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Moving histogram to estimate a density

A natural way to estimate a density at x from an i.i.d. sample { X7, ---, X,,} is to

count (and then normalized) how many observations are in a neighborhood of z,
e.g. v — X;| < h,
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Kernel based estimation

Instead of a step function 1(|x — X;| < h) consider so smoother functions,

ZKh T —x;) = hZK(a}_wZ)

where K(-) is a kernel i.e. a non-negative real-valued integrable function such
+00 N
that K(u)du =1 so that fx(-) is a density , and K(-) is symmetric, i.e.
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Standard kernels are

1
e uniform (rectangular) K(u) = 5 Leu<1y

e triangular K(u) = (1 — |u|) 1{ju <1}
Epanechnikov K (u) = Z(l —u®) Ly <1y

V2T 2

1 1
Gaussian K (u) = exp (——uQ)
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Standard kernels are

1
e uniform (rectangular) K(u) = 5 Loui<y

o triangular K(u) = (1 — |u|) Lijy<1y

3
Epanechnikov K (u) = Z(l — u?) Ly <1}

1 1
Gaussian K (u) = exp | —=u’

\ 2T 2

L §
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word about copulas

A 2-dimensional copula is a 2-dimensional cumulative distribution function

restricted to [0,1]? with standard uniform margins.

Copula (cumulative distribution function) Level curves of the copula

Copula density Level curves of the copula

I .
.
= 7
m H
.
.

If C'is twice differentiable, let ¢ denote the density of the copula.
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Sklar theorem : Let C' be a copula, and F'y and Fy two marginal distributions,
then F'(x,y) = C(Fx(x), Fy(y)) is a bivariate distribution function, with
F e JT"(FX, Fy).

Conversely, if F' € F(Fx, Fy), there exists C such that
F(x,y) = C(Fx(x), Fy(y). Further, if F'x and Fy are continuous, then C' is

unique, and given by

C(u,v) = F(Fy'(u), Fy, ' (v)) for all (u,v) € [0,1] x [0,1]

We will then define the copula of F', or the copula of (X,Y).
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Motivation

Example Loss-ALAE : consider the following dataset, were the X,’s are loss
amount (paid to the insured) and the Y;’s are allocated expenses. Denote by R;
and S; the respective ranks of X; and Y;. Set U; = R; /n = Fy (X;) and

V; = Si/n =Ly (Y;)

Figure |1|shows the log-log scatterplot (log X;,logY;), and the associate copula
based scatterplot (U;, V;).

Figure 2|is simply an histogram of the (U;,V;), which is a nonparametric

estimation of the copula density.

Note that the histogram suggests strong dependence in upper tails (the

interesting part in an insurance/reinsurance context).
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Why nonparametrics, instead of parametrics ?

In parametric estimation, assume the the copula density cy belongs to some given

family C = {cy,0 € ©}. The tail behavior will crucially depend on the tail

behavior of the copulas in C

Example : Table below show the probability that both X and Y exceed high
thresholds (X > Fi'(p) and Y > F,,'(p)), for usual copula families, where

parameter 6 is obtained using maximum likelihood techniques.

P

Clayton

Frank

(Gaussian

Gumbel

Clayton™

max/min

90%
95%
99%
99.9%

1.93500%
0.51020%
0.02134%
0.00021%

2.73715%
0.78464%
0.03566%
0.00037%

4.73767%
1.99195%
0.27337%
0.01653%

4.82614%
2.30085%
0.44246%
0.04385%

5.66878%
2.78677%
0.55102%
0.05499%

2.93
5.46
25.82
261.85

Probability of exceedances, for given parametric copulas, 7 = 0.5.
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Figure (3| shows the graphical evolution of p — P (X > F ' (p),Y > Fy 1(p)). If the
original model is an multivariate student vector (X, Y'), the associated probability is the

upper line. If either marginal distributions are misfitted (e.g. Gaussian assumption), or

the dependence structure is mispecified (e.g. Gaussian assumption), probabilities are

always underestimated.
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Joint probability of exceeding high quantiles Ratios of exceeding probability

— Student dependence structure, Student margins

— Gaussian dependence structure, Student margins

- - - Student dependence structure, Gaussian margins
Gaussian dependence structure, Gaussian margins

— Misfitting dependence structure
- - - Misfitting margins
Misfit margins and dependence

Quantile levels

FIGURE 3~ p— P (X > F;'(p),Y > Fy,'(p)) when (X,Y) is a Student ¢ random

vector, and when either margins or the dependence structure is mispectified.
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Kernel estimation for bounded support density

Consider a kernel based estimation of density f,

flo - 3w (152,

where K is a kernel function, given a n sample X1, ..., X,, of positive random variable
(X; € [0,00]). Let K denote a symmetric kernel, then

E(F(0)) = 5 £(0) + O(h)
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Exponential random variables Exponential random variables

FIGURE 4 — Density estimation of an exponential density, 100 points.
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00 01 02 03 04 05

FIGURE 5 — Density estimation of an exponential density, 10,000 points.
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Kernel based estimation of the uniform density on [0,1] Kernel based estimation of the uniform density on [0,1]

FIGURE 6 — Density estimation of an uniform density on |0, 1].
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How to get a proper estimation on the border

Several techniques have been introduce to get a better estimation on the border,

— boundary kernel (MULLER (1991))
— mirror image modification (DEHEUVELS & HOMINAL (1989), SCHUSTER (1985))
— transformed kernel (DEVROYE & GYORFI (1981), WAND, MARRON & RUPPERT

(1991))
In the particular case of densities on [0, 1],

— Beta kernel (BROwN & CHEN (1999), CHEN (1999, 2000)),
— average of histograms inspired by DERSKO (1998).
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Local kernel density estimators

The idea is that the bandwidth h(x) can be different for each point x at which f(x) is

estimated. Hence,
1« z— X
h = — g K| ——

(see e.g. LOFTSGAARDEN & QUESENBERRY (1965)).

Variable kernel density estimators

The idea is that the bandwidth h can be replaced by n values a(X;). Hence,

1 r — XZ
a(x) ( a(X,) ) ’

(see e.g. ABRAMSON (1982)).
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The transformed Kernel estimate

The idea was developed in DEVROYE & GyORrFI (1981) for univariate densities.

Consider a transformation 7' : R — [0, 1] strictly increasing, continuously differentiable,

one-to-one, with a continuously differentiable inverse.

Set Y = T(X). Then Y has density

@) = fx (T () (T (y).

If fy is estimated by fy, then fx is estimated by
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Density estimation transformed kernel Density estimation transformed kernel

FIGURE 7 — The transform kernel principle (with a ®~!-transformation).
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The Beta Kernel estimate

The Beta-kernel based estimator of a density with support [0, 1] at point z, is obtained

using beta kernels, which yields

~ 1 - U 1 —u
f(a:)_EZ;K(XZ-,B—kl, - +1)

where K (-, a, 3) denotes the density of the Beta distribution with parameters a and S,

F(a + B) xoz—l
INCHINGE)

K(w,a,ﬁ) — (1 _x)ﬁ_l]'{xe[o,l]}'
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Gaussian Kernel approach

Density estimation using beta kernels

Beta Kernel approach

FI1GURE 8 — The beta-kernel estimate.
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Copula density estimation : the boundary problem

Let (U1,V1), ..., (Un, Vs,) denote a sample with support [0, 1]%, and with density c(u,v),

which is assumed to be twice continuously differentiable on (0, 1).

If K denotes a symmetric kernel, with support [—1,+1], then for all
(u,v) € [0,1] x [0, 1], in any corners (e.g. (0,0))

1
~ 1 1
E(c(0,0,h)) = 1 c(u,v) — 5[01 (0,0) + c2(0,0)] / wK(w)dw - h + o(h).
0
on the interior of the borders (e.g. u =0 and v € (0, 1)),

E(c(0,v,h)) = = - c(u,v) — [c1(0,v)] / wK(w)dw - h+ o(h).

2
and in the interior ((u,v) € (0,1) x (0,1)),

E(c(u,v,h)) = c(u,v) + %[cl,l(u, v) + c2,2(u,v)] / w’ K (w)dw - k> + o(h?).

On borders, there is a multiplicative bias and the order of the bias is O(h) (while it is
O(h?) in the interior).
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If K denotes a symmetric kernel, with support [—1, +1], then for all
(u,v) € [0,1] x [0, 1], in any corners (e.g. (0,0))

1 1
Var(c(0,0,h)) OO(/K dw) .W—Fo(nh?)'

on the interior of the borders (e.g. u =0 and v € (0,1))

Var(@(0,v, h)) = ¢(0,v) (/ Kw d“’) (/K dw)'n—m”(nz?)

and in the interior ((u,v) € , 1)),

Var(c(u,v,h)) = c(u,v) </_11 K(w)de>2 d - # +o (n;) :
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Estimation of Frank copula

I I I
0.6

FIGURE 9 — Theoretical density of Frank copula.
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Estimation of Frank copula

FIGURE 10 — Estimated density of Frank copula, using standard Gaussian (inde-

pendent) kernels, h = h*.
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Transformed kernel technique

Consider the kernel estimator of the density of the (X;,Y:) = (G~ (U;), G~ (V;))’s,

where G is a strictly increasing distribution function, with a differentiable density.

Since density f is continuous, twice differentiable, and bounded above, for all

-~ 1 - .CB—XZ'
f(xay)ZW;K< 7

(z,y) € R?,

satisfies
E(f(z,y)) = f(z,y) + O(h%),
as long as [ wK(w) = 0. And the variance is

Var(Fla.) = £&2) ( / K(w)2dw>2 +o(=5),

and asymptotic normality can be obtained,

Vil (fla,y) = E(7(e,y) ) 5 N(O. /(@) ( / K<w>2dw>2>.
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Since
f(x,y) = g(x)g(y)c|G(x), G(y)]-

can be inverted in

f(G™ (w),
9(G~H(u))g(

c(u,v) = (u,v) € [0,1] x [0, 1],

one gets, substituting ]/‘\in

1
nh-g(G=1(u)) - g(G=1(v)) ;

clu,v) =

Therefore,
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Similarly,

Var(c(u,v, h))
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Estimation of Frank copula

1.4

-

FIGURE 11 — Estimated density of Frank copula, using a Gaussian kernel, after a

(Gaussian normalization.




ARTHUR CHARPENTIER, TRANSFORMED KERNELS AND BETA KERNELS

Estimation of Frank copula
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FIGURE 12 — Estimated density of Frank copula, using a Gaussian kernel, after a

Student normalization, with 5 degrees of freedom.
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Estimation of Frank copula

FIGURE 13 — Estimated density of Frank copula, using a Gaussian kernel, after a

Student normalization, with 3 degrees of freedom.
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Bivariate Beta kernels

The Beta-kernel based estimator of the copula density at point (u,v), is obtained using

product beta kernels, which yields

(et R (e ),

where K (-, a, 3) denotes the density of the Beta distribution with parameters a and .
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Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0

Beta (independent) bivariate kernel , x=0.5, y=0.0

0% OM0 00X

Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2

Beta (independent) bivariate kernel , x=0.5, y=0.2
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Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5

Beta (independent) bivariate kernel , x=0.5, y=0.5
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FIGURE 14 — Shape of bivariate Beta kernels K (-, z/b+1, (1—x)/b+1) x K(-,y/b+
1,(1—y)/b+1) for b =0.2.
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Assume that the copula density c is twice differentiable on [0, 1] x [0, 1]. Let
(u,v) € [0,1] x [0,1]. The bias of ¢(u,v) is of order b, i.e.

A\

E(c(u,v)) = c(u,v) + Q(u,v) - b+ o(b),

where the bias Q(u,v) is

Q(u,v) = (1 — 2u)c1(u,v) + (1 — 2v)ce(u,v) + % [u(1l —u)er1(u,v) + v(1 —v)ea,2(u,v)] .

The bias here is O(b) (everywhere) while it is O(h?) using standard kernels.

Assume that the copula density c is twice differentiable on [0, 1] x [0, 1]. Let
(u,v) € [0,1] x [0,1]. The variance of c(u,v) is in corners, e.g. (0,0),

~ 1 1
VCL’I“(C(O, O)) — W[C(Oa O) + O(TL )]7
in the interior of borders, e.g. u =0 and v € (0, 1)

1
2nb3/2 \/7'('?](1 — )

Var(@0,v)) = [c(0,v) + o(n™ )],
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and in the interior,(u,v) € (0,1) x (0,1)
1
4nb7r\/fu(1 —v)u(l — u)

Var(c(u,v)) = [c(u,v) + o(n™1)].

Remark From those properties, an (asymptotically) optimal bandwidth b can be

deduced, maximizing asymptotic mean squared error,

b — 1 1
16mnQ(u, v)? \/vl—v

Note (see Charpentier, Fermanian & Scaillet (2005)) that all those results can be

obtained in dimension d > 2.

Example For n = 100 simulated data, from Frank copula, the optimal bandwidth is
b~ 0.05.
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Estimation of the copula density (Beta kernel, b=0.1) Estimation of the copula density (Beta kernel, b=0.1)

0.0 0.2

FIGURE 15 — Estimated density of Frank copula, Beta kernels, b = 0.1
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Estimation of the copula density (Beta kernel, b=0.05) Estimation of the copula density (Beta kernel, b=0.05)

FIGURE 16 — Estimated density of Frank copula, Beta kernels, b = 0.05
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Standard Gaussian kernel estimator, n=100 Standard Gaussian kernel estimator, n=1000 Standard Gaussian kernel estimator, n=10000
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FIGURE 17 — Density estimation on the diagonal, standard kernel.
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Transformed kernel estimator (Gaussian), =100 Transformed kernel estimator (Gaussian), n=1000 Transformed kernel estimator (Gaussian), n=10000
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FIGURE 18 — Density estimation on the diagonal, transformed kernel.
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Beta kernel estimator, b=0.05, n=100 Beta kernel estimator, b=0.02, n=1000 Beta kernel estimator, b=0.005, n=10000
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FIGURE 19 — Density estimation on the diagonal, Beta kernel.
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Copula density estimation

GUBELS & MIELNICZUK (1990) : given an i.i.d. sample, a natural estimate for the
normed density is obtained using the transformed sample

(F\X(Xl), F\y(Yl)), oo (F\X(Xn), F\y(Yn)), where Fx and Fy are the empirical
distribution function of the marginal distribution. The copula density can be
constructed as some density estimate based on this sample (BEHNEN, HUSKOVA &
NeunAus (1985) investigated the kernel method).

The natural kernel type estimator ¢ of c is

AN

c(u,v) = # ZK (u— FX(Xi), v FY(YZ)) , (u,v) € [0, 1].

h h

“this estimator is not consistent in the points on the boundary of the unit square.”
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Copula density estimation and pseudo-observations

Example : in linear regression, residuals are pseudo observations.

€i=H(Xz'>Y7;):YL‘—Oé—5X¢

& = Ho(X:,Y:) = Y; — Gn — B Xi

Example : when dealing with copulas, ranks U;, V; yield pseudo-observations.

(Ui, Vi) = H(Xi,Yi) = (Fx (Xi), Fy (V7))

P AN

(U, Vi) = Ho(X;,Y3) = (Fx (Xi), Fy (Y7))
(see GENEST & RIVEST (1993)).

More formally, let X1, ..., X,, denote a series of observations of X (€ X), stationary

and ergodic.
Let H : X — R% and set ¢; = H(X;) (non-observable).

If H is estimated by H, then €; = ﬁ]n(X ;) are called pseudo-observations.
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Let [/(\'n denote the empirical distribution function of those pseudo-observations,

AN

Kn(t) = %ZH(@ < t) where t € R”.

=1

Further, if K denotes the distribution function of e = H(X), then define the empirical

process based on pseudo-observations,

As proved in GHouDI & REMILLARD (1998, 2004), this empirical process converges
weakly.

Figure 77 shows scatterplots when margins are known (i.e. (Fx(X;), Fy(Y:))’s), and

when margins are estimated (i.e. (Fx (X:), Fy (Yi)’s). Note that the pseudo sample is

more “uniform”, in the sense of a lower discrepancy (as in Quasi Monte Carlo
techniques, see e.g. NIEDERREITER (1992)).
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Scatterplot of observations (Xi,Yi) Scatterplot of pseudo—-observations (Ui, Vi)
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FIGURE 20 — Observations and pseudo-observation, 500 simulated observations
from Frank copula (X;,Y;) and the associate pseudo-sample (Fx (X;), Fy (Y;)).
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Because samples are more “uniform” using ranks and pseudo-observations, the variance

of the estimator of the density, at some given point (u,v) € (0,1) x (0, 1) is usually

smaller. For instance, Figure|21|shows the impact of considering pseudo observations,

i.e. substituting Fx and Fy to unknown marginal distributions F'x and Fy. The dotted

line shows the density of é(u,v) from a n = 100 sample (U;, Vi) (from Frank copula),
and the straight line shows the density of é(u, v) from the sample (Ey (Us), Fy (Vi) (i.e.

ranks of observations).
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Impact of pseudo—observations (Nn=100)

Distribution of the estimation of the density c(u,Vv)

FIGURE 21 — The impact of estimating from pseudo-observations.
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Roots of ‘transformed kernel’

CHAPTER 9

The Transformed Kernel Estimate

The transformed kernel estimate (Devroye et al., 1983) 1s based upon a
transformation 7: R' — [0, 1] which is strictly monotonically increasing,
continuously differentiable, one-to-one and onto, and which has a continu-
ously differentiable inverse. The transformed data sequence i1s Y),..., 7Y,
where Y, = T( X,). Note that Y, has density

g(x) = A(T (x))T"(x).

Now, g is estumated by g, from Y,,...,Y,, and f is estimated by

<

fu(x) = g, (T(x))T'(x). (2)

The key observation is that if g, is a density on [0, 1], the £, 15 a density on
R', and furthermore,

[if~11= [15, - 8l
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2. CHOOSING A TRANSFORMATION

Choosing a transformation is not a sinecure. In a vast number of applica-
tions, one suspects that f belongs to a certain family of densities (usually a
parametric family), or at least is close to a given member of this family. If
the family is a parametrized by 8, with distribution function £y, the natural
approach is to estimate by 6 in a robust manner, and use Fj in the
expression of the optimal transformation 7. Throughout we use the same 4,
that is, the optimal 4 for the 1sosceles triangular density on [0, 1].

ESTIMATION OF DENSITIES WITH LARGE TAILS

There are two factors that determine the efficiency of the kernel estimate:
discontinuities or sharp oscillations, and large tails. The former factor,
captured for smooth densities by [|f”|, 1s infinite for densities with simple
discontinuities such as the uniform density on [0,1]. The latter factor,
measured by | ﬁ , 15 mfinite for densities with a large tail such as the
Cauchy density, We have seen that when one or both of these factors is
infinite, we must have n’/°E(J )} — oo for the standard kernel estimate,
regardless of the choice of & as a function of ».
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An isolated bump in gny density esiimate 15 associated with one of the
data points Xi,..., X,: X, defines an i1solated bump if there exists an
interval [a, b] with the properly that X; € [a, b], no other point X, belongs
to [a,b), [/, >0, and f, =0 on [a —&@) U (b. b +¢] for some ¢ > 0.
Assume, for example, that we are using the kernel estimate with
Epanechmkov’s kernel. Then X, defines an 1solated bump if and only if
[X; — 2h, X, + 2h] contains no data point except X;. Thus, in the graph of
f,,, [X, — A, X + h] appears as a separate hill, and it would seem that the -
data point “X," is wasted. Note also that the number of isolated bumps is
invariant under strictly monotone transformations such as the ones consid-
ered in this chapter.

The total number of isolated b&mps, B,, bounds from below the number
of hills in a graph. For example, when we are estimating a unimodal density,
we would like the number of separate hills to be T and B, = 0. As we will
show 1n this section, this is usually not the case. For example, for the normal
density with optimal h, E(B,) increases at least as n'/*/ \/logn, and the
situation gets worse for longer-tailed densities. We will also show that for
the triangular density, £(B,) = o(1).
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THEOREM 2 (Densities with a Regularly Varying Tail). Let f be strictly
monotonically decreasing on [0, o0) with uniquely defined inverse, and let [ be
0 on (—00,0) for the sake of convenience. Assume further that f is regularly
varying at o with exponent r < —1, that is,

o J(x)

im =¢", all¢r>0.

X—+x f(x) -
Ifh = 0, nh — oo, then

L(n)
(nh)""h

E(B,) >

for some slowly varying function L (i.e., a regularly varying function with
exponent ().
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Consider the transformed kernel estimate with Epanechnikov kernel K,
and smoothing factor # = 4(5/67n)!/> (which is optimal for the triangular
density on {0, 1]). We will not worry for the time being about transforma-
tions 7,: R' — [0,1] and the corresponding normalizations, because, as we
have seen, this is an asymptotically negligible detail. We have the following
denstties:

f: .
g-.

g*:
&n*
8n-

density of Xj,..., X, (the data).

density of Y, = T,.( X)), given X,..., X,.

density of 7(X,), where T is some given transformation.
transformed kernel estimate based upon Yj,...,7Y,.

transformed kernel estimate based upon Z, = T(X.), 1 <i < n,

Consistency 251

For variable transformations 7, we must worry about the consistency of
the resulting estimate.
The transformation Y, = T(X,) is usually of the form

Y= T(X: Xiveon X)),
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Using a parametric approach

If Fx € F = {Fp,0 € O} (assumed to be continuous), qx(a) = F, '(«), and thus, a

natural estimator is

P

Tx(0) = F='(a), (4)

where 0 is an estimator of 6 (maximum likelihood, moments estimator...).
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Using the Gaussian distribution

A natural idea (that can be found in classical financial models) is to assume Gaussian

distributions : if X ~ AN (u, o), then the a-quantile is simply
ga) = p+ 2 ()0,

where ® ' («) is obtained in statistical tables (or any statistical software), e.g.
u=—1.64if o = 90%, or u = —1.96 if o = 95%.

Definition

Given a n sample { X1, , X, }, the (Gaussian) parametric estimation of the a-quantile
is

AN AN

gn(a) =14+ ' ()0,
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Using a parametric models

Actually, is the Gaussian model does not fit very well, it is still possible to use Gaussian

approximation

If the variance is finite, (X —E(X))/o might be closer to the Gaussian distribution, and

thus, consider the so-called Cornish-Fisher approximation, i.e.

Q(X,a) ~E(X) + za/ V(X), (5)

e @) 1)+ [0 (@) 387 (@) - SL[2e (a)® — 507 (0],

6 36

where (; is the skewness of X, and (2 is the excess kurtosis, i.e. i.e.

E(X - EX)]")

[ E([X — E(X)]")
E([X —E(X)]?)*"

E([X —E(X)]?)?

and (o = — 3. (6)
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Using a parametric models

Definition2
Given a n sample { X1, -+, X,,}, the Cornish-Fisher estimation of the a-quantile 1s

a1 Clia—1, 12 C2 B _22_1 ~1/ \3 g1
2o =@ () + (@7 (@) = 1]+ [0 ()" =307 (o)) = 2207 ()" =527 (o)), (7)

where a 1s the natural estimator for the skewness of X, and Zg is the natural estimator of

~  /nn=1) ynd> "

the excess kurtosis, 1.e. (1 = and

n — 2 (ZZ 1(X'—,LL) )3/2

nzz 1 /7
(> 1<X- - ﬁ>2)2

— 3.

(o = 3 ((n + 1)@ -+ 6) where Eé =
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Parametrics estimator and error model

Density, theoritical versus empirical Density, theoritical versus empirical

- - - Theoritical logno Fitted IStudent
Fitted lognormal

- - - Theoritical Studerz
— Fitted gamma

—— Fitted Gaussian

T
|
|
1
|
1
|
1
|
1
|
|
|
|
1
|
1
|
1
|
1
|
1
1
|
1
|
1
|
1
|
1
|
1
H
[

FIGURE 22 — Estimation of Value-at-Risk, model error.
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Using a semiparametric models

Given a n-sample {Y1,..., Yy}, let Y1., < Ya.,, <...< Y., denotes the associated order

statistics.

If u large enough, Y — u given Y > u has a Generalized Pareto distribution with

parameters £ and 8 ( Pickands-Balkema-de Haan theorem).

If w=Y,_g.n for k large enough, and if £-0, denote by B\k and @ maximum likelihood

estimators of the Genralized Pareto distribution of sample
{Yn—k—l—lzn — In—kny ey Yn:n — Yn—k:n},

5(Y,a) = B (g _ o)

An alternative is to use Hill’s estimator if £ > 0,

-~ k
Q(Y7 Oé) — Yn—k::n (E(l — Oé)) 75](3 — E 5 1Og Yn—|—1—i:n - log Yn—k:n-
1=1
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On nonparametric estimation for quantiles

For continuous distribution q(a) = Fx'(a), thus, a natural idea would be to consider

P

q(a) = F < (), for some nonparametric estimation of Fx.

Definition3
The empirical cumulative distribution function F,,, based on sample { X, ..., X, } 1s

Fp(z) = % > X <a).

Definition4
The kernel based cumulative distribution function, based on sample { X;,..., X, } is

— [T /X —t 1« X; —
Z;/;ﬁ( h )dﬁ:EZ;K( hiﬁ

where K (x) k(t)dt, k being a kernel and h the bandwidth.
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Smoothing nonparametric estimators

Two techniques have been considered to smooth estimation of quantiles, either implicit,

or explicit.
e consider a linear combinaison of order statistics,

The classical empirical quantile estimate is simply

= Xi:n = X[np):n Where [-] denotes the integer part. (10)

The estimator is simple to obtain, but depends only on one observation. A natural
extention will be to use - at least - two observations, if np is not an integer. The

weighted empirical quantile estimate is then defined as

Qn(p) — (1 — ’Y) X[np]:n + fYX[np]—l—lzn where Y =Np — [np]
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The quantile function in R The quantile function in R

quantile level
guantile level

T T
0.4 0.6

T T
0.4 0.6

probability level probability level

FIGURE 23 — Several quantile estimators in R.
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Smoothing nonparametric estimators

In order to increase efficiency, L-statistics can be considered i.e.

n n ) 1
_ 7 _
Qn () = > WingXin = > WinpFi (2] = / EZ (O k(phtydt (1)
i=1 i=1 0

where F, is the empirical distribution function of F'x, where k is a kernel and h a

bandwidth. This expression can be written equivalently

=1

;1) k(t_Tp) dt] X :i []K (%;p) ~ K (%)] X

(12)
where again IK (z) = / k (t) dt. The idea is to give more weight to order statistics

oo

X (i) such that 7 is closed to pn.
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I
0.6

guantile (probability) level

FIGURE 24 — Quantile estimator as wieghted sum of order statistics.
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guantile (probability) level

FIGURE 25 — Quantile estimator as wieghted sum of order statistics.
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guantile (probability) level

FIGURE 26 — Quantile estimator as wieghted sum of order statistics.
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guantile (probability) level

FIGURE 27 — Quantile estimator as wieghted sum of order statistics.
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guantile (probability) level

FIGURE 28 — Quantile estimator as wieghted sum of order statistics.
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Smoothing nonparametric estimators

E.g. the so-called Harrell-Davis estimator is defined as

' I'(n+1) (n+1)p—1/7 _
[ [> C((n+ Dp)L((n+ 1)g)” !

=1 n

e find a smooth estimator for Fx, and then find (numerically) the inverse,
The a-quantile is defined as the solution of Fx o gx(a) = a.

If I, denotes a continuous estimate of F, then a natural estimate for gx () is gn ()

such that F), o gn(a) = a, obtained using e.g. Gauss-Newton algorithm.
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Improving Beta kernel estimators

Problem : the convergence is not uniform, and there is large second order bias on
borders, i.e. 0 and 1.

CHEN (1999) proposed a modified Beta 2 kernel estimator, based on

[ kyoie (w) it € [2b,1 — 20

t
b’ b

k
ko (u;byt) = < kpb(t) 1ot (u) ,ift €[0,20)
kb’pb(l t) <U) , 1ft€ (1_2b, 1]

\

where pp (t) = 2b” + 2.5 — \/4b4 + 6b% + 2.25 — 2 — %
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Non-consistency of Beta kernel estimators

Problem : k(0,«, 8) = k(1,a, 8) = 0. So if there are point mass at 0 or 1, the estimator
becomes inconsistent, i.e.

—Z (Xz,1+ 1+1%>,:U€[0,1]

1 l—=x
= Z k(Xi,1+g,1+ . ),xe[o,l]

X;#0,1

n—mng— ni 1 T 1—w)
ElX:;, 1+ —,1 : 0,1
n n—ng— N1 Z ( +b * b z € [0,1]
X,;#0,1

~ (1-P(X=0)-PX=1)): fo(x),z €]0,1]

and therefore Z/T\b(x) ~(1-P(X=0)—P(X =1)): Fo(x), and we may have problem
finding a 95% or 99% quantile since the total mass will be lower.
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Non-consistency of Beta kernel estimators

GOURIEROUX & MONFORT (2007) proposed

Xr) — fb(x) or all @
() folﬁ(t)dt’f 1z elo,1].

It is called macro-f3 since the correction is performed globally.

GOURIEROUX & MONFORT (2007) proposed

n

};(2)(95) =2 Z 1kB(Xi;b;x> , for all x € [0, 1].
n Jo k(X b;t)dt

=1

It is called micro-$ since the correction is performed locally.
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Transforming observations ?

In the context of density estimation, DEVROYE AND GYORFI (1985) suggested to use a

so-called transformed kernel estimate

Given a random variable Y , if H is a strictly increasing function, then the p-quantile of
H(Y) is equal to H(q(Y;p)).

An idea is to transform initial observations {Xi,---, X, } into a sample {Y7,---,Y,}
where Y; = H(X;), and then to use a beta-kernel based estimator, if H : R — [0, 1].
Then g, (X;p) = H_l(zl\n(YQP))-

In the context of density estimation fx (z) = Fy (H(x))H'(z). As mentioned in
DEVROYE AND GYORFI (1985) (p 245), “for a transformed histogram histogram

estimate, the optimal H gives a uniform [0,1] density and should therefore be equal to

H(z) = F(x), for all x”.




ARTHUR CHARPENTIER, TRANSFORMED KERNELS AND BETA KERNELS

Transforming observations 7 a monte carlo study

Assume that sample {X7,--- , X,,} have been generated from Fy, (from a familly
F = (Fp,0 € ©). 4 transformations will be considered

- H=F; (based on a maximum likelihood procedure)

— H = Fp, (theoritical optimal transformation)
— H = Fp with 0 < 0y (heavier tails)
— H = Fy with 6 > 6y (lower tails)
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FIGURE 29 — F(X;) versus F;(X;), i.e. PP plot.
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Estimated density
Estimated density

FIGURE 30 — Nonparametric estimation of the density of the Fj(X;)’s.
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Estimated optimal transformation Estimated optimal transformation

Quantile
Quantile

0.90 0.90

Probability level Probability level

FIGURE 31 — Nonparametric estimation of the quantile function, Fé_l(q).
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FIGURE 32 — F'(X;) versus Fy,(X;), i.e. PP plot.
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Estimated density
Estimated density

FIGURE 33 — Nonparametric estimation of the density of the Fy, (X;)’s.
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Estimated optimal transformation Estimated optimal transformation

Quantile
Quantile

I
0.90

0.90

Probability level Probability level

FIGURE 34 — Nonparametric estimation of the quantile function, F 9_01( ).
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FIGURE 35 — ﬁ(Xz) versus Fy(X;), i.e. PP plot, 8 < 0y (heavier tails).
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Estimated density
Estimated density

FIGURE 36 — Estimation of the density of the Fy(X;)’s, 8 < 0y (heavier tails).
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Estimated optimal transformation Estimated optimal transformation

Quantile
Quantile

0.90

Probability level Probability level

FIGURE 37 — Estimation of quantile function, Fj; '(q), 6 < 6 (heavier tails).
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FIGURE 38 — F(X;) versus Fyp(X;), i.e. PP plot, 6 > 0y (lighter tails).
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Estimated density
Estimated density

FIGURE 39 — Estimation of density of Fy(X;)’s, 8 > 6y (lighter tails).
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Estimated optimal transformation Estimated optimal transformation

Quantile
Quantile

0.90 0.90

Probability level Probability level

FIGURE 40 — Estimation of quantile function, F, '(q), 6 > 0 (lighter tails).
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A universal distribution for losses

BucH-LARSEN,NIELSEN, GUILLEN, & BoOLANCE (2005) considered the Champernowne

generalized distribution to model insurance claims, i.e. positive variables,

(y +¢)% —c*
W0 + (Mt — 2

Fore(y) = where a > 0,c > 0and M > 0.

The associated density is then

aly+ 0T (M 4" =)
((y+ ) + (M +¢)* — 2¢)?

fame (y) =
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A Monte Carlo study to compare those nonparametric

estimators

As in BucH-LARSEN,NIELSEN, GUILLEN, & BOLANCE (2005), 4 distributions were
considered

— normal distribution,

— Weibull distribution,

— log-normal distribution,

— mixture of Pareto and log-normal distributions,
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Box—plot for the 11 quantile estimators

Density ofquantie estimators miure longnomalpareto)

R benchmark

E Epanechnik

HD Harrell Daw%
— Benchmark (R estmato
= = D (Harel-Davs PDG Padgett - -
<+ PRK(Park
-+ Bl (Bela)
_ BZ(BEIHZ) PRK Park m%

Betal

MACRO Betasd

density of estimators

MICRO Betal -_+

Beta2

MACRO Beta%
MICRO BetaZ-{»

Estimated value-at-risk

F1GURE 41 — Distribution of the 95% quantile of the mixture distribution, n = 200,

and associated box-plots.
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MSE ratio, normal distribution, HD (Harrell-Davis) MSE ratio, normal distribution, B1 (Betal) MSE ratio, normal distribution, MACB1 (MACRO-Betal)
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0.2 0.4 0.6 0.8 0.4 0.6 0.8

Probability, confidence levels (p) Probability, confidence levels (p) Probability, confidence levels (p)

MSE ratio, normal distribution, PRK (Park) MSE ratio, normal distribution, B1 (Betal) MSE ratio, normal distribution, MACB1 (MACRO-Betal)

3

X

MSE ratio

MSE ratio
MSE ratio

T T T T T T T T T T
0.2 0.4 0.6 0.8 0.4 0.6 0.8 2 . 0.2 0.4 0.6 0.8

Probability, confidence levels (p) Probability, confidence levels (p) Probability, confidence levels (p)

FIGURE 42 — Comparing MSE for 6 estimators, the normal distribution case.
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MSE ratio, Weibull distribution, HD (Harrell-Davis) MSE ratio, Weibull distribution, MACB1 (MACRO-Betal) MSE ratio, Weibull distribution, MICB1 (MICRO-Betal)
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MSE ratio, Weibull distribution, PRK (Park) MSE ratio, Weibull distribution, MACB1 (MACRO-Betal) MSE ratio, Weibull distribution, MICB1 (MICRO-Betal)
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FIGURE 43 — Comparing MSE for 6 estimators, the Weibull distribution case.
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MSE ratio, lognormal distribution, HD (Harrell-Davis) MSE ratio, lognormal distribution, MACB1 (MACRO-Betal) MSE ratio, lognormal distribution, MICB1 (MICRO-Betal) MSE ratio, lognormal distribution, B1 (Betal)
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estimators, the lognormal distribution case.

FIGURE 44 — Comparing MSE for 9
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MSE ratio, mixture distribution, HD (Harrell-Davis) MSE ratio, mixture distribution, MACB1 (MACRO-Betal) MSE ratio, mixture distribution, MICB1 (MICRO-Betal) MSE ratio, mixture distribution, B1 (Betal)
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FI1GURE 45 — Comparing MSE for 9 estimators, the mixture distribution case.
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