoring is one of the most successful applications of statistical and
operations research modeling in finance and banking,” Thomas et al. (2002).

In the brief section “how insurers determine your premium,” in the National
Association of Insurance Commissioners (2011, 2022) reports, it is explained that
“most insurers use the information in your credit report to calculate a
credit-based insurance score. They do this because studies show a correlation
between this score and the likelihood of filing a claim. Credit-based insurance
scores are different from other credit scores.”

As shown in Dean and Nicholas (2018) and Dean et al. (2018), “credit scores are
increasingly used to understand health outcomes.”

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 325 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Credit Scoring

https://www.incharge.org/debt-relief/credit-counseling/credit-score-and-credit-report/
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Credit Scoring

https://www.incharge.org/debt-relief/credit-counseling/credit-score-and-credit-report/
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Networks

“Network and data analyses compound and reflect discrimination embedded
within society,” Bernstein (2007).

“You apply for a loan and your would-be lender somehow examines the credit
ratings of your Facebook friends. If the average credit rating of these members
is at least a minimum credit score, the lender continues to process the loan
application. Otherwise, the loan application is rejected,” Bhattacharya (2015)

Homophily principle (in the sense of McPherson et al. (2001)), because as popular
saying goes, “birds of a feather flock together.”

“Insurance companies can base premiums on all insured drivers in your
household, including those not related by blood, such as roommates,” National
Association of Insurance Commissioners (2011, 2022)

but there are a few things to bear in mind when using network data...
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Networks

Definition 6.6: Network

A (directed) network G = (V , E ), where, as a convention, V = {1, · · · , n} denote
either nodes, or vertices, and E œ {0, 1}

n◊n represents the relationships.

Definition 6.7: Adjacency Matrix

Aij œ {0, 1}, and Aij = 1 if and only if i and j are linked,

Aij =
I

1 if (i , j) œ E
0 otherwise

There are no self-loops, i.e. Ai ,i = 0. If the matrix is symmetric (Aij = Aji), the
network is undirected.
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Networks

1 > library ( igraph )
2 > g
3 IGRAPH 8 d07103 U--- 26 61 --
4 + attr: gender (v/c)
5 + edges from 99 d7971:
6 [1] 1--12 1-- 3 1-- 9 1-- 6 2-- 3
7 [6] 2-- 8 2--10 2--18 2-- 7 2--15
8 [11] 2-- 9 3--12 3-- 9 3-- 6 3-- 7
9 [16] 4--18 4--10 4-- 8 4--23 4--13

10 [21] 4--14 5--14 5--25 5--16 6--11
11 [26] 6--21 6--12 6-- 9 6--15 6--24
12 [31] 7-- 9 7--12 7--10 8--12 8--23
13 [36] 8--10 8-- 9 8--18 9--12 9--15
14 + ... omitted several edges
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Networks
Definition 6.8: Neighbors

(immediate) neighbors of node i are

Ni =
)
j œ V : (i , j) œ E

*
.

Proposition 6.1: Neighbors

Ni = {j œ V : Ai ,j > 0}.

Definition 6.9: Extended Neighborhood

(immediate) extended neighbors of node i are

N i = Ni fi {i}

1 > neighbors (g, 4)
2 + 6/26 vertices
3 [1] 8 10 13 14 18 23
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Networks
Definition 6.10: Neighbors of neighbors

Neighbors of neighbors of node i are

N(2)
i = {j œ V : (A2)i ,j > 0}.

where classically, (A2)i ,j =
nÿ

k=1
Ai ,kAk,j

Definition 6.11: 2-Neighbors

Neighbors of order 2 of node i are

N2(i) = {j œ V : ÷k Æ 2, (Ak)i ,j > 0}.

Note that N2(i) = Ni fi N(2)
i .
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Networks

Definition 6.12: Subgraph of G

Given two networks G = (E , V ) and G
Õ = (E Õ, V Õ),

G
Õ is a subgraph of G (denoted G

Õ
µ G) if E Õ

µ E
and V Õ

µ V .
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Networks

Induced subgraph
an induced subgraph of a graph is another graph, formed from a subset of the
vertices of the graph and all of the edges, from the original graph, connecting
pairs of vertices in that subset �

Definition 6.13: Induced subgraph of G

Given a network G = (V , E ) and a subset of vertices V Õ
µ V . The induced

subgraph GV Õ = (V Õ, E Õ) is the graph whose vertex set is V Õ and whose edge set
consists of all of the edges in E that have both endpoints in V Õ (denoted E Õ).
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Networks

Set Ei = N i and

Vi = {(i , j) œ E , where j œ Ni}.

Definition 6.14: Induced subgraph of neigh-
bors

Given a node i in a network (E , V ), the induced
subgraph of node i is GNi

, also denoted Gi =
(Ei , Vi).

E.g. G4 = (E4, V4)
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Networks

Definition 6.15: Degrees

Row i contains list of vertices connected to vertex i ,

di =
nÿ

j=1
Ai ,j = A

€

i ,·1 = #Ni .

Let d = (di) denote the vector of degrees, and D = diag(d).

Definition 6.16: Normalized Adjacency Matrix

A0 = D
≠1

A = D
≠1/2

AD
≠1/2 is the normalized adjacency matrix.
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Networks

(for directed networks, this corresponds to “out degrees”)

Definition 6.17: Walk

A walk from node i to node j is a sequence of edges, (i , v1), (v1, v2), (v2, v3),
· · · , (vk≠1, vk), (vk , j)

Definition 6.18: Path

A walk where all the vertices are distinct is a path.

Definition 6.19: Connected graph

There exists a path that connects very pair of nodes in the network.
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Networks

Definition 6.20: Shortest path

A geodesic between nodes i and j is a “shortest path” (i.e., with minimum number
of edges) between these nodes. dsp(i , j) is the distance between nodes i and j.

Conveniently suppose that the set of vertices V is In = {1, 2, · · · , n}.
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Networks
Exemples of (shortest) paths.

1 > shortest_paths (g,from =11,to =26)
2 $vpath
3 $vpath [[1]]
4 + 6/26 vertices ,
5 [1] 11 9 2 18 13 26

1 > shortest_paths (g,from =20,to =16)
2 $vpath
3 $vpath [[1]]
4 + 8/26 vertices ,
5 [1] 20 22 12 8 4 14 5 16
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Networks
Definition 6.21: Random walk

Random walk with transition matrix P = diag(d)≠1
A.

Let xt denote the node reached at time t, and p(t) œ Sn µ Rn
+ the probability vector

associated with {xt = i}. Then

pt+1 = diag(d)≠1
Apt .

The stationary distribution is fi = lim
tæŒ

pt .

Proposition 6.2: Unique Stationnary Distribution

fi exists and is unique if the network is connected and aperiodic.

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 340 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Random Graphs: Regular Graph (Dirac)

Definition 6.22: Complete graph

A complete graph is a simple undirected graph in
which every pair of distinct vertices is connected

Here di = (n ≠ 1), ’i œ {1, · · · , n}
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Random Graphs: Regular Graph (Dirac)

Definition 6.23: (r) Regular graph

a regular graph is a graph where each vertex has
the same number of neighbors; i.e. every vertex
has the same degree.

Here di = r , ’i œ {1, · · · , n}
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Random Graphs: Regular Graph (Dirac)

Definition 6.24: (r) Regular graph

a regular graph is a graph where each vertex has
the same number of neighbors; i.e. every vertex
has the same degree.

Here di = r , ’i œ {1, · · · , n}

See Bollobás (1998) for regular random graphs
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Random Graphs: Erdös-Rényi (Binomial-Poisson)

From Gilbert (1959), di Ω Di ≥ B(n ≠ 1, p)

Definition 6.25: Erdös-Rényi graph

Ai ,j = Aj,i Ω Xi ,j where Xi ,j are i.i.d. B(p) ran-
dom variables (each edge has a fixed probability
of being present or absent, independently of the
other edges).

P(Di = k) =
A

n ≠ 1
k

B

pk(1 ≠ p)n≠1≠k ,

P(Di = k) æ
(np)ke≠np

k! as n æ Œ and np = constant.
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Random Graphs: Barabási–Albert, preferential attachment (Power law)

From Barabási and Albert (1999),

Definition 6.26: Barabási–Albert

Let m Ø 1. The network initializes with a network
of m0 Ø m nodes. At each step, add 1 new node,
then sample m existing vertices from the network,
with a probability that is proportional to the num-
ber of links that the existing nodes already have.

(heavily linked nodes (“hubs”) tend to quickly accumulate
even more links)
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Networks Generation
Havel–Hakimi algorithm
The Havel–Hakimi algorithm is an algorithm in graph theory solving the graph
realization problem. That is, it answers the following question: Given a finite list
of nonnegative integers in non-increasing order, is there a simple graph such that
its degree sequence is exactly this list? A simple graph contains no double edges
or loops. �

Suppose that the sum of degrees is even, random networks can then be generated with
the algorithm of Havel (1955) and Hakimi (1962) (see also Viger and Latapy (2005)).

1 > degs = sort(round (1+ rexp (100 , 1/10)), decreasing =TRUE)
2 > if (sum(degs) %% 2 != 0) {
3 + degs [1] <- degs [1] + 1
4 + }
5 > g = realize_degseq (degs , allowed .edge.types = "all ")
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Networks Centrality

Definition 6.27: Degree Centrality

Degree centrality of node i is cd(i) = di , and cd = d .

Definition 6.28: Eigenvector Centrality

Eigenvector centrality of node i is solution of ce(i) = 1
⁄

nÿ

j=1
Ai ,jce(j), or

ce = 1
⁄

A
€

ce , for some fixed constant ⁄ > 0.

Equation A
€

ce = ⁄ce means that ce is some eigenvector associates with A
€ (or A if

G is undirected).
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Networks Centrality
Definition 6.29: PageRank Centrality

PageRank centrality of node i is solution of cp(i) = –
nÿ

j=1
Ai ,j

cp(j)
dj

+ —, or

cp = –A
€

D
≠1

cp + —1, for some fixed constant – and —.

1 > eigen_centrality (g)
2 [1] 0.527 0.821 0.732 0.544 0.060
3 [6] 0.702 0.671 0.833 1.000 0.788
4 [11] 0.310 0.864 0.286 0.298 0.458
5 [16] 0.019 0.075 0.657 0.030 0.030
6 [21] 0.162 0.160 0.544 0.345 0.060
7 [26] 0.046
8 > eigen(t(get. adjacency (g1)))

$vectors [,1]

1 > page_rank (g)
2 [1] 0.030 0.049 0.043 0.045 0.033
3 [6] 0.060 0.036 0.049 0.070 0.049
4 [11] 0.036 0.058 0.036 0.044 0.031
5 [16] 0.024 0.023 0.052 0.026 0.026
6 [21] 0.020 0.044 0.045 0.025 0.033
7 [26] 0.014
8 >
9 >
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Networks Centrality

Definition 6.30: Closeness Centrality

Closeness centrality of node i is cc(i) = n
nÿ

j=1
dsp(i , j)

.

1 > closeness (g1)
2 [1] 0.014 0.018 0.017 0.017 0.011
3 [6] 0.016 0.017 0.019 0.019 0.019
4 [11] 0.014 0.019 0.013 0.014 0.015
5 [16] 0.009 0.012 0.018 0.011 0.011
6 [21] 0.012 0.014 0.017 0.014 0.011
7 [26] 0.010

1 >

See Freeman et al. (1979)
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Networks Centrality

Definition 6.31: Laplacian

L = diag(d) ≠ A,

Li ,j :=

Y
__]

__[

di if i = j
≠1 if i ”= j and (i , j) œ E
0 otherwise,

1 > L = laplacian_matrix (g)
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Networks Centrality
Proposition 6.3: Alternative expression for L

Let ei = (0, · · · , 0, 1, , 0 · · · , 0) œ {0, 1}
n,

L =
ÿ

(i ,j)œE
(ei ≠ ej)(ei ≠ ej)€

¸i ,j

¸i ,j n ◊ n matrix, ¸i ,j =

i jQ

cccccccca

(0)
... (0)

... (0)
· · · 1 · · · ≠1 · · ·

(0)
... (0)

... (0)
· · · ≠1 · · · 1 · · ·

(0)
... (0)

... (0)

R

ddddddddb

i

j
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Sidenote on quadratic forms

Definition 6.32: Normalized Laplacian Matrix

L0 = D
≠1/2

LD
≠1/2 = I ≠ A0 is the normalized adjacency matrix.

L and L0 are symmetric positive semidefinite matrices.

Proposition 6.4: Laplacian and quadratic form

L = diag(d) ≠ A,

x
€

Lx = 1
2

ÿ

(i ,j)œE
(xi ≠ xj)2 = 1

2

nÿ

i ,j=1
Ai ,j(xi ≠ xj)2
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Sidenote on quadratic forms

Proof.

nÿ

i ,j=1
Ai ,j(xi ≠ xj)2 =

nÿ

i ,j=1
Ai ,j

!
x2

i ≠ 2xixj + x2
j

"
=

nÿ

i=1
Ai ,· x2

i ≠

nÿ

i ,j=1
2Ai ,jxixj +

nÿ

j=1
A·,jx2

j

Ai ,· =
nÿ

j=1
Ai ,j = di

nÿ

i ,j=1
Ai ,j(xi ≠ xj)2 = 2

nÿ

i=1
dix2

i + 2
nÿ

i ,j=1
Ai ,jxixj = 2x

€
!
D ≠ A

"
x = 2x

€
Lx

x
€

Dx x
€

Ax

Since x
€

Lx Ø 0 for all x, L is symmetric positive semidefinite matrices.
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Sidenote on quadratic forms
Let ⁄n Ø ⁄n≠1 Ø · · · Ø ⁄2 Ø ⁄1 Ø 0 denote L’s eigenvalues.

Proposition 6.5: Spectrum of L and ⁄1

The n-vector of one’s, 1, is an eigenvector of L associated with eigenvalue ⁄1 = 0.

Proof.

L1 =
ÿ

(i ,j)œE
(1i ≠ 1j) (1i ≠ 1j)€1 =

ÿ

(i ,j)œE
(1i ≠ 1j)0 = 0.

0

Proposition 6.6: Spectrum of L and ⁄2

Network G = (E , V ) is disconnected in two groups if and only if ⁄2 = 0.
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Sidenote on quadratic forms

Proposition 6.7: Spectrum of L and ⁄2

Network G = (E , V ) is disconnected in at least k groups if and only if ⁄k = 0.

Proposition 6.8: Laplacian and quadratic form

L0 = D
≠1/2

LD
≠1/2,

x
€

L0x = 1
2

ÿ

(i ,j)œE

A
xi
di

≠
xj
dj

B2
= 1

2

nÿ

i ,j=1
Ai ,j

A
xi
di

≠
xj
dj

B2
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Networks Homophily and Assortative Mixing

Definition 6.33: Homophily

Homophily is the tendency of individuals to form relations with others similar to
them.

Definition 6.34: Community, Newman and Girvan (2004), Newman (2018)

Communities are partitions of nodes.

The total number of edges that run between nodes of the same type is

ÿ

(i ,j)œE
”(ci , cj) = 1

2
ÿ

i ,j
Ai ,j”(ci , cj) where ”(ci , cj) =

I
1 if ci = cj
0 otherwise.
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Networks Homophily and Assortative Mixing
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Networks Homophily and Assortative Mixing
The expected number of edges between nodes if edges are placed at random is

1
2

ÿ

i ,j

didj
2m ”(ci , cj)

and the di�erence between the actual and expected number of edges in the network
that join nodes of the same type is mQ where Q is the modularity measure,

Definition 6.35: Modularity measure, Newman (2003)

The modularity measure of a partition (c) of a network (E , V ) is

Q = 1
2m

ÿ

i ,j

3
Ai ,j ≠

didj
2m

4
”(ci , cj)

Bi ,j

where m is the total number of links. B is coined “modularity matrix”.
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Networks Homophily and Assortative Mixing

A network is said to be assortative if a signif-
icant portion of its links are between nodes
that belong to the same community

B = A ≠
d

€
d

2m , i.e. Bi ,j = Ai ,j ≠
didj
2m ,

1 > A = get. adjacency (g)
2 > m = sum(A)/2
3 > d = apply(A,1, sum)
4 > B = A - d %*% t(d)/(2*m)

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 359 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Networks Homophily and Assortative Mixing
Since Bi ,j = Ai ,j ≠

didj
2m , and

nÿ

i=1
Bi ,j =

nÿ

i=1
Ai ,j ≠

dj
2m

nÿ

i=1
di = dj ≠

dj
2m2m = 0

dj 2m

nÿ

j=1
Bi ,j =

nÿ

j=1
Ai ,j ≠

di
2m

nÿ

j=1
dj = di ≠

di
2m2m = 0

di 2m
In the case where were two communities, A and B, set

sA
i =

I
+1 if i œ A
≠1 if i œ B

and sB
i = ≠sA

i =
I

+1 if i œ B
≠1 if i œ A

.
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Networks Homophily and Assortative Mixing
then

”(ci , cj) = 1
2

!
sisj + 1

"

so that

Q = 1
2m

ÿ

i ,j
Bi ,j”(ci , cj) = 1

4m
ÿ

i ,j
Bi ,j

!
sisj + 1

"
= 1

4m
ÿ

i ,j
Bi ,jsisj = 1

4ms
€

Bs,

(whatever the reference group).

Proposition 6.9

The modularity measure can be written

Q = 1
4ms

€
Bs, where s = 1A ≠ 1B, i.e. sA

i =
I

+1 if i œ A
≠1 if i œ B
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Networks Homophily and Assortative Mixing
When is Q maximal (in s) ? see “modularity maximization,” in Newman (2012)

Recall that s œ {±1}
n, so that s

€
s = n. Our problem is

max
sœ{±1}n

)
s

€
Bs

*
, subject to s

€
s = n.

Using the Legrangian, our optimization problem has the following first order condition
ˆ

ˆs

!
s

€
Bs + ⁄(n ≠ s

€
s)

"
= 0

i.e.
ˆ

ˆsk

1 ÿ

i ,j
Bi ,jsisj + ⁄

1
n ≠

ÿ

j
s2
j

22
=

nÿ

i=1
Bi ,ksi ≠ ⁄sk = 0, ’k

or, with matrix notations, Bsı = ⁄sı, i.e. sı is an eigenvector of B. Thus

Qı = 1
4ms

€

ı Bsı = 1
4ms

€

ı ⁄sı = n
4m⁄.
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Networks Homophily and Assortative Mixing

1 > modularity (g1 , 1+(V(g1) $gender ==" female "))
2 [1] 0.3078474
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Networks, without networks
Following Morris (1995), from AMEN (AIDS in Multi-Ethnic Neighborhoods) Study
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Networks, without networks
Here we have 4 sensitive groups, on a bipartite network (heterosexual relationships)
Consider a discrete copula representation

ei ,j Black Hispanic White Other ai
Black 0.258 0.016 0.035 0.013 0.323

Hispanic 0.012 0.157 0.058 0.019 0.247
White 0.013 0.023 0.306 0.035 0.377
Other 0.005 0.007 0.024 0.016 0.053

bj 0.289 0.204 0.423 0.084

ai =
Kÿ

j=1
ei ,j = E

€

i ,·1 and bj =
Kÿ

i=1
ei ,j = E

€

·,j1

Further

a
€

b =
Kÿ

k=1
akbk =

Kÿ

k=1

1 Kÿ

i=1
ei ,k

21 Kÿ

j=1
ek,j

2
=

ÿ

i ,j
(E2)i ,j = ÎE

2
Î
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Networks, without networks

Thus, we recover the coe�cient introduced in Gupta et al. (1989),

Definition 6.36: Assortativity coe�cient, Gupta et al. (1989)

With K communities

r =

Kÿ

k=1
ek,k ≠

Kÿ

k=1
akbk

1 ≠

Kÿ

k=1
akbk

= trace[E ] ≠ ÎE
2
Î

1 ≠ ÎE
2
Î

More generally, when dealing with data with a network topology, we should be careful...
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Statistics with a Network Topology

sample data (y , X , S)

y = 1
n

nÿ

j=1
yj = 1€

y

1€1

æ sample version of E[Y ].

y s = 1
ns

nÿ

j=1
1(sj = s)yj = 1€

s y

1€

s 1

æ sample version of E[Y |S = s].

network data (V , E , y , X , S)

for a node i œ V ,

y(i) = 1
di

ÿ

jœNi

yj = 1
di

nÿ

i=1
Ai ,jyj = A

€

i · y

A
€

i · 1

æ sample version of Ei [Y ].

y s(i) = 1
di :s

ÿ

jœNi

1(sj = s)yj = (Ai · · 1s)€
y

(Ai · · 1s)€1

æ sample version of Ei [Y |S = s].
where a · b is the element-wise product.
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Statistics with a Network Topology

Given sample {x1, · · · , xn}, the empirical variance,

‡2 = 1
n

nÿ

i=1
(xi ≠ x)2 , where x = 1

n

nÿ

i=1
xi

could be written as a U-stat, Lee (2019)

‡2 = 1
2n2

nÿ

i ,j=1
(xi ≠ xj)2 .

On a network, with adjacency matrix A,

‡2
G = 1

4e

nÿ

i ,j=1
Ai ,j (xi ≠ xj)2 , where 2e =

nÿ

i ,j=1
Ai ,j
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Statistics with a Network Topology

Given sample {(x1, y1), · · · , (xn, yn)}, the empirical co-
variance could be written as a U-stat,

cv = 1
2n2

nÿ

i ,j=1
(xi ≠ xj) (yi ≠ yj)

and if observations are nodes on a network

cvG = 1
4e

nÿ

i ,j=1
Ai ,j (xi ≠ xj) (yi ≠ yj)
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Statistics with a Network Topology
If x is independent of the topology of the network (summarized by A),

‡2 = 1
2n2

nÿ

i ,j=1
(xi ≠ xj)2

¥
1
4e

nÿ

i ,j=1
Ai ,j (xi ≠ xj)2 = ‡2

G

otherwise, the topology of the network is not neutral...

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 370 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Statistics with a Network Topology

‡2
G ¥ ‡2 ‡2

G Ø ‡2 ‡2
G Æ ‡2

“cor(A, x) ¥ 0” “cor(A, x) Ø 0” “cor(A, x) Æ 0”

Erdös-Rényi network with n = 100 nodes, probability p (drawn randomly in [0, 1])
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Statistics with a Network Topology
Following Hall (1970), write

s2 = 1
n ≠ 1

nÿ

i=1
(xi ≠ x̄)2 = 1

n ≠ 1

nÿ

i=1
( xi ≠ xj + xj ≠ x̄ )2

=∆ (n ≠ 1)s2 =
nÿ

i=1
(xi ≠ xj)2 + 2

nÿ

i=1
(xi ≠ xj)(xj ≠ X̄ ) +

nÿ

i=1
(xj ≠ x̄)2.

=∆ n(n ≠ 1)s2 =
nÿ

j=1

nÿ

i=1
(xi ≠ xj)2 + 2

nÿ

j=1

nÿ

i=1
(xi ≠ xj)(xj ≠ x̄) +

nÿ

j=1

nÿ

i=1
(xj ≠ x̄)2.

nÿ

i=1

nÿ

j=1
(xi ≠ xj)2 = ≠2

nÿ

i=1

nÿ

j=1
(xi ≠ xj)(xj ≠ x̄) = 2

nÿ

i=1

nÿ

j=1
(xj ≠ x̄ + x̄ ≠ xi)(xj ≠ x̄)

=∆

nÿ

i=1

nÿ

j=1
(xi ≠ xj)2 = 2

nÿ

i=1

nÿ

j=1
(xj ≠ x̄)2 + 2

nÿ

i=1
(x̄ ≠ xi)

nÿ

j=1
(xj ≠ x̄)

¸ ˚˙ ˝
0

= 2n(n ≠ 1)s2.
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Statistics with a Network Topology
Thus, for any m, write

2n(n ≠ 1)s2 =
nÿ

i ,j=1
(xi ≠ xj)2 =

nÿ

i ,j=1

!
xi ≠ m

¸ ˚˙ ˝
ui

≠ xj ≠ m )
¸ ˚˙ ˝

uj

"2 =
nÿ

i ,j=1
u2

i + u2
j + 2uiuj

If m = x ,
nÿ

i ,j=1
u2

i = n
nÿ

i=1
u2

i = n(n ≠ 1)S2 and therefore
nÿ

i ,j=1
uiuj = 0.

Hence,

1
2n2

nÿ

i ,j=1
(xi ≠ x)(xj ≠ x) = 0 but possibly 1

4e

nÿ

i ,j=1
Ai ,j(xi ≠ x)(xj ≠ x) ”= 0.
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Paradoxes in Networks
“on average your friends have more friends than you do.”

Proposition 6.10: Friendship Paradox

The average number of friends of the collection of friends of individuals in a social
network will be higher than the average number of friends of the collection of the
individuals themselves. More formally

1
n

nÿ

i=1

3 1
di

nÿ

j=1
Aijdj

4
Ø

1
n

nÿ

i=1
di .

Define di�erences �i ’s between the average of its neighbours’ degrees and its own
degree, in the sense that

�i = 1
di

nÿ

j=1
Aijdj ≠ di .
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Paradoxes in Networks
Write the average as

1
n

nÿ

i=1
�i = 1

n

nÿ

i=1

3 1
di

nÿ

j=1
Aijdj ≠ di

4
= 1

n

nÿ

ij=1

3
Aij

dj
di

≠ Aij

4
,

that yields

1
n

nÿ

i=1
�i = 1

n

nÿ

ij=1
Aij

3dj
di

≠ 1
4

but also 1
n

nÿ

ij=1
Aij

3di
dj

≠ 1
4

,

by exchanging the summation indices, and because A is a symmetric matrix. By
adding the two, we can write

2
n

nÿ

i=1
�i = 1

n
ÿ

ij
Aij

3dj
di

+ di
dj

≠ 2
4

= 1
2n

ÿ

ij
Aij

Q

a
Û

dj
di

≠

Û
di
dj

R

b
2

Ø 0.

(the exact equality holds only when di = dj for all pairs of neighbors)
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Attributed Networks
Definition 6.37: Attributed Network

An attributed (directed) network Gx = (V , E , X) is a network (V , E ) where X

is a node attributes matrix, n ◊ k, where each row is a feature vectors, for each
node in V = In.

If X = (x1, · · · , xn), the classical average is

µ(x) = x = 1
n

nÿ

i=1
xi .

Given an attributed (directed) network Gx = (V , E , X), where X = (x1, · · · , xn),

µG(x) = 1
ÿ

i ,j
Ai ,j

ÿ

i ,j
Ai ,jxi = 1

2m

nÿ

i=1
dixi
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Attributed Networks
Similarly, the variance of X = (x1, · · · , xn) is

Var(x) = ≠1
n ≠ 1

ÿ

i ”=j
(xi ≠ µ(x))(xj ≠ µ(x))

while variance over edges

VarG(x) = 1
ÿ

i ,j
Ai ,j

ÿ

i ,j
Ai ,j(xi ≠ µG(x))(xj ≠ µG(x)) = 1

2m
ÿ

i ,j

3
Ai ,j ≠

didj
2m

4
xixj .

This leads to an other modularity measure, after anoter renormalization, so that it
takes the value 1 in a network with perfect assortative mixing—one in which all edges
fall between nodes with precisely equal values of xi ,

Q = 1
2m

ÿ

i ,j

3
Ai ,jx2

i ≠
didj
2m xixj

4
= 1

2m
ÿ

i ,j

3
di1i=j ≠

didj
2m

4
xixj
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Attributed Networks

Definition 6.38: Modularity measure for attributed networks

For some categorical variable x , the modularity measure is

Q = 1
2m

ÿ

i ,j

3
Ai ,j ≠

didj
2m

4
”(xi , xj).

If x is a numerical variable, a di�erent normalization is considered

Q = 1
Ÿ

ÿ

i ,j

3
Ai ,j ≠

didj
2m

4
xixj , where Ÿ =

ÿ

k,l

3
dk1k=l ≠

dkdl
2m

4
xkxl

also coined “assortativity coe�cient”.
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Attributed Networks

“you apply for a loan and your would-be lender somehow examines the credit
ratings of your Facebook friends. If the average credit rating of these members
is at least a minimum credit score, the lender continues to process the loan
application. Otherwise, the loan application is rejected,” Bhattacharya (2015)

“il ne faut jamais juger les gens sur leurs fréquentations. Tenez, Judas, par
exemple, il avait des amis irréprochables,” Paul Verlaine

For the generalized friendship paradox, which considers attributes other than degree, as
in Cantwell et al. (2021), one can define an analogous quantity, �(x)

i , for some
attribute x (such as the wealth) is defined as

�(x)
i = 1

di

ÿ

j
Aijxj ≠ xi ,
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Attributed Networks
which measures the di�erence between the average of the attribute for node i ’s
neighbours and the value for i itself. When the average of this quantity over all nodes
is positive one may say that the generalized friendship paradox holds. In contrast to
the case of degree, this is not always true – the value of �(x)

i can be zero or negative –
but we can write the average as

1
n

ÿ

i
�(x)

i = 1
n

ÿ

i

3 1
di

ÿ

j
Aijxj ≠ xi

4
= 1

n
ÿ

i

3
xi

ÿ

j

Aij
dj

≠ xi

4
,

where the second line again follows from interchanging summation indices. Defining
the new quantity

”i =
ÿ

j

Aij
dj

,

and noting that
1
n

ÿ

i
”i = 1

n
ÿ

ij

Aij
dj

= 1
n

ÿ

j

1
dj

ÿ

i
Aij = 1,
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Attributed Networks

we can then write

1
n

ÿ

i
�(x)

i = 1
n

ÿ

i
xi”i ≠

1
n

ÿ

i
xi

1
n

ÿ

i
”i = Cov(x, ”).

Thus, we will have a generalized friendship paradox in the sense defined here if (and
only if) x and ” are positively correlated. But this is not always the case

Cov(d , ”) Ø 0
Cov(x, ”) Ø 0

J

”=∆ Cov(d , x) Ø 0.
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Network Centric Fairness Perception

Definition 6.39: d-Neighbors

Given d œ Nı, let Nd : V æ P(V ) defined as Nd(i) = {j œ V : ÷k Æ

d , (Ak)i ,j > 0}. N1(i) = Ni corresponds to (standard) neighbors of node i .

Definition 6.40: d-centered subgraph

Given d œ Nı, and a node i , the subgraph centered on node i (of order d) is
G

d
i = (Nd(i), Ed(i)) where Ed(i) = {(j, j Õ) œ E : j, j Õ

œ Nd(i)}.

Suppose that y is binary, yi œ {0, 1}.

Instead of a “model” m : X æ [0, 1], consider a decision function h : V æ [0, 1]
decision function.
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Network Centric Fairness Perception

Definition 6.41: Isomorphic Networks

Two subgraphs G1 = (V1, E1) and G2 = (V2, E2) of G are isomorphic with respect
to h : V æ R if there exists a one-to-one mapping Â : V1 æ V2 such that

- ’(k, l) œ E1, (Â(k), Â(l)) œ E2,
- ’k œ V1, h(k) = h(Â(k)).
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Network Centric Fairness Perception

Definition 6.42: Isomorphic Attributed Networks

Two attributed subgraphs G1 = (V1, E1, X1) and G2 = (V2, E2, X2) of G are
isomorphic with respect to h : V æ R if there exists a one-to-one mapping
Â : V1 æ V2 such that

- ’(k, l) œ E1, (Â(k), Â(l)) œ E2,
- ’k œ V1, h(k) = h(Â(k)),and xk = 1, x2,Â(k).
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Network Centric Fairness Perception

Definition 6.43: Fairness Perception Function

F(i , h) associate with decision h, for some node i (on a given network G), “fairness
perception function” if

• local axiom, if h(i) = hÕ(i) and ’j œ N(i), h(j) = hÕ(j), then F(i , h) =
F(i , hÕ),

• monotonicty axiom, if h(i) < hÕ(i) and ’j œ N(i), h(j) = hÕ(j), then
F(i , h) Æ F(i , hÕ),

• neighborhood expectation axiom, if h(i) = hÕ(i) and ’j œ N(i), h(j) Æ hÕ(j),
then F(i , h) Ø F(i , hÕ),

• homogeneity axiom, let Gi = (Ei , Vi) and Gj = (Ej , Vj) be two subgraphs, if
Gi and Gj are isomorphic with decision function h, then F(i , h) = F(j, h)
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Network Centric Fairness Perception

Definition 6.44: Neighborhood Peer Expectation

Given an network G, a decision function h : V æ [0, 1], and a node i

Ei [h] = yiÿ

jœNi

yj

ÿ

jœNi

yjh(j) + 1 ≠ yiÿ

jœNi

1 ≠ yj

ÿ

jœNi

(1 ≠ yj)h(j)

where actually, if yi = 1, Ei [h] = 1
ÿ

jœNi

yj

ÿ

jœNi

yjh(j),

while if yi = 0, Ei [h] = 1
ÿ

jœNi

1 ≠ yj

ÿ

jœNi

(1 ≠ yj)h(j).
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Network Centric Fairness Perception

The Neighborhood Peer Expectation considers the average decision of all neighbors
with the same output y .

Ei [h] = yiÿ

jœNi

yj

ÿ

jœNi

yjh(j) + 1 ≠ yiÿ

jœNi

1 ≠ yj

ÿ

jœNi

(1 ≠ yj)h(j)

can we extended when considered larger networks, with d Ø 1,

Ei ,d [h] = yiÿ

jœNd (i)
yj

ÿ

jœNd (i)
yjh(j) + 1 ≠ yiÿ

jœNd (i)
1 ≠ yj

ÿ

jœNd (i)
(1 ≠ yj)h(j)
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Network Centric Fairness Perception
Proposition 6.11: Network-Centric Fairness Perception

Given a network G = (V , E ), and a decision function h, the network-centric
fairness perception function is defined as

F(i , h) =
I

1 if Ei [h] Æ h(i)
0 otherwise

satisfies the locality, monotonicity, neighborhood expectation, and homogeneity
axioms, i.e. it is a fairness perception function.

More generally, function Ei [h] should satisfy
• if ’j œ Ni , such that h(j) = hÕ(j), then Ej [h] = Ej [hÕ],
• if ’j œ Ni , such that h(j) Æ hÕ(j), then Ej [h] Æ Ej [hÕ],
• if Gi and Gj are isomorphic, with respect to h, Ei [h] = Ej [h]
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Network Centric Fairness Perception
Consider an attributed network Gs = (V , E , S)

Definition 6.45: Fairness Visibility

Let Vs = {i œ V : S i = s}, then fairness visibility of h for group s is

Fd(s, h) = 1
#Vs

ÿ

iœVs

Fd(i , h)

Definition 6.46: Fairness Visibility Parity

h satisfies fairness visibility parity, with respect to S, if

Fd(s, h) = Fd(s Õ, h).
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Network Centric Fairness Perception
Consider some binary decision rule h : V æ {0, 1},

Proposition 6.12: Asymptotic Fairness Visibility

Assuming the network graph is connected, and the decision function h has non-
zero true positive and false positive rates, the fairness visibility of group Vs , based
on the neighborhood peer expectation, converges to the acceptance probability
for Vs as the d-neighborhood size increases,

Fd(s, h) = 1
#Vs

ÿ

iœVs

F(i , h) æ P[h(i) = 1|i œ Vs), as d æ Œ.

Heuristically, since the graph is connected, N(d)
i æ V as d increases.

For any i , ultimately,
I

Fd(i , h) = 1 if h(i) = 1
Fd(i , h) = 0 if h(i) = 0

, thus consider only i œ Vs
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Network Centric Fairness Perception

For non-relational data, standard definition of demographic parity is

Definition 6.47: Demographic Parity

Decision function h satisfies demographic parity if

P[h(i) = 1|i œ Vs) = P[h(i) = 1|i œ VsÕ).

acceptance probability for group s

Again, this definition ignores the neighborhood structure of a node.
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Network Centric Fairness Perception

Proposition 6.13: Local vs. Asymptotic Fairness Visibility

Even if decision function h satisfies demographic parity,

P[h(i) = 1|i œ Vs) = P[h(i) = 1|i œ VsÕ),

there can still be non-parity w.r.t. fairness visibility, for some d ,

Fd(s, h) ”= Fd(s Õ, h).
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– Part 6 –

Group Fairness

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 393 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Group Fairness
Back on toydata2 , distributions of scores, ‚m(x i)’s conditional on yi and si
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Group Fairness

Definition 8.1: Fairness through unawareness, Dwork et al. (2012)

A model m satisfies the fairness through unawareness criteria, with respect to
sensitive attribute s œ S if m : X æ Y.

by Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold and Richard Zemel,
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Group Fairness

See introduction about the gender directive,
“institutional messages of color blindness may therefore artificially depress formal
reporting of racial injustice. Color-blind messages may thus appear to function
e�ectively on the surface even as they allow explicit forms of bias to persist,”
Apfelbaum et al. (2010)

Definition 8.2: Aware and unaware regression functions µ

The aware regression function is µ(x, s) = E[Y |X = x, S = s]
and the unaware regression function is µ(x) = E[Y |X = x].
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Historical Perspective: ”Cultural Fairness” and ”Statistical Discrimination”

Definition 8.3: Four definitions of cultural fairness,
Darlington (1971)

A test (‚y) is considered ”culturally fair” if it fits the
appropriate equation

Y
_____]

_____[

Cor[S, ‚Y ] = Cor[S, Y ]/Cor[Y , ‚Y ]
Cor[S, ‚Y ] = Cor[S, Y ]
Cor[S, ‚Y ] = Cor[S, Y ] · Cor[Y , ‚Y ]
Cor[S, ‚Y ] = 0

See also Thorndike (1971), Linn and Werts (1971), following Cleary (1968).
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”Economics of Discrimination” and ”Statistical Discrimination”

See Becker (1957) or Baldus and Cole (1980), among (many) others.
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Historical Perspective: Decomposition
I

yA:i = x
€

A:i—A + ÁA:i (group A), yA = x
€
A

‚—A
yB:i = x

€

B:i—B + ÁB:i (group B), yB = x
€
B

‚—B.

Using ordinary least squares estimates

Definition 8.4: Kitagawa (1955), Oaxaca (1973),
Blinder (1973)

yA ≠ yB =
!
xA ≠ xB

"€ ‚—B¸ ˚˙ ˝
characteristics

+ x
€

A
!‚—A ≠ ‚—B

"
¸ ˚˙ ˝

coe�cients

, (7)

yA ≠ yB =
!
xA ≠ xB

"€ ‚—A¸ ˚˙ ˝
characteristics

+ x
€

B
!‚—A ≠ ‚—B

"
¸ ˚˙ ˝

coe�cients

. (8)

Also Brown et al. (1980) and Conway and Roberts (1983).
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Historical Perspective: Decomposition

xA( ‚—A ≠ ‚—B) and (xA ≠ xB) ‚—B (as in Equation 7) on the left
xB( ‚—A ≠ ‚—B) and (xA ≠ xB) ‚—A (as in Equation 8) on the right.
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Independence and Demographic Parity

Definition 8.5: Independence, Barocas et al. (2017)

A model m satisfies the independence property if m(Z) ‹‹ S, with respect to the
distribution P of the triplet (X , S, Y ).

by Solon Barocas, Moritz Hardt and Arvind Narayanan

For classifiers, one might ask for independence ‚Y ‹‹ S (where ‚y is a class), as
Darlington (1971).
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Independence and Demographic Parity
Definition 8.6: Demographic Parity, Calders and Verwer (2010), Corbett-

Davies et al. (2017)

A decision function ‚y – or a classifier mt , taking values in {0, 1} – satisfies
demographic parity, with respect to some sensitive attribute S if (equivalently)

Y
__]

__[

P[ ‚Y = 1|S = A] = P[ ‚Y = 1|S = B] = P[ ‚Y = 1]
E[ ‚Y |S = A] = E[ ‚Y |S = B] = E[ ‚Y ]
P[mt(Z) = 1|S = A] = P[mt(Z) = 1|S = B] = P[mt(Z) = 1].

by Toon Calders, Sicco Verwer, Sam Corbett-Davies, Emma Pierson, Sharad Goel, etc
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Independence and Demographic Parity

unaware (without s) aware (with s)
GLM GAM CART RF GLM GAM CART RF

n = 1000, various t, ratio P[ ‚Y = 1|S = B]/P[ ‚Y = 1|S = A]
t = 30% 1.652 1.519 1.235 1.559 1.918 1.714 1.235 1.798
t = 50% 1.877 2.451 2.918 2.404 2.944 3.457 2.918 2.180
t = 70% 6.033 8.711 26.000 4.621 7.917 19.333 26.000 4.578

( dem parity from R package fairness )

On the left-hand side, evolution of the ratio ratio P[ ‚Y = 1|S = B]/P[ ‚Y = 1|S = A].
The horizontal line (at y = 1) corresponds to perfect demographic parity.
In the middle t ‘æ P[mt(X) > t|S = B] and t ‘æ P[mt(X) > t|S = A] on the model
with s, and on the right-hand side without s.
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Independence and Demographic Parity

On the left-hand side, evolution of the ratio ratio P[ ‚Y = 1|S = B]/P[ ‚Y = 1|S = A].
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Independence and Demographic Parity

On the left-hand side, evolution of the ratio ratio P[ ‚Y = 0|S = A]/P[ ‚Y = 0|S = B]
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Independence and Demographic Parity

Definition 8.7: Weak Demographic Parity

A decision function ‚y satisfies weak demographic parity if

E[ ‚Y |S = A] = E[ ‚Y |S = B].

Definition 8.8: Strong Demographic Parity

A decision function ‚y satisfies demographic parity if ‚Y ‹‹ S, i.e., for all A,

P[ ‚Y œ A|S = A] = P[ ‚Y œ A|S = B], ’A µ Y.
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Independence and Demographic Parity

Proposition 8.1

A model m satisfies the strong demographic parity property if and only if

dTV(Pm|A,Pm|B) = dTV(PA,PB) = 0.

dTV(Pm|A,Pm|B) could be seen as a measure of “unfairness”, but for a non-binary
sensitive attribute, a more general definition is necessary (see Denis et al. (2021)).
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Independence and Demographic Parity

Definition 8.9: Conditional demographic parity, Corbett-Davies et al.
(2017)

We will have a conditional demographic parity if (at choice) for all x,
Y
__]

__[

P[ ‚Y = 1|XL = x, S = A] = P[ ‚Y = 1|XL = x, S = B], ’y œ {0, 1}

E[ ‚Y |XL = x, S = A] = E[ ‚Y |XL = x, S = B],
P[ ‚Y œ A|XL = x, S = A] = P[ ‚Y œ A|XL = x, S = B], ’A µ Y,

where L denotes a “legitimate” subset of unprotected covariates.
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Independence and Demographic Parity
Proposition 8.2

A model m satisfies is strongly fair if and only if W2(PA,PB) = 0.

1 > model_glm = glm(y˜x1
+x2+x3 , data=
toydata2 , family =
binomial )

2 > pred_y_glm = predict
(model_glm , type ="
response ")

3 > sA = pred_y_glm [
toydata2$sensitive
=="A"]

4 > library ( transport )
5 > wasserstein1d (sA ,sB)
6 [1] 0.3860795
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Independence and Demographic Parity
On the FrenchMotor dataset, consider GLM, GBM and RF for claim occurence

1 > wasserstein1d (lA ,lB)
2 [1] 0.007220468

1 > wasserstein1d (bA ,bB)
2 [1] 0.008895917

1 > wasserstein1d (fA ,fB)
2 [1] 0.01001088
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Independence and Demographic Parity

1 > wasserstein1d (lA ,lB)
2 [1] 0.007220468

1 > wasserstein1d (bA ,bB)
2 [1] 0.008895917

1 > wasserstein1d (fA ,fB)
2 [1] 0.01001088
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Independence and Demographic Parity
Definition 8.10: Unfairness, Denis et al. (2021); Chzhen and Schreuder

(2022)

Given a model m, let Pm denote the distribution of m(X , S) and Pm|s denote the
conditional distribution of m(X , S) given S = s, define

Y
_______]

_______[

UTV(m) = max
sœ{A,B}

)
dTV(Pm,Pm|s) or

ÿ

sœ{A,B}

dTV(Pm,Pm|s)

UKS(m) = max
sœ{A,B}

)
dKS(Pm,Pm|s)

*
or

ÿ

sœ{A,B}

dKS(Pm,Pm|s)

UWk (m) = max
sœ{A,B}

)
Wk(Pm,Pm|s)

*
or

ÿ

sœ{A,B}

Wk(Pm,Pm|s)

In the original version, Chzhen and Schreuder (2022) suggested to use the one on the
right.
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Independence and Demographic Parity

Those measures characterize strong demographic parity,

Proposition 8.3: Strong Demographic Parity

A model m is strongly fair if and only if U(m) = 0.
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Separation and Equalized Odds

Definition 8.11: Separation, Barocas et al. (2017)

A model m : Z æ Y satisfies the separation property if m(Z) ‹‹ S | Y , with
respect to the distribution P of the triplet (X , S, Y ).

by Solon Barocas, Moritz Hardt and Arvind Narayanan
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Separation and Equalized Odds

Definition 8.12: True positive equality, (Weak) Equal Opportunity, Hardt
et al. (2016)

A decision function ‚y – or a classifier mt(·), taking values in {0, 1} – satisfies
equal opportunity, with respect to some sensitive attribute S if
I
P[ ‚Y = 1|S = A, Y = 1] = P[ ‚Y = 1|S = B, Y = 1] = P[ ‚Y = 1|Y = 1]
P[mt(Z) = 1|S = A, Y = 1] = P[mt(Z) = 1|S = B, Y = 1] = P[mt(Z) = 1|Y = 1],

which corresponds to parity of true positives, in the two groups, {A, B}.
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Separation and Equalized Odds

Definition 8.13: Strong Equal Opportunity

A classifier m(·), taking values in {0, 1}, satisfies equal opportunity, with respect
to some sensitive attribute S if

P[m(X , S) œ A|S = A, Y = 1] = P[m(X , S) œ A|S

for all A µ [0, 1].
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Separation and Equalized Odds

Definition 8.14: False positive equality, Hardt et al. (2016)

A decision function ‚y – or a classifier mt(·), taking values in {0, 1} – satisfies
parity of false positives, with respect to some sensitive attribute s, if
I
P[ ‚Y = 1|S = A, Y = 0] = P[ ‚Y = 1|S = B, Y = 0] = P[ ‚Y = 1|Y = 0]
P[mt(Z) = 1|S = A, Y = 0] = P[mt(Z) = 1|S = B, Y = 0] = P[mt(Z) = 1|Y = 0].
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Separation and Equalized Odds

ROC curves (TPR against FPR) for the logistic regression on toydata2 .
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Separation and Equalized Odds

Evolution of the false positive rates, fpr parity from fairness .
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Separation and Equalized Odds

Evolution of the false negative rates, fnr parity from fairness .
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Separation and Equalized Odds

Definition 8.15: Equalized Odds, Hardt et al. (2016)

A decision function ‚y – or a classifier mt(·) taking values in {0, 1} – satisfies
equal odds constraint, with respect to some sensitive attribute S, if
I
P[ ‚Y = 1|S = A, Y = y ] = P[ ‚Y = 1|S = B, Y = y ] = P[ ‚Y = 1|Y = y ], ’y œ {0, 1}

P[mt(Z) = 1|S = A, Y = y ] = P[mt(Z) = 1|S = B, Y = y ], ’y œ {0, 1},
,

which corresponds to parity of true positive and false positive, in the two groups.
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Separation and Equalized Odds

Evolution of the equalized odds metrics
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Separation and Equalized Odds
One can also consider any kind of standard metrics on confusion matrices, such as „

(introduced in Yule (1912)), usually named ”Matthews correlation coe�cient”

Definition 8.16: „-fairness, Chicco and Jurman (2020)

We will have „-fairness if „A = „B, where „s denotes Matthews correlation
coe�cient for the s group,

„s = TPs · TNs ≠ FPs · FNs
(TPs + FPs)(TPs + FNs) · (TNs + FPs)(TNs + FNs)

, s œ {A, B}.

but one could consider the F1-score (as defined in Van Rijsbergen (1979)),
Fowlkes–Mallows or Jaccard indices (in Fowlkes and Mallows (1983) or Jaccard
(1901)).
.. or AUC as we will considered later on.
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Separation and Equalized Odds

Evolution of the „-fairness metric
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Separation and Equalized Odds

Definition 8.17: Class Balance, Kleinberg et al. (2016)

We will have class balance in the weak sense if

E[m(X)|Y = y , S = A] = E[m(X)|Y = y , S = B], ’y œ {0, 1},

or in the strong sense if

P[m(X) œ A|Y = y , S = A] = P[m(X) œ A|Y = y , S = B], ’A µ [0, 1], ’y œ {0, 1}.
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Separation and Equalized Odds

Definition 8.18: Similar Mistreatement, Zafar et al. (2019)

We will have similar mistreatment, or “lack of disparate mistreatment,” if
I
P[ ‚Y = Y |S = A] = P[ ‚Y = Y |S = B] = P[ ‚Y = Y ]
P[mt(X) = Y |S = A] = P[mt(X) = Y |S = B] = P[mt(X) = Y ].

Definition 8.19: Equality of ROC curves, Vogel et al. (2021)

Let FRPs(t) = P[m(X) > t|Y = 0, S = s] and TPRs(t) = P[m(X) > t|Y =
1, S = s], where s œ {A, B}. Set �TPR(t) = TPRB ¶ TPR≠1

A (t) ≠ t et �FRP(t) =
FPRB ¶ FPR≠1

A (t) ≠ t. We will have fairness with respect to ROC curves if
Î�TPRÎŒ = Î�FPRÎŒ = 0.
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Separation and Equalized Odds

Definition 8.20: AUC Fairness, Borkan et al. (2019)

We will have AUC fairness if AUCA = AUCB, where AUCs is the AUC associated
with model m within the s group.

unaware (without s) aware (with s)
GLM GAM CART RF GLM GAM CART RF

ratio of AUC 0.837 0.839 0.913 0.768 0.857 0.860 0.913 0.763
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Su�ciency and Calibration

Inspired by Cleary (1968), define

Definition 8.21: Su�ciency, Barocas et al. (2017)

A model m : Z æ Y satisfies the su�ciency property if Y ‹‹ S | m(Z), with
respect to the distribution P of the triplet (X , S, Y ).

Definition 8.22: Calibration Parity, Accuracy Parity, Kleinberg et al.
(2016), Zafar et al. (2019)

Calibration parity is met if

P[Y = 1|m(X) = t, S = A] = P[Y = 1|m(X) = t, S = B], ’t œ [0, 1].
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Su�ciency and Calibration

Evolution of accuracy, in groups A and B.
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Su�ciency and Calibration
Definition 8.23: Good Calibration, Kleinberg et al. (2017), Verma and Ru-

bin (2018)

Fairness of good calibration is met if

P[Y = 1|m(X) = t, S = A] = P[Y = 1|m(X) = t, S = B] = t, ’t œ [0, 1].

Definition 8.24: Non-Reconstruction of Protected Attribute, Kim (2017)

If we cannot tell from the result (x, m(x), y and ‚y) whether the subject was
a member of a protected group or not, we will talk about fairness by non-
reconstruction of the protected attribute

P[S = A|X , m(X), ‚Y , Y ] = P[S = B|X , m(X), ‚Y , Y ].
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Relaxation and Approximate Fairness

Definition 8.25: Disparate Impact, Feldman et al. (2015)

A decision function ‚Y has a disparate impact, for a given threshold · , if,

min
I
P[ ‚Y = 1|S = A]
P[ ‚Y = 1|S = B]

,
P[ ‚Y = 1|S = B]
P[ ‚Y = 1|S = A]

J

< · (usually 80%).

The 80% rule was suggested by the ”Technical Advisory Committee on Testing”,
from the State of California Fair Employment Practice Commission (FEPC) in 1971, or
the 1978 ”Uniform Guidelines on Employee Selection Procedures”, a document used by
the U.S. Equal Employment Opportunity Commission (EEOC), see Biddle (2017).
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Relaxation and Approximate Fairness

We have defined (Definition 8.10) unfairness as

Uk(m) = max
sœ{A,B}

)
Wk(Pm,Pm|s)

*
,

so that m is (strongly) fair if and only if Uk(m) = 0.

Chzhen and Schreuder (2022) introduced the notion of Relative Improvement

Definition 8.26: Á-Approximate Fairness

Model m is Á-approximately fair if Uk(m) Æ Á · Uk(mı), where mı is Bayes
regressor, for some ‘ Ø 0.
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Three di�erent concepts ?

Y
__]

__[

Independence (Definition 8.5) : m(Z) ‹‹ S
Separation (Definition 8.11) : m(Z) ‹‹ S | Y
Su�ciency (Definition 8.21) : Y ‹‹ S | m(Z)

• Independence assumes no di�erences among groups, regardless of accuracy
• Separation minimizes di�erences among groups by not trying to maximize

accuracy
• Su�ciency maximizes accuracy by not trying to minimize di�erences among

groups
See Kleinberg et al. (2016) or Chouldechova (2017).
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Impossibility theorems
Unless very specific properties are assumed on P, there is no prediction function m(·)

that can satisfy at the same time two fairness criteria.
Y
__]

__[

Independence (Definition 8.5) : m(Z) ‹‹ S
Separation (Definition 8.11) : m(Z) ‹‹ S | Y
Su�ciency (Definition 8.21) : Y ‹‹ S | m(Z)

Proposition 8.4

Suppose that a model m satisfies the independence condition (8.5) and the suf-
ficiency property (8.21), with respect to a sensitive attribute s, then necessarily,
Y ‹‹ S.

Therefore, unless the sensitive attribute s has no impact on the outcome y , there is
no model m which satisfies independence and su�ciency simultaneously.
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Impossibility theorems

From the su�ciency property , S ‹‹ Y | m(Z), then, for s œ S and A µ Y,

P[S = s, Y œ A] = E
#
P[S = s, Y œ A|m(Z)]

$
,

can be written

P[S = s, Y œ A] = E
#
P[S = s|m(Z)] · P[Y œ A|m(Z)]

$
.

And from the independence property (8.21), m(Z) ‹‹ S, we can write the first
component P[S = s|m(Z)] = P[S = s], almost surely, and therefore

P[S = s, Y œ A] = E
#
P[S = s] · P[Y œ A|m(Z)]

$
= P[S = s] · P[Y œ A

$
,

for all s œ S and A µ Y, corresponding to the independence between S and Y .
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Impossibility theorems
Proposition 8.5

Consider a classifier mt taking values in Y = {0, 1}. Suppose that mt satisfies the
independence condition (8.5) and the separation property (8.11), with respect to
a sensitive attribute s, then necessarily either mt(Z) ‹‹ Y or Y ‹‹ S (possibly
both).

Because mt satisfies the independence condition (8.5), mt(Z) ‹‹ S, and the
separation property (8.11), mt(Z) ‹‹ S | Y , them, for ‚y œ Y and for s œ S,

P[mt(Z) = ‚y ] = P[mt(Z) = ‚y |S = s] = E
#
P[mt(Z) = ‚y |Y , S = s]

$
,

that we can write

P[mt(Z) = ‚y ] =
ÿ

y
P

#
mt(Z) = ‚y |Y = y , S = s

$
· P

#
Y = y

--S = s
$
,
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Impossibility theorems
or

P[mt(Z) = ‚y ] =
ÿ

y
P

#
mt(Z) = ‚y |Y = y

$
· P

#
Y = y

--S = s
$
,

almost surely. Furthermore, we can also write

P[mt(Z) = ‚y ] =
ÿ

y
P

#
mt(Z) = ‚y |Y = y

$
· P

#
Y = y

$
,

so that, if we combine the two expressions, we get
ÿ

y
P

#
mt(Z) = ‚y |Y = y

$
·

1
P

#
Y = y

--S = s
$

≠ P
#
Y = y

$2
= 0,

almost surely. And since we assumed that y was a binary variable,
P[Y = 0] = 1 ≠ P[Y = 1], as well as P[Y = 0|S = s] = 1 ≠ P[Y = 1|S = s], and
therefore

P
#
mt(Z) = ‚y |Y = 1

$
·

1
P

#
Y = 1

--S = s
$

≠ P
#
Y = 1

$2
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Impossibility theorems

or
≠P

#
mt(Z) = ‚y |Y = 0

$
·

1
P

#
Y = 0

--S = s
$

≠ P
#
Y = 0

$2

can be written

P
#
mt(Z) = ‚y |Y = 0

$
·

1
P

#
Y = 1

--S = s
$

≠ P
#
Y = 1

$2
.

Thus, either P
#
Y = 1

--S = s
$

≠ P
#
Y = 1

$
almost surely, or

P
#
mt(Z) = ‚y |Y = 0

$
= P

#
mt(Z) = ‚y |Y = 1

$
(or both).

Of course, the previous proposition holds only when y is a binary variable.
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Impossibility theorems

Proposition 8.6

Consider a classifier mt taking values in Y = {0, 1}. Suppose that mt satisfies
the su�ciency condition (8.21) and the separation property (8.11), with respect
to a sensitive attribute s, then necessarily either P[mt(Z) = 1|Y = 1] = 0 or
Y ‹‹ S or mt(Z) ‹‹ Y .

Suppose that mt satisfies the su�ciency condition (8.21) and the separation property
(8.11), respectively Y ‹‹ S | mt(Z) and mt(Z) ‹‹ S | Y . For all s œ S, we can write,
using Bayes formula

P[Y = 1|S = s, mt(Z) = 1] = P[mt(Z) = 1|Y = 1, S = s] · P[Y = 1|S = s]
P[mt(Z) = 1|S = s] ,
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Impossibility theorems

i.e.,

P[Y = 1|S = s, mt(Z) = 1] = P[mt(Z) = 1|Y = 1] · P[Y = 1|S = s]
ÿ

yœ{0,1}

P[mt(Z) = 1|Y = y ] · P[Y = 1|S = s]
,

that should not depend on s (from the su�ciency property). So a similar property
holds if S = s Õ. Observe further that P[mt(Z) = 1|Y = 1] is the true positive rate
(TPR) while P[mt(Z) = 1|Y = 0] is the false positive rate (TPR). Let
ps = P[Y = 1|S = s], so that

P[Y = 1|S = s, mt(Z) = 1] = TPR
ps · TPR + (1 ≠ ps) · FPR .
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Impossibility theorems

Suppose that Y and S are not independent (otherwise Y ‹‹ S as stated in the
proposition), i.e., there are s and s Õ such that
ps = P[Y = 1|S = s] ”= P[Y = 1|S = s Õ] = psÕ . Hence, ps ”= psÕ , but at the same time

TPR
ps · TPR + (1 ≠ ps) · FPR = TPR

psÕ · TPR + (1 ≠ psÕ) · FPR .

Supposes that TPR ”= 0 (otherwise TPR = P[mt(Z) = 1|Y = 1] = 0 as stated in the
proposition), then

(ps ≠ psÕ) · TPR = (ps ≠ psÕ) · FPR ”= 0,

and therefore mt(Z) ‹‹ Y .
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Group fairness, wrap-up

independence, ‚Y ‹‹ S, (Definition 8.5)

statistical parity Dwork et al. (2012) P[‚Y = 1|S = s] = cst, ’s
conditional statistical parity Corbett-Davies et al. (2017) P[‚Y = 1|S = s, X = x ] = cstx , ’s, y

separation, ‚Y ‹‹ S | Y , (Definition 8.11)

equalized odds Hardt et al. (2016) P[‚Y = 1|S = s, Y = y ] = csty , ’s, y
equalized opportunity Hardt et al. (2016) P[‚Y = 1|S = s, Y = 1] = cst, ’s
predictive equality Corbett-Davies et al. (2017) P[‚Y = 1|S = s, Y = 0] = cst, ’s
balance Kleinberg et al. (2016) E[M|S = s, Y = 1] = csty , ’s,y

su�ciency, Y ‹‹ S | ‚Y , (Definition 8.21)

disparate mistreatment Zafar et al. (2019) P[Y = y |S = s, ‚Y = y ] = csty , ’s, y
predictive parity Chouldechova (2017) P[Y = 1|S = s, ‚Y = 1] = cst, ’s
calibration Chouldechova (2017) P[Y = 1|M = m, S = s] == Â(m), ’m, s
well-calibration Chouldechova (2017) P[Y = 1|M = m, S = s] = m, ’m, s

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 442 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Numerical examples

Conditional distributions of scores on GermanCredit , logistic regression.
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Numerical examples

Conditional distributions of scores on GermanCredit , boosting model.
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Numerical examples

with sensitive without sensitive
GLM tree boosting bagging GLM tree boosting bagging

P[m(X) > t] 51.7% 28.0% 54.7% 61.7% 50.7% 28.0% 56.0% 60.7%
Predictive Rate Parity 0.992 1.190 0.992 1.050 0.957 1.190 1.041 1.037
Demographic Parity 0.998 1.091 1.159 1.027 1.213 1.091 1.112 1.208
FNR Parity 1.398 0.740 1.078 1.124 1.075 0.740 1.064 0.970
Proportional Parity 0.922 1.008 1.071 0.949 1.121 1.008 1.027 1.116
Equalized odds 0.816 1.069 0.947 0.888 0.956 1.069 0.953 1.031
Accuracy Parity 0.843 1.181 0.912 0.904 0.896 1.181 0.943 0.966
FPR Parity 1.247 0.683 1.470 0.855 2.004 0.683 0.962 1.069
NPV Parity 0.676 1.141 0.763 0.772 0.735 1.141 0.799 0.823
Specificity Parity 0.941 1.439 0.930 1.028 0.851 1.439 1.007 0.990
ROC AUC Parity 0.928 1.162 0.997 1.108 0.926 1.162 1.004 1.090
MCC Parity 0.604 2.013 0.744 0.851 0.639 2.013 0.884 0.930

Fairness metrics on GermanCredit , with threshold at 20%.
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Numerical examples

with sensitive without sensitive
GLM tree boosting bagging GLM tree boosting bagging

P[m(X) > t] 30.3% 26.0% 27.7% 25.7% 30.7% 26.0% 28.0% 27.0%
Predictive Rate Parity 1.030 1.179 1.110 1.182 1.034 1.179 1.111 1.200
Demographic Parity 1.090 1.062 1.074 1.069 1.108 1.062 1.044 1.019
FNR Parity 1.533 0.851 1.110 0.781 1.342 0.851 1.322 0.962
Proportional Parity 1.007 0.981 0.992 0.987 1.024 0.981 0.964 0.942
Equalized odds 0.925 1.032 0.982 1.041 0.944 1.032 0.955 1.008
Accuracy Parity 0.949 1.154 1.054 1.164 0.963 1.154 1.038 1.159
FPR Parity 1.118 0.703 0.820 0.653 1.118 0.703 0.784 0.641
NPV Parity 0.738 1.080 0.890 1.108 0.766 1.080 0.848 1.082
Specificity Parity 0.935 1.470 1.169 1.480 0.935 1.470 1.203 1.652
ROC AUC Parity 0.928 1.162 0.997 1.108 0.926 1.162 1.004 1.090
MCC Parity 0.745 1.817 1.105 1.754 0.779 1.817 1.056 2.055

Fairness metrics on GermanCredit , with threshold at 40%.
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Numerical examples

Conditional distributions of scores on FrenchMotor , from the logistic regression.
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Numerical examples

Conditional distributions of scores on FrenchMotor , from a boosting classification.
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– Part 7 –

Individual Fairness
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Individual Fairness

Definition 10.1: Similarity Fairness, Luong et al. (2011), Dwork et al.
(2012)

Consider two metrics, one on Y ◊ Y (or for a classifier [0, 1] and not {0, 1})
noted Dy , and one on X noted Dx , such that we will have similarity fairness on
a database of size n if we have the following property (called Lipschitz property)

Dy (m(x i , si), m(x j , sj)) Æ L · Dx (x i , x j), ’i , j = 1, · · · , n,

for some L < Œ.
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Individual Fairness

Definition 10.2: Local individual fairness, Petersen et al. (2021)

Consider two metrics, one on Y ([0, 1] for a classifier and not {0, 1}) noted Dy ,
and one on X noted Dx , model m is locally individually fair if

E(X,S)

C

limsup
xÕ:Dx (X,xÕ)æ0

Dy (m(X , S), m(x Õ, S))
Dx (X , x Õ)

D

Æ L < Œ.
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Individual Fairness

Definition 10.3: Proxy Based Fairness, Kilbertus et al. (2017)

A decision making process ‚y exhibits no proxy discrimination with respect to
sensitive attribute s if

E
# ‚Y

--do(S = A)
$

= E
# ‚Y

--do(S = B)
$
.

Definition 10.4: Fairness on Average Treatment E�ect, Kusner et al.
(2017)

We achieve fairness on average treatment e�ect (counterfactual fairness on av-
erage)

ATE = E
#
Y ı

SΩA ≠ Y ı
SΩB

$
= 0.
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Individual Fairness

A decision satisfies counterfactual fairness if ”had the protected attributes (e.g.,
race) of the individual been different, other things being equal, the decision
would have remained the same.”

Definition 10.5: Counterfactual Fairness, Kusner et al. (2017)

We achieve counterfactual fairness for an individual with characteristics x if

CATE(x) = E
#
Y ı

SΩA ≠ Y ı
SΩB

--X = x
$

= 0.
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Individual Fairness

Definition 10.6: Path-Specific Counterfactual E�ect, Wu et al. (2019)

Given a causal diagram, a factual condition (denoted F), and a path fi some s
to y , the fi-e�ect of a change of s from B to A on y is

PCEfi(B æ A|F) = E[Y |dofi(S = A), F ] ≠ E[Y |S = B, F ].

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 454 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Counterfactual Fairness
If the protected variable is considered as the treatment, individual fairness is close a
measuring a treatment e�ect.

What does “other things being equal ” really mean ?

It is possible to suppose that the protected attribute s could a�ect some explanatory
variables x in a non-discriminatory way, Kilbertus et al. (2017) (concept of “revolving
variable”).

See ceteris paribus and mutatis mutandis CATE, in Charpentier et al. (2023a)
I

“ceteris paribus CATE” : E[Y ı(B)|X = x] ≠ E[Y ı(A)|X = x]
“mutatis mutandis CATE” : E[Y ı(B)|X = x

ı(B)] ≠ E[Y ı(A)|X = x]

suggested also in ?,? and ?. We need to transport X |S = A to X |S = B (multivariate
transport).
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Counterfactual Fairness

As explained in Villani (2003); Carlier et al. (2010); Bonnotte (2013), the
Knothe-Rosenblatt rearrangement is directly inspired by the Rosenblatt chain rule,
from Rosenblatt (1952), and some extensions obtained on general measures by Knothe
(1957). The Knothe-Rosenblatt rearrangement is

Tkr (x1, · · · , xd) =

Q

ccccccca

T ı
1 (x1|x2, · · · , xd)

T ı
2 (x2|x3, · · · , xd)

...
T ı

d≠1(xd≠1|xd)
T ı

d (xd)

R

dddddddb

or Tkr (x1, · · · , xd) =

Q

ccccccca

T ı
1 (x1)

T ı
2 (x2|x1)

...
T ı

d≠1(xd≠1|x1, · · · , xd≠2)
T ı

d (xd |x1, · · · , xd≠1)

R

dddddddb

.

the “monotone lower triangular map,” defined in Bogachev et al. (2005).
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Counterfactual Fairness
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Counterfactual Fairness
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Counterfactual Fairness

sex s

age x1

job x2 savings x3

housing x4

credit x5

duration x6

purpose x7

default y

Causal graph in the German Credit dataset from Watson et al. (2021), or DAG.
(acyclical probablistic graphical models)
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Counterfactual Fairness

The joint distribution of X satisfies the (global) Markov property w.r.t. G:

P[x1, · · · , xd ] =
dŸ

j=1
P[xj |parents(xj)],

where parents(xi) are nodes with edges directed towards xi , in G.
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Counterfactual Fairness

Consider some acyclical causal graph G on (s, x) where variables are topologically
sorted, where s œ {A, B} is a binary variable , defining two measures µA and µB on Rd ,
by conditioning on s = A and s = B, respectively, factorized according to G. Define

T ı
G(x1, · · · , xd) =

Q

cccccca

T ı
1 (x1)

T ı
2 (x2| parents(x2))

...
T ı

d≠1(xd≠1| parents(xd≠1))
T ı

d (xd | parents(xd))

R

ddddddb
.

This mapping will be called “sequential conditional transport on the graph G.”
The counterfactual value will be obtained by propagating “downstream” the causal
graph (following the topological order), when s changes from A to B.
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Counterfactual Fairness
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Counterfactual Fairness
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Counterfactual Fairness
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Counterfactual Fairness

The mutatis mutandis di�erence m(s = 1, xı
1 , xı

2 ) ≠ m(s = 0, x1, x2), i.e., +22.70%, is:

m(s = 1, x1, x2) ≠ m(s = 0, x1, x2) : ≠10.65%
+ m(s = 1, xı

1 , x2) ≠ m(s = 1, x1, x2) : +17.99%
+ m(s = 1, xı

1 , xı
2 ) ≠ m(s = 1, xı

1 , x2) : +15.37%.

or m(s = 1, xı
1 , xı

2 ) ≠ m(s = 0, x1, x2), i.e., +35.82%, is:

m(s = 1, x1, x2) ≠ m(s = 0, x1, x2) : ≠10.66%
+ m(s = 1, x1, xı

2 ) ≠ m(s = 1, x1, x2) : +16.07%
+ m(s = 1, xı

1 , xı
2 ) ≠ m(s = 1, x1, xı

2 ) : +30.41%.

The ”treatment e�ect” depends on the causal structure.
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Counterfactual Fairness

Similarity Fairness (Lipschitz) Dwork et al. (2012) Dy (‚yi , ‚yj) Æ Dx (x i , x j), ’i , j
Proxy Based Fairness, Kilbertus et al. (2017) E

#
Y

--do(S = A)
$

= E
#
Y

--do(S = B)
$

Fairness on Average Treatment E�ect Kusner et al. (2017) E
#
Y ı

SΩA
$

= E
#
Y ı

SΩB
$

Counterfactual Fairness, Kusner et al. (2017) E
#
Y ı

SΩA
--X = x

$
= E

#
Y ı

SΩA
--X = x

$

Path-Specific E�ect Avin et al. (2005) E[Y |dofi(S = A)] = E[Y |dofi(S = B)]
Path-Specific Counterfactual E�ect Wu et al. (2019) E[Y |dofi(S = A), F ] = E[Y |dofi(S = B), F ]
Mutatis Mutandis Counterfactual Kusner et al. (2017) E[Y ı

SΩA|X = T (x)] = E[Y ı
SΩB|X = x]
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Counterfactual Fairness
(a) (b) (c)

x3

x1

x2

z

s y

x3

x2

x1

s y

x3

x2

x1

s y

(a) Causal graph used to generate variables in toydata2 .
(b) Causal graph, where s might cause y , either directly, or indirectly, through x1.
(c) Causal graph, where s might cause y , either directly or indirectly, via with two
possible paths and two mediator variables, x1 and x2.
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Counterfactual Fairness
(d) (e) (f)

x3

x2

x1

s y

x3

x2

x1

s y

x3

x2

x1

s y

(d) Causal graph with no direct impact of s on y , but two mediators, and possibly, x1
might cause x2.
(e) similar to (c) with an additional indirect connection from x1 to y , via mediator x3.
(f) similar to (d) with an additional indirect connection from x1 to y , via mediator x3.
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Counterfactual Fairness

Original data
s x1 x2 x3 ‚mglm(x) ‚mglm(x, s) ‚mgam(x) ‚mgam(x, s) ‚mrf(x) ‚mrf(x, s)

Betty B 0 2 0 18.22% 24.06% 13.23% 17.63% 17.4% 29.6%
Brienne B 1 5 1 67.19% 70.47% 66.18% 67.09% 63.60% 61.80%
Beatrix B 2 8 2 94.95% 94.73% 97.53% 97.58% 96.60% 98.40%
Alex A 0 2 0 18.22% 13.71% 13.23% 10.05% 17.40% 9.20%
Ahmad A 1 5 1 67.19% 54.48% 66.18% 50.49% 63.60% 64.40%
Anthony A 2 8 2 94.95% 90.02% 97.53% 90.51% 96.60% 68.20%
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Counterfactual Fairness

Counterfactual
s x1 x2 x3 ‚mglm(x) ‚mglm(x, s) ‚mgam(x) ‚mgam(x, s) ‚mrf(x) ‚mrf(x, s)

adjusted data, using marginal quantiles
Betty A -1.68 2.1 -1.68 3.51% 3.58% 4.78% 4.85% 10.40% 10.80%
Brienne A -0.98 5.1 -0.96 19.39% 17.65% 16.64% 16.13% 29.00% 41.00%
Beatrix A -0.27 7.9 -0.26 59.83% 53.65% 51.89% 46.37% 53.60% 49.00%
adjusted data, using optimal transport, (c)
Betty A -1.96 2.1 -1.9 2.62% 2.82% 4.65% 4.81% 0.00% 0.00%
Brienne A 0.29 5 0.25 48.24% 38.92% 40.04% 32.14% 21.40% 12.20%
Beatrix A 0.31 7.8 0.21 72.83% 65.1% 67.5% 58.83% 20.80% 15%
adjusted data, using Gaussian transport, (c)
Betty A -1.58 2.15 -1.59 3.95% 3.96% 4.96% 4.99% 0.40% 0.40%
Brienne A -0.98 4.96 -0.99 18.47% 16.84% 15.84% 15.40% 19.80% 27.20%
Beatrix A -0.38 7.79 -0.38 55.71% 50.05% 47.86% 43.16% 51.80% 63.60%
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Counterfactual Fairness

Optimal matching, of individuals in group B to individuals in group A, on right, where
points • are Betty, Brienne and Beatrix, and • their counterfactual version in group A.
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Counterfactual Fairness

Counterfactual
s x1 x2 x3 ‚mglm(x) ‚mglm(x, s) ‚mgam(x) ‚mgam(x, s) ‚mrf(x) ‚mrf(x, s)

adjusted data, with fairAdapt, Figure (e)
Betty A -1.65 2 -1.32 3.63% 3.54% 4.72% 4.60% 14.60% 8.00%
Brienne A -0.97 4.55 -0.94 16.57% 14.96% 13.96% 13.51% 2.20% 5.20%
Beatrix A -0.33 7.72 -0.44 56.3% 50.71% 48.49% 43.74% 70.60% 74.80%
adjusted data, with fairAdapt, Figure (f)
Betty A -1.75 2.28 -1.68 3.5% 3.6% 5.03% 5.13% 7.20% 7.00%
Brienne A -0.96 5.3 -0.96 20.9% 19.05% 17.91% 17.34% 5.80% 8.40%
Beatrix A -0.24 8.12 -0.34 62.31% 56.43% 54.8% 49.3% 45.60% 39.20%
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Numerical illustrations

Original data
s x1 x2 x3 ‚mglm(x) ‚mglm(x, s) ‚mgam(x) ‚mgam(x, s) ‚mrf(x) ‚mrf(x, s)

Betty B 0 2 0 18.22% 24.06% 13.23% 17.63% 17.4% 29.6%
Brienne B 1 5 1 67.19% 70.47% 66.18% 67.09% 63.60% 61.80%
Beatrix B 2 8 2 94.95% 94.73% 97.53% 97.58% 96.60% 98.40%
Alex A 0 2 0 18.22% 13.71% 13.23% 10.05% 17.40% 9.20%
Ahmad A 1 5 1 67.19% 54.48% 66.18% 50.49% 63.60% 64.40%
Anthony A 2 8 2 94.95% 90.02% 97.53% 90.51% 96.60% 68.20%
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Numerical illustrations

sex

age

job savings

housing

credit

duration

purpose

default

Simple causal graph on the GermanCredit dataset,
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Numerical illustrations

sex

age

job savings

housing

credit

duration

purpose

default

Causal graph on the germancredit dataset, from Watson et al. (2021)
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Numerical illustrations

Alex Ahmad Anthony Betty Brienne Beatrix
s (gender) M M M F F F
x1 Duration 12 18 30 12 18 30
u = F1|s(x1) 36% 57% 86% 34% 50% 79%
T (x1) = F ≠1

1|s=M(u) 12 18 30 12 18 24
x2 Credit 1262 2319 4720 1262 2319 4720
u = F2|s(x2) 25% 55% 82% 17% 45% 76%
T (x2) = F ≠1

2|s=M(u) 1262 2319 4720 1074 1855 3854
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Numerical illustrations

On the GermanCredit dataset

Firstname s Firstname s Job Savings Housing Purpose
Alex M Betty F highly qualified employee 100 DM rent radio / television
Ahmad M Brienne F skilled employee 100<=...<500 DM own furniture
Anthony M Beatrix F unskilled - resident no savings for free car (new)

Original data
s Age Duration Credit ‚mglm(x) ‚mglm(x, s) ‚mgbm(x) ‚mgbm(x, s) ‚mcart(x) ‚mcart(x, s) ‚mrf(x) ‚mrf(x, s)

Betty F 26 12 1262 39.69% 36.66% 42.30% 43.26% 31.75% 31.75% 25.40% 23.20%
Brienne F 33 18 2320 24.30% 22.61% 23.88% 21.08% 21.31% 21.31% 43.60% 33.60%
Beatrix F 45 30 4720 30.88% 30.08% 28.49% 30.42% 15.38% 15.38% 23.40% 25.80%
Alex M 26 12 1262 39.69% 42.10% 42.30% 44.86% 31.75% 31.75% 25.40% 21.60%
Ahmad M 33 18 2320 24.30% 26.84% 23.88% 22.18% 21.31% 21.31% 43.60% 31.00%
Anthony M 45 30 4720 30.88% 35.08% 28.49% 31.82% 15.38% 15.38% 23.40% 31.60%
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Numerical illustrations

Original data
s Age Duration Credit ‚mglm(x) ‚mglm(x, s) ‚mgbm(x) ‚mgbm(x, s) ‚mcart(x) ‚mcart(x, s) ‚mrf(x) ‚mrf(x, s)

Betty M 26 12 1074 39.51% 41.90% 40.69% 44.86% 31.75% 31.75% 23.80% 25.60%
Brienne M 33 18 1855 23.95% 26.46% 23.88% 22.18% 21.31% 21.31% 43.00% 38.60%
Beatrix M 45 24 3854 24.91% 28.58% 20.55% 20.31% 21.31% 21.31% 17.60% 24.80%
adjusted data, with fairAdapt, causal graph from Figure ??
Betty M 26 12 1110 42.73% 45.18% 44.24% 46.64% 31.75% 31.75% 22.2% 25.6%
Brienne M 33 18 1787 23.90% 26.40% 23.88% 22.18% 21.31% 21.31% 43.2% 38.2%
Beatrix M 45 24 3990 25.01% 28.70% 22.17% 23.60% 21.31% 21.31% 19.6% 26.4%
adjusted data, with fairAdapt, causal graph from Figure ??
Betty M 26 18 1778 52.23% 54.03% 40.05% 46.81% 21.31% 21.31% 34.80% 31.80%
Brienne M 33 15 1864 32.25% 35.85% 31.60% 25.97% 21.31% 21.31% 23.00% 20.40%
Beatrix M 45 21 3599 39.70% 43.16% 28.36% 28.90% 21.31% 21.31% 10.60% 13.40%
adjusted data, with fairAdapt, causal graph from Figure ??
Betty M 26 15 1882 49.05% 50.86% 35.32% 40.12% 21.31% 21.31% 27.8% 30.0%
Brienne M 33 18 1881 50.76% 53.49% 43.00% 38.77% 21.31% 21.31% 10.8% 13.8%
Beatrix M 45 24 3234 24.20% 26.23% 14.63% 16.84% 21.31% 21.31% 22.4% 19.0%
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Numerical illustrations

Scatterplot (m(x i), m(T ı(x i))) for individuals in groups M and F.
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Numerical illustrations

Scatterplot (m(x i), m(T ı(x i))) for individuals in groups M and F.
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Numerical illustrations

Scatterplot (m(x i), m(T ı(x i))) for individuals in groups M and F.
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– Part 8 –

Mitigating Discrimination
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Achieving a Fair Prediction
Mitigating discrimination is usually seen as paradoxical, be-
cause in order to avoid discrimination, we must create an-
other discrimination. More precisely, Supreme Court Justice
Harry Blackmun stated, in 1978, “in order to get beyond
racism, we must first take account of race. There is no
other way. And in order to treat some persons equally,
we must treat them differently,” cited in Knowlton (1978),
as mentioned in Lippert-Rasmussen (2020)).

More formally, an argument in favor of a�rmative action – called “the
present-oriented anti-discrimination argument” – is simply that justice requires
that we eliminate or at least mitigate (present) discrimination by the best morally
permissible means of doing so, which corresponds to a�rmative action. Freeman
(2007) suggested a “time-neutral anti-discrimination argument,” in order to
mitigate past, present, or future discrimination.
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Achieving a Fair Prediction
But there are also arguments against a�rmative action, corre-
sponding to “the reverse discrimination objection,” as de-
fined in Goldman (1979): some might consider that there is an
absolute ethical constraint against unfair discrimination (in-
cluding a�rmative action). To quote another Supreme Court
Justice, in 2007, John G. Roberts of the US Supreme Court
submits: “The way to stop discrimination on the basis
of race is to stop discriminating on the basis of race”

(Turner (2015) and Sabbagh (2007)).

The arguments against a�rmative action are usually based on two theoretical moral
claims, according to Pojman (1998). The first denies that groups have moral status (or
at least meaningful status). According to this view, individuals are only responsible for
the acts they perform as specific individuals and, as a corollary, we should only
compensate individuals for the harms they have specifically su�ered. The second
asserts that a society should distribute its goods according to merit.
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Achieving a Fair Prediction
We have defined the risk of a model m œ M as R(m) = E

#
¸(Y , m(X))

$
.

Define the classes of fair models,
I

MDP =
)
m œ M s.t. m(X) ‹‹ S

*

MEO =
)
m œ M s.t. m(X) ‹‹ S | Y

*

Fairness is achieved by projection onto a fair subspace

‚mfair œ argmin
mœMfair

) ‚Rn(m)
*

Definition 12.1: Price of fairness

Given a risk R, a class M and the fair subclass Mfair, the price of fairness

Efair(M) = min
mœMfair

)
R(m)

*
≠ min

mœM

)
R(m)

*
.

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 485 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Achieving a Fair Prediction

Recall that Bayes estimator is the best model,

µ(x) = E
#
Y |X = x

$
and set

I
µA(x) = E

#
Y |X = x, S = A

$

µB(x) = E
#
Y |X = x, S = B

$

From the definition of Wasserstein distance,

W2(p, q) =
A

inf
fiœ�(p,q)

⁄
|x ≠ y |

2dfi(x , y)
B1/2

Thus,
E

#
|m(X , S) ≠ µS(X)|2

--S = s
$

Ø W2(Pm,Ps)2
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Achieving a Fair Prediction
Proposition 12.1: Price of fairness and Wasserstein Barycenter

Efair(M) = min
mœMfair

)
R(m)

*
≠ min

mœM

)
R(m)

*
Ø min

gœM

)
E

1
W2(PS ,PS,g)2

2 *

where PS is the condition distribution of µ(X , S), given S, and PS,g is the con-
dition distribution of g(X , S), given S. Moreover, if Mfair = MDP, and if Ps is
absolutely continuous (w.r.t. Lebesgue measure),

EDP(M) = min
gœM

)
E

1
W2(PS ,PS,g)2

2 *
= min

gœM

Ó ÿ

s
P[S = s] · W2(Ps ,Ps,g)2

Ô

See Gouic et al. (2020).

The minimum is reached at the Wasserstein barycenter of PS ’s.
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Pre-Processing

Write the n ◊ k matrix S as a collection of k vectors in Rn, S =
!
s1 · · · sk

"
, that

will correspond to k sensitive attributes. The orthogonal projection on variables
{s1, · · · , sk} is associate to matrix �S = S(S€

S)≠1
S

€, while the projection on the
orthogonal of S is �S‹ = I ≠ �S (Gram-Schmidt orthogonalization,).

Let ÂS denote the collection of centered vectors (using matrix notations, ÂS = HS

where H = I ≠ (11€)/n).
Write the n ◊ p matrix X as a collection of p vectors in Rn, X =

!
x1 · · · xp

"
. For

any x j , define
x

‹

j = �ÂS‹x j = x j ≠ ÂS(ÂS
€ ÂS)≠1 ÂS

€

x j .

One can easily prove that x
‹

j is then orthogonal to any s, since

Cov(s, x
‹

j ) = 1
ns

€
Hx

‹

j = 1
n

Âs€�ÂS‹x j = 0.
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Pre-Processing

And similarly the centered version of x
‹

j is then also orthogonal to any s. From an
econometric perspective, x

‹

j can be seen as the residual of the regression of x j against
s’s, obtained from least square estimation

x j = Âs€ ‚—j + x
‹

j .
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Pre-Processing

Optimal transport between distributions of ‚m(x i , si)’s (x -axis) to ‚m‹(x‹

i )’s (y -axis),
for individuals in group A on the left-hand side, and in group B on the right-hand side.
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Pre-Processing

Consider the linear model y = S– + X
‹— + Á

Consider the fairness constraint

R2
fair(–, —) = Var[S–]

Var[S– + X
‹—]

= –€Var[S]–
–€Var[S]– + —€Var[X‹]—

Then solve

min
–,—

Ó
E

#
Îy ≠ S– ≠ X

‹—Î
2$Ô

s.t. R2
fair(–, —) Æ r2 (œ R+).
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Pre-Processing

An alternative was considered in Komiyama and Shimao (2017), with a Ridge penalty

min
–,—

Ó
E

#
Îy ≠ S– ≠ X

‹—Î
2
¸2

$
+ ⁄Î–Î

2
¸2

Ô

The penalty is on – only because (by construction) there is no discriminating
information in X

‹. There is a closed form solution
A

(S€
S + ⁄I)≠1

S
€

y

(X‹€
X

‹)≠1
X

‹
y

B
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In-Processing

In a linear regression problem, y = X— + Á. Zafar et al. (2017) suggested

—ı = min
—

Ó
E

#
Îy ≠ X—Î

2$Ô
s.t.

--Cov[X—, S]
-- Æ c (œ R+).

‚m(x, s), aware ‚m(x), unaware
Ω less fair more fair æ Ω less fair more fair æ

‚—0 (Intercept) -2.55 -2.29 -1.97 -1.51 -1.03 -2.14 -1.98 -1.78 -1.63
‚—1 (x1) 0.88 0.88 0.85 0.77 0.62 1.01 0.84 0.57 0.26
‚—2 (x2) 0.37 0.37 0.35 0.32 0.25 0.37 0.35 0.31 0.24
‚—3 (x3) 0.02 0.02 0.02 0.02 0.03 0.15 0.02 -0.15 -0.29
‚—B (1B) 0.82 0.44 -0.03 -0.70 -1.31 - - - -
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In-Processing

‚m(x, s), aware ‚m(x), unaware
Ω less fair more fair æ Ω less fair more fair æ

Betty 0.27 0.25 0.22 0.17 0.14 0.20 0.22 0.24 0.24
Brienne 0.74 0.71 0.66 0.54 0.40 0.70 0.66 0.55 0.38
Beatrix 0.95 0.95 0.93 0.87 0.73 0.96 0.93 0.82 0.55
Alex 0.14 0.17 0.22 0.29 0.37 0.20 0.22 0.24 0.24
Ahmad 0.55 0.61 0.66 0.70 0.71 0.70 0.66 0.55 0.38
Anthony 0.90 0.92 0.93 0.93 0.91 0.96 0.93 0.82 0.55
E[‚m(x i , si)|S = A] 0.23 0.26 0.31 0.36 0.42 0.25 0.30 0.37 0.41
E[‚m(x i , si)|S = B] 0.67 0.65 0.61 0.53 0.42 0.64 0.61 0.54 0.41
(ratio) ◊2.97 ◊2.49 ◊2.01 ◊1.46 ◊1.00 ◊2.53 ◊2.02 ◊1.48 ◊1.00
AUC 0.86 0.86 0.85 0.82 0.74 0.86 0.85 0.82 0.70
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In-Processing

AUC of ‚m‚—⁄
and evolution of ‚m‚—⁄

(x i , si) (with a logistic regression)

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 495 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


In-Processing

AUC of ‚m‚—⁄
and evolution of ‚m‚—⁄

(x i) (with a logistic regression)
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In-Processing

Optimal transport between distributions of ‚m‚—⁄
(x i , si)’s from individuals in group A

and in B, for di�erent values of ⁄ (low value on the left-hand side and high value on
the right-hand side), associated with a demographic parity penalty criteria
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In-Processing
Adversarial learning has to do with robustness of learning algorithm, Szegedy et al.
(2013) (“are neural network stables?”).

“Adversarial examples are inputs to machine learning models that an attacker
has intentionally designed to cause the model to make a mistake”, Bengio et al.
(2017)
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In-Processing
Adversarial learning deals with the problem that the distributions we obtain IRL are

not the ones we train the model on... and we try to quantify what can go wrong

Popular in pictures (what happens if we rotate an object, add glasses to people, etc).
Brittleness of ML algorithms...

Problem of data pollution (add outliers) and problems of adversarial examples.

Machine learning perspective

min
◊

)
E(X,Y )≥P

#
¸(m◊(X), Y )

$*

Adversarial perspective

max
ÁœE

)
E(X,Y )≥P

#
¸(m◊(X + Á), Y )

$*

leads to robust learning...
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In-Processing

training a robust classifier˙ ˝¸ ˚
min

◊

)
max
ÁœE

)
E(X,Y )≥P

#
¸(m◊(X + Á), Y )

$*

¸ ˚˙ ˝
creating an adversarial example

*

Approaches based on robust optimization, Ben-Tal et al. (2009), e.g., Danskin’s
Theorem, Danskin (1967),

Ò◊ max
ÁœE

)
¸(m◊(X + Á), Y )

*
= Ò◊¸(m◊(X + Áı), Y )

where Áı = argmax
ÁœE

)
¸(m◊(X + Á), Y )

*
.

Recall the minimax theorem from von Neumann (1928)
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In-Processing

Proposition 12.2: Nash equilibrium and Minimax

Let A be some m ◊ n real-valued matrix, there is a Nash equilibrium (xı, yı)
associated with A if

y
€

ı Axı = max
xœSm

min
yœSn

)
y

€Ax
*

= min
yœSn

max
xœSm

)
y

€Ax
*
.
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In-Processing

Consider a Minimax games: given that the discriminator will try to do the best job it
can, the generator is set to make the discriminator as wrong as possible

min
◊g

max
◊d

)
EX≥P

#
log(m◊d (x))

$
+ EZ≥Q

#
log(1 ≠ m◊d

!
G◊d (z)

"$*

where X ≥ P denotes data sampled from the training data, while Z ≥ Q are sampled
by the opponent

See Wadsworth et al. (2018), Xu et al. (2021), Lima et al. (2022) for achieving
fairness through adversarial learning
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In-Processing
FairGAN, Xu et al. (2018)

Pre-processing approach actually, with demographic parity (DP)

Other algorithms are in-processing approaches, with demographic parity (DP) and
equalized odds (EO)

Learning adversarially fair and transferable representations, Madras et al. (2018)

x

z‚y predictor adversary ‚s

Ï(x) encoder decoder Â(z, ‚s)

Adversarially learning fair representations, Beutel et al. (2017)
Fair Adversarial Debiasing Approach, Zhang et al. (2018)
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In-Processing

x ‚ypredictor adversary ‚s

¸(y , ‚y) ¸(s, ‚s)

Following Zhang et al. (2018)
the predictor predicts y given x,
the adversary tries to predict s bases on the output of the predictor

the predictor targets to increase its prediction accuracy
and tries to increase the adversary’s loss
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Barycenter
Several approaches can be considered to define means, averages, centroids, barycenters
(etc.), as discussed in Fréchet (1948) and Grove and Karcher (1973),

• convex properties (from Möbius (1827) and Rockafellar (1970))
• axiomatization (from Nagumo (1930), Kolmogorov (1930) and Aczél (1948))
• optimization (from Hey (1814), Nathan (1952) and Agueh and Carlier (2011))

C µ Rn is convex if x, y œ C =∆ tx + (1 ≠ t)y œ C for all t œ [0, 1]
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Barycenter

Let x1, · · · , xk œ Rn, then a convex combination is any linear combination
Ê1x1 + · · · + Êkxk with (Ê1, · · · , Êk) œ Sk µ R+.
The convex hull of a set C is the set of all convex combinations of elements of C .

The geometric centroid of a convex object always lies in the object.
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Barycenter
Define the barycenter for two points, with equal weights as a function M : E ◊ E æ E

• Reflexivity: M(x, x) = x,
• Symmetry: M(x1, x2) = M(x2, x1),
• Continuity: M(·, ·) is continuous,
• Bisymmetry: M(M(x11, x12), M(x21, x22)) = M(M(x11, x21), M(x12, x22))

Then (see Aczél (1948)), there is f such that

M(x1, x2) = f ≠1
31

2 f (x1) + 1
2 f (x2)

4
.

If E µ Rk , consider means on each coordinate axis independently.
A natural extension is

Bf (x, Ê) = f ≠1
A nÿ

i=1
Êi f (xi)

B

.
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Barycenter
For the optimisation approach, given a distance d on E , set

Bd(x, Ê) = argmin
zœE

I nÿ

i=1
Êid(xi , z)

J

Consider some points {x1, x2, · · · , xk} in a metric space R2

The mean is

x = x1 + x2 + · · · + xk
k = 1

k

kÿ

i=1
x i ,

or equivalently

x = argmin
x

I
1
k

kÿ

i=1

..x ≠ x i
..2

¸2

J

.

But they can be defined using any distance/divergence/discrepancy
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Barycenter

Instead of points {x1, x2, · · · , xk} in the metric space R2, we can consider some
measures {P1,P2, · · · ,Pk}.

The Euclidean mean is

Q = argmin
Q

I
1
k

kÿ

i=1
�2!

Q,Pi
"
J

,

where �2!
Q,Pi

"
=

⁄

R2

!
dQ ≠ dPi

"2
.

But any discrepancy function can be considered
One can consider Wasserstein discrepancy
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Barycenter
Definition 12.2: Wasserstein W2 Barycenter, Agueh and Carlier (2011)

Q = argmin
Q

I kÿ

i=1
ÊiW2

!
Q,Pi

"2
J

,

This can be seen as a multi-marginal optimal transport problem.
Recall that the “push-forward” measure is

P1(A) = T#P0(A) = P0
!
T

≠1(A)
"
, ’A µ R.

An optimal transport T
ı (in Brenier’s sense, from Brenier (1991), see Villani (2009) or

Galichon (2016)) from P0 towards P1 will be solution of

T
ı

œ arginf
T :T#P0=P1

;⁄

Rk
¸(x, T (x))dP0(x)

<
,
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Barycenter

and for univariate distributions, the optimal transport T
ı is the monotone

transformation.
T

ı : x0 ‘æ x1 = F ≠1
1 ¶ F0(x0).

Given a reference measure, say P1, it is possible to write the barycenter as the
”average push-forward” transformation of P1: if Pi = T

1æi
# P1 (with the convention

that T
1æ1

# is the identity),

Proposition 12.3: Wasserstein W2 Barycenter,

Q =
A kÿ

i=1
ÊiT

1æi
B

#
P1.
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Barycenter

Proposition 12.4: Wasserstein W2 Barycenter,

Q =
A kÿ

i=1
ÊiT

1æi
B

#
P1.

Computation of barycenters can be computationnaly di�cult, Altschuler and
Boix-Adsera (2021)

For univariate distributions, there is a simple expression, T
1æi is simply a

rearrangement, defined as T
1æi = F ≠1

i ¶ F1, where Fi(t) = Pi((≠Œ, t]) and F ≠1
i is its

generalized inverse
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Barycenter
Proposition 12.5: Wasserstein W2 Barycenter, univariate distributions

T
1æi is simply a rearrangement, defined as T

1æi = F ≠1
i ¶ F1, where Fi(t) =

Pi((≠Œ, t]), and

Q =
A nÿ

i=1
kÊiT

1æi
B

#
P1.

Proposition 12.6: Wasserstein W2 Barycenter, univariate distributions

Given two scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is
I

mı(x, s = A) = P[S = A] · m(x, s = A) + P[S = B] · F ≠1
B ¶ FA

!
m(x, s = A)

"

mı(x, s = B) = P[S = A] · F ≠1
A ¶ FB

!
m(x, s = B)

"
+ P[S = B] · m(x, s = B).
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Barycenter

that is generally numerically intractable (computing one subgradient requires solving
k optimal transports)

In the discrete case, if we consider a fixed grid (so that C can be computed once only)

mina

I kÿ

i=1
min

Pi œUa,bi

Ó
ÈPi , CÍ

ÔJ

,

We can write this as a large linear program

min
Q

I

min
P1,··· ,Pk ,a

kÿ

i=1

Ó
ÈPi , CÍ

ÔJ

, where

Y
_____]

_____[

P€

1 1n = b1
...

P€

k 1n = bk
P11n = · · · = Pk1n = a

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 514 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Barycenter
Theorem 12.1: Variance �

If k = 2, � satisfies

� = Ê1
!
�1/2�1�1/2"1/2 + Ê2

!
�1/2�2�1/2"1/2

and the explicit expression is

� = Ê2
1�1 + Ê2

2�2 + Ê1Ê2
1
�

1
2
1

!
�

1
2
1 �2�

1
2
1

" 1
2 �≠

1
2

1 + �≠
1
2

1 �2�
1
2
1

" 1
2 �

1
2
1

2

Proposition 12.7: Variance �

kÿ

i=1
Êi�i ≠ � is a positive matrix.
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Barycenter

Proposition 12.8: Variance �

If �i = P�iP
€, then � = P

A kÿ

i=1
Êi�

1
2
i

B2

P
€

Consider two Gaussian distributions, N (µA, �A) and N (µB, �B), and weights ÊA = t
and ÊB = 1 ≠ t, with t œ [0, 1].
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Barycenter
Barycenter of two bivariate Gaussian distribution (t = 0.1, 0.25, 0.4, 0.6, 0.75, 0.9)
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Application to toydata1
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Application to toydata1

Given scores m(x, s = A) and m(x, s = B),
the “fair barycenter score” is

mı(x, s = A)
= P[S = A] · m(x, s = A)
+ P[S = B] · F ≠1

B ¶ FA
!
m(x, s = A)

"
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Application to toydata1

Given scores m(x, s = A) and m(x, s = B),
the “fair barycenter score” is

mı(x, s = B)
= P[S = A] · F ≠1

A ¶ FB
!
m(x, s = B)

"

+ P[S = B] · m(x, s = B)
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Application to toydata1
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Application to toydata1

x s y ‚m(x , s) ‚m(x) ‚mú
w(x) ‚mú

jkl(x)
Alex -1 A 0.475 0.250 0.219 0.154 0.094
Betty -1 B 0.475 0.205 0.219 0.459 0.357
Ahmad 0 A 0.475 0.490 0.465 0.341 0.279
Brienne 0 B 0.475 0.426 0.465 0.719 0.692
Anthony +1 A 0.475 0.734 0.730 0.571 0.521
Beatrix +1 B 0.475 0.681 0.730 0.842 0.932
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Application to FrenchMotor
If the two models are balanced, mı is also balanced.
Annual claim occurrence (motor insurance, Charpentier et al. (2023b))
Three models (plain GLM, GBM, Random Forest)
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Application to FrenchMotor

Predictions are di�erent for men (= A) and women (S = B)

since W2 ”= 0 consider post processing mitigation
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Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

mı(x, s = A) = P[S = A] · m(x, s = A) + P[S = B] · F ≠1
B ¶ FA

!
m(x, s = A)

"

� @freakonometrics � freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, September 2024 (Warsaw Short Course) 525 / 601

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

mı(x, s = B) = P[S = A] · F ≠1
A ¶ FB

!
m(x, s = B)

"
+ P[S = B] · m(x, s = B)
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Application to FrenchMotor

We can plot
)
(m(x i , A), mı(x i , A)

*
and

)
(m(x i , B), mı(x i , B)

*
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Application to FrenchMotor

Numerical values, for initial occurence probability of 5%, 10% and 20%, we have
A (men) B (women)

◊0.94 GLM GBM RF ◊1.11 GLM GBM RF
m(x) = 5% 4.73% 4.94% 4.80% 4.42% 5.56% 5.16% 5.25% 6.15%
m(x) = 10% 9.46% 9.83% 9.66% 8.92% 11.12% 10.38% 10.49% 12.80%
m(x) = 20% 18.91% 19.50% 18.68% 18.26% 22.25% 20.77% 21.63% 21.12%
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Application to FrenchMotor

We can do the same for discrimination against ”old” drivers.
A (younger < 65) B (old > 65)

◊1.01 GLM GBM RF ◊0.94 GLM GBM RF
m(x) = 5% 5.05% 5.17% 5.10% 5.27% 4.71% 3.84% 3.84% 3.96%

m(x) = 10% 10.09% 10.37% 10.16% 11.00% 9.42% 7.81% 9.10% 6.88%
m(x) = 20% 20.19% 19.98% 19.65% 21.26% 18.85% 19.78% 23.79% 12.54%
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Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

mı(x, s = A) = P[S = A] · m(x, s = A) + P[S = B] · F ≠1
B ¶ FA

!
m(x, s = A)

"
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Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

mı(x, s = B) = P[S = A] · F ≠1
A ¶ FB

!
m(x, s = B)

"
+ P[S = B] · m(x, s = B)
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Application to FrenchMotor

We can plot
)
(m(x i , A), mı(x i , A)

*
and

)
(m(x i , B), mı(x i , B)

*
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– Part 10 –

Non-Observed Sensitive Attributes
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Bayesian Surname Geocoding
First Last Geo Other

Method name name location Reference
GO ⇤ ⇤ ⇤3 ⇤ Fiscella and Fremont (2006)
SA ⇤ ⇤3 ⇤ ⇤ Lauderdale and Kestenbaum (2000)
CSG ⇤ ⇤3 ⇤3 ⇤ Fiscella and Fremont (2006)
BSG ⇤ ⇤3 ⇤3 ⇤ Elliott et al. (2008)
BISG ⇤ ⇤3 ⇤3 ⇤ Elliott et al. (2009)
MBISCG ⇤3 ⇤3 ⇤3 ⇤3 Martino et al. (2013)
BIFSG ⇤3 ⇤3 ⇤3 ⇤ Voicu (2018)
Regression ⇤3 ⇤3 ⇤3 ⇤3 Xue et al. (2019)

GO (Geocoding Only); SA (Surname Analysis); CSG (Categorical Surname and Geocoding); BSG
(Bayesian Surname Geocoding); BISG (Improved BSG); MBISCG (Medicare BISG); BIFSG( BISG with
First Name)
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Bayesian Surname Geocoding

First names and their associated race/ethnicity prevalences, Tzioumis (2018)
comprehensive list of 4,250 first names
Census 2010 surname list, Word et al. (2008)
160,000 surnames, covering about 90 percent of the U.S. population
Decennial Census 2010 SF1 datase
GO, SA, CSG, pre-Bayesian methods

• GO, Fiscella and Fremont (2006), Elliott et al. (2008)
Krieger et al. (2002)

• SA, Elliott et al. (2008), Word and Perkins (1996)
• CSG, Fiscella and Fremont (2006)
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Bayesian Surname Geocoding
Bayes’s Theorem, P[A|B] = P[B|A] · P[A]

P[B] = P[B|A] · P[A]
P[B|A] · P[A] + P[B|A] · P[A]

BSG, P[race = r |surname = s] is

P[surname = s|race = r ] · P[race = r ]
P[surname = s|race = r ] · P[race = r ] + P[surname = s|race ”= r ] · P[race ”= r ]

BIFSG, P[race = r |first name = f , surname = s, geolocalisation = g ], Voicu (2018)

P[r |f , s, g ] = P[r |s] · P[g |r ] · P[f |r ]
ÿ

t
P[R = t|s] · P[g |R = t] · P[f |R = t

Assumption :
I
P[g |r , s] = P[g |r ] or G ‹‹ R | S
P[f |r , s, g ] = P[f |r ]

“Given the race, the geolocation is not informative about the surname”
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Bayesian Surname Geocoding

P[r |s] is the probability that a person is of race/ethnicity r , given that the person has
surname s, (i.e., the surname-based probability described above); P[f |r ] is the
probability that a person has first name f , given that the person is of race/ethnicity r
(i.e., the aforementioned first-name-based probability);P[g |r ] is the probability that a
person resides in geographic area g , given that the person is of race/ethnicity r (i.e.,
the aforementioned geography-based probability); and the summation in the
denominator occurs over the six race/ethnicity categories defined previously
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Bayesian Surname Geocoding

BIFSG Bayesian First Name Surname Geocode
BISG = Bayesian Improved Surname and Geocoding
BISG computes the probability of race given a voter’s surname and geographic
location, P(R = r |S = s, G = g), using Bayes theorem. Assuming G ‹‹ S|R,

P(R = r |S = s, G = g) Ã P(G = g |R = r) · P(R = r |S = s)

The probability P(G = g |R = r) can be obtained from Census summary tables by
taking the number of people of race/ethnicity R = r in neighborhood G = g divided
by the total number of people of race/ethnicity r .
The probability of race given surname, P(R = r |S = s), comes directly from the
Census Bureau’s surname lists which contain the proportion of all Decennial Census
respondents with each surname in each racial-ethnic category
Decter-Frain (2022)
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Bayesian Surname Geocoding

Fully Bayesian Improved Surname Geocoding (fBISG)
BISG su�ers from two data problems regarding minorities:

• the census often contains zero counts
Òæ fBISG uses a measurement error model so that zero values mean low
probability instead of nonexistence

• many surnames are missing from the census data
Òæ fBISG also supplemens the surname list with additional data from voter files
from six Southern states

BISG Elliott et al. (2009)

P(Ri |Si , Gi) Ã P(Si |Ri) · P(Ri |Gi)

P(Ri = r |Gi = g) Ã Nrg , obtained from US census data.
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Bayesian Surname Geocoding

fBISG Imai and Khanna (2016)

P(Ri |Si , Gi) Ã P(Ri |Si) · P(Gi |Ri)

P(Ri = r |Gi = g , R≠i) Ã n≠i
rg + Nrg + 1 > 0, with:

• the term +1 arises from the assumption of a Dirichlet prior distribution over the
race distribution for geolocation g ,

• n≠i
rg is obtained using Gibbs sampling on the dataset of individuals whose race is

being predicted, by conditioning on the race of other individuals R≠i in
geolocation g .

• Minorities continue to be underestimated. They are absorbed by the majority
• How can we give more power to the minorities?
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– Appendix –

Additional Results
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Appendix: Sensitive attributes in insurance (in the U.S.)
From Avraham et al. (2013),
Expressly Permit (-1) - The state has a statute ex-
pressly or impliedly permitting insurers to take the
characteristic into account.
No Law on Point (0) - The state laws are silent with
respect to the particular characteristic.
General Restriction (1) - The state has a statute
that generally prohibits ”unfair discrimination,” ei-
ther across all lines of insurance or in some lines of
insurance, but that statute does not provide any ex-
planation as to what constitutes unfair discrimination
and does not single out any particular trait for limi-
tation.
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Appendix: Sensitive attributes in insurance (in the U.S.)
Characteristic-Specific Weak Limitation (2) - The
state has a statute that limits the use of a particular
characteristic in either issuance, renewal, or cancel-
lation.
Characteristic-Specific Strong Limitation (3) - The
state has a statute that prohibits the use of a par-
ticular characteristic when the policy is either issued,
renewed, or cancelled, or the state has a statute that
limits but does not completely prohibit the use of a
particular characteristic in rate setting.
Characteristic-Specific Prohibition (4) - The state
has a statute the expressly prohibits insurers from
taking into account a specific characteristic in set-
ting rates.
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Appendix: Sensitive attributes in insurance (in the U.S.)

”Race, national origin, and religion have a special
place in this country’s history; and, as discussed
above, discrimination on the basis of these three
characteristics has been subject to stricter scrutiny in
American law than have other characteristics,” Avra-
ham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”Gender-based discrimination in insurance has long
been controversial. And di�erential treatment on
the basis of gender is, of course, in many contexts
widely considered unacceptable or illegal. Neverthe-
less, there does not seem to be the same level of
agreement-as there is for race, religion, and national
origin-that drawing gender-based distinctions is al-
ways wrong. Federal constitutional law treats gender
as only a quasi-suspect classification; as a result, laws
that discriminate on the basis of gender are subject
to an intermediate level of scrutiny.” Avraham et al.
(2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”With respect to life insurance, we predict that the
laws regulating gender discrimination will be on aver-
age relatively weak, since adverse selection in the life
insurance market is especially problematic.” Avraham
et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”Regarding property/casualty insurance, as there
seems to be no conceivable correlation between those
risks and gender, we predict either states will clus-
ter around no regulation, or, alternatively, states
will cluster around forbidding the use of gender in
property/casualty insurance on symbolic or expres-
sive grounds.” Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”The gender discrimination will be more strictly regu-
lated on average for health insurance (where gender-
rated policies often result in higher premiums for
women) than for auto insurance (where gender-rated
policies result in higher premiums for men).” Avra-
ham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”Unlike with race, national origin, religion, and gen-
der, legal classifications on the basis of an individual’s
sexual orientation have not clearly been identified by
the Supreme Court as deserving special scrutiny. In
addition, unlike race, national origin, and gender,
there are no federal laws forbidding discrimination
on the basis of sexual orientation in employment.”
Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”However, there are state laws that forbid discrimi-
nation on the basis of sexual orientation, and some
lower courts have held that sexual orientation should
be a suspect or quasi-suspect characterisation.” Avra-
ham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”We expect that age will have the lowest average
regulatory score of all the risk characteristics we are
studying. First, age is not a suspect classification,
at least not by constitutional standards. Second, age
tends to correlate causally with several important ar-
eas of risk (mortality, health, and perhaps disabil-
ity risks), thereby increasing the perceived fairness of
rating on that basis.” Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)

”Third, age can present serious adverse selection
problems for insurers if they are forbidden from taking
it into account, since individual insureds know their
own age and the associated risks. Fourth, social sol-
idarity arguments with respect to age are relatively
weak, since individuals can spread risk over their life-
time through various income smoothing products.”
Avraham et al. (2013)
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Appendix: Sensitive attributes in insurance (in the U.S.)
Avraham et al. (2013) suggested to visualize the distribution of scores
(Expressly Permit (-1) / No Law on Point (0) / General Restriction (1) / · · · /
Characteristic-Specific Prohibition (4))
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Appendix: Sensitive attributes in insurance (in the U.S.)

”Credit score and zip code are not, by themselves, socially suspect characteristics.
However, some commentators have argued that credit score and zip code are used by
auto and home insurers as proxies for potentially socially suspect characteristics.”
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pièces anatomiques. Imprimerie nationale.

Beutel, A., Chen, J., Zhao, Z., and Chi, E. H. (2017). Data decisions and theoretical implications
when adversarially learning fair representations. arXiv, 1707.00075.

Bhattacharya, A. (2015). Facebook patent: Your friends could help you get a loan - or not. CNN
Business, 2015/08/04.

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975). Sex bias in graduate admissions: Data
from Berkeley. Science, 187(4175):398–404.

Biddle, D. (2017). Adverse impact and test validation: A practitioner’s guide to valid and defensible
employment testing. Routledge.

Billingsley, P. (2017). Probability and measure. John Wiley & Sons.
Blanpain, N. (2018). L’espérance de vie par niveau de vie-méthode et principaux résultats. INSEE
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Denuit, M. and Charpentier, A. (2004). Mathématiques de l’assurance non-vie: Tome I Principes
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