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Figure : Mexican catastrophe bond, 2006-2009, via Cabrera (2006)
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Motivation : Mexican (earthquake) catastrophe bond

Figure : Mexican catastrophe bond, 2006-2009, via Cabrera (2006)

3



Arthur CHARPENTIER & Mathieu BOUDREAULT, Bivariate counting processes in risk management

4



Arthur CHARPENTIER & Mathieu BOUDREAULT, Bivariate counting processes in risk management

Motivation

Figure : Time and distance distribution (to 6,000 km) of large (5<M<7)
aftershocks from 205 M≥7 mainshocks (in sec. and h.). Parsons & Velasco
(2011)
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Motivation
“Large earthquakes are known to trigger earthquakes elsewhere. Damaging large
aftershocks occur close to the mainshock and microearthquakes are triggered by
passing seismic waves at significant distances from the mainshock. It is unclear,
however, whether bigger, more damaging earthquakes are routinely triggered at
distances far from the mainshock, heightening the global seismic hazard after
every large earthquake. Here we assemble a catalogue of all possible earthquakes
greater than M5 that might have been triggered by every M7 or larger mainshock
during the past 30 years. [...] We observe a significant increase in the rate of
seismic activity at distances confined to within two to three rupture lengths of the
mainshock. Thus, we conclude that the regional hazard of larger earthquakes is
increased after a mainshock, but the global hazard is not.” Parsons & Velasco
(2011)

Figure : Number of earthquakes (magnitude exceeding 2.0, per 15 sec.) following
a large earthquake (of magnitude 6.5), normalized so that the expected number
of earthquakes before and after is 100.
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Shapefiles from
http://www.colorado.edu/geography/foote/maps/assign/hotspots/hotspots.html
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Agenda
• Motivation : earthquake risk and Parsons & Velasco (2011)
• Modeling dynamics
◦ AR(1) : Gaussian autoregressive processes (as a starting point)
◦ VAR(1) : multiple AR(1) processes, possible correlated
◦ INAR(1) : autoregressive processes for counting variates
◦ MINAR(1) : multiple counting processes

• Application to earthquakes frequency
◦ counting earthquakes on tectonic plates
◦ causality between different tectonic plates
◦ counting earthquakes with different magnitudes
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(ANSS) http://www.ncedc.org/cnss/catalog-search.html

Number of earthquakes (Magnitude ≥ 5) per month, worldwide
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(ANSS) http://www.ncedc.org/cnss/catalog-search.html

Number of earthquakes (Magnitude ≥ 5) per month, in western U.S.
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(Gaussian) Auto Regressive processes AR(1)
Definition A time series (Xt)t∈N with values in R is called an AR(1) process if

Xt = φ0+φ1Xt−1 + εt (1)

for all t, for real-valued parameters φ0 and φ1, and some i.i.d. random variables
εt with values in R.

It is common to assume that εt are independent variables, with a Gaussian
distribution N (0, σ2), with density

ϕ(ε) = 1√
2πσ

exp
(
− ε2

2σ2

)
, ε ∈ R.

Note that we assume also that εt is independent of Xt−1, i.e. past observations
X0, X1, · · · , Xt−1. Thus, (εt)t∈N is called the innovation process.
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Example : Xt = φ1Xt−1 + εt with εt ∼ N (0, 1), i.i.d., and φ = 0.6
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Example : Xt = φ1Xt−1 + εt with εt ∼ N (0, 1), i.i.d., and φ = 0.6
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Example : Xt = φ1Xt−1 + εt : autocorrelation ρ(h) = corr(Xt, Xt−h) = φh1
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Definition A time series (Xt)t∈N is said to be (weakly) stationary if
• E(Xt) is independent of t ( =: µ)
• cov(Xt, Xt−h) is independent of t (=: γ(h)), called autocovariance function

Remark As a consequence, var(Xt) = E([Xt − E(Xt)]2) is independent of t
(=: γ(0)). Define the autocorrelation function ρ(·) as

ρ(h) := corr(Xt, Xt−h) = cov(Xt, Xt−h)√
var(Xt)var(Xt−h)

= γ(h)
γ(0) , ∀h ∈ N.

Proposition (Xt)t∈N is a stationary AR(1) time series if and only if φ1 ∈ (−1, 1).

Remark If φ1 = 1, (Xt)t∈N is called a random walk.

Proposition If (Xt)t∈N is a stationary AR(1) time series,

ρ(h) = φh1 , ∀h ∈ N.
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From univariate to multivariate models
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Density of the Gaussian distribution Univariate gaussian distribution N (0, σ2)

ϕ(x) = 1√
2πσ

exp
(
− x2

2σ2

)
, for all x ∈ R

Multivariate gaussian distribution N (0,Σ)

ϕ(x) = 1√
(2π)d|det Σ|

exp
(
−x
′Σ−1x

2

)
,

for all x ∈ Rd.

X = AZ where AA′ = Σ and Z ∼ N (0, I)
(geometric interpretation)
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Vector (Gaussian) AutoRegressive processes V AR(1)
Definition A time series (Xt = (X1,t, · · · , Xd,t))t∈N with values in Rd is called a
VAR(1) process if

X1,t = φ1,1X1,t−1 + φ1,2X2,t−1 + · · ·+ φ1,dXd,t−1 + ε1,t

X2,t = φ2,1X1,t−1 + φ2,2X2,t−1 + · · ·+ φ2,dXd,t−1 + ε2,t

· · ·
Xd,t = φd,1X1,t−1 + φd,2X2,t−1 + · · ·+ φd,dXd,t−1 + εd,t

(2)

or equivalently
X1,t

X2,t
...

Xd,t


︸ ︷︷ ︸

Xt

=


φ1,1 φ1,2 · · · φ1,d

φ2,1 φ2,2 · · · φ2,d
...

...
...

φd,1 φd,2 · · · φd,d


︸ ︷︷ ︸

Φ


X1,t−1

X2,t−1
...

Xd,t−1


︸ ︷︷ ︸

Xt−1

+


ε1,t

ε2,t
...
εd,t


︸ ︷︷ ︸

εt
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for all t, for some real-valued d× d matrix Φ, and some i.i.d. random vectors εt
with values in Rd.

It is common to assume that εt are independent variables, with a Gaussian
distribution N (0,Σ), with density

ϕ(ε) = 1√
(2π)d|det Σ|

exp
(
−ε
′Σ−1ε

2

)
, ∀ε ∈ Rd.

Thus, independent means time independent, but can be dependent
componentwise.

Note that we assume also that εt is independent of Xt−1, i.e. past observations
X0,X1, · · · ,Xt−1. Thus, (εt)t∈N is called the innovation process.

Definition A time series (Xt)t∈N is said to be (weakly) stationary if
• E(Xt) is independent of t (=: µ)
• cov(Xt,Xt−h) is independent of t (=: γ(h)), called autocovariance matrix
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Remark As a consequence, var(Xt) = E([Xt − E(Xt)]′[Xt − E(Xt)]) is
independent of t (=: γ(0)). Define finally the autocorrelation matrix,

ρ(h) = ∆−1γ(h)∆−1, where ∆ = diag
(√

γi,i(0)
)
.

Proposition (Xt)t∈N is a stationary AR(1) time series if and only if the d
eignvalues of Φ should have a norm lower than 1.

Proposition If (Xt)t∈N is a stationary AR(1) time series,

ρ(h) = Φh, h ∈ N.
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Statistical inference for AR(1) time series
Consider a series of observations X1, · · · , Xn. The likelihood is the joint
distribution of the vectors X = (X1, · · · , Xn), which is not the product of
marginal distribution, since consecutive observations are not independent
(cov(Xt, Xt−h) = φh). Nevertheless

L(φ, σ; (X0,X )) =
n∏
t=1

πφ,σ(Xt|Xt−1)

where πφ,σ(·|Xt−1) is a Gaussian density.

Maximum likelihood estimators are

(φ̂, σ̂) ∈ argmax logL(φ, σ; (X0,X ))
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Poisson distribution - and process - for counts

N as a Poisson distribution is P(N = k) = e−λ
λk

k! where k ∈ N.

If N ∼ P(λ), then E(N) = λ.

(Nt)t≥0 is an homogeneous Poisson process, with parameter λ ∈ R+ if
• on time frame [t, t+ h], (Nt+h −Nt) ∼ P(λ · h)
• on [t1, t2] and [t3, t4] counts are independent, if 0 ≤ t1 < t2 < t3 < t4,

(Nt2 −Nt1) ⊥⊥ (Nt4 −Nt3)
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Poisson processes and counting models
Earthquake count models are mostly based upon the Poisson process (see Utsu
(1969), Gardner & Knopoff (1974), Lomnitz (1974), Kagan & Jackson
(1991)), Cox process (self-exciting, cluster or branching processes, stress-release
models (see Rathbun (2004) for a review), or Hidden Markov Models (HMM)
(see Zucchini & MacDonald (2009) and Orfanogiannaki et al. (2010)).

See also Vere-Jones (2010) for a summary of statistical and stochastic models
in seismology. Recently, Shearer & Starkb (2012) and Beroza (2012)
rejected homogeneous Poisson model,
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Thinning operator ◦
Steutel & van Harn (1979) defined a thinning operator as follows

Definition Define operator ◦ as

p ◦N = Y1 + · · ·+ YN if N 6= 0, and 0 otherwise,

where N is a random variable with values in N, p ∈ [0, 1], and Y1, Y2, · · · are i.i.d.
Bernoulli variables, independent of N , with P(Yi = 1) = p = 1− P(Yi = 0). Thus
p ◦N is a compound sum of i.i.d. Bernoulli variables.

Hence, given N , p ◦N has a binomial distribution B(N, p).

Note that p ◦ (q ◦N) L= [pq] ◦N for all p, q ∈ [0, 1].

Further

E (p ◦N) = pE(N) and var (p ◦N) = p2var(N) + p(1− p)E(N).
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(Poisson) Integer AutoRegressive processes INAR(1)
Based on that thinning operator, Al-Osh & Alzaid (1987) and McKenzie
(1985) defined the integer autoregressive process of order 1 :

Definition A time series (Xt)t∈N with values in R is called an INAR(1) process if

Xt = p ◦Xt−1 + εt, (3)

where (εt) is a sequence of i.i.d. integer valued random variables, i.e.

Xt =
Xt−1∑
i=1

Yi + εt, where Y ′i s are i.i.d. B(p).

Such a process can be related to Galton-Watson processes with immigration, or
physical branching model.
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Xt+1 =
Xt∑
i=1

Yi + εt+1, where Y ′i s are i.i.d. B(p)
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Proposition E (Xt) = E(εt)
1− p , var (Xt) = γ(0) = pE(εt) + var(εt)

1− p2 and

γ(h) = cov(Xt, Xt−h) = ph.

It is common to assume that εt are independent variables, with a Poisson
distribution P(λ), with probability function

P(εt = k) = e−λ
λk

k! , k ∈ N.

Proposition If (εt) are Poisson random variables, then (Nt) will also be a
sequence of Poisson random variables.

Note that we assume also that εt is independent of Xt−1, i.e. past observations
X0, X1, · · · , Xt−1. Thus, (εt)t∈N is called the innovation process.

Proposition (Xt)t∈N is a stationary INAR(1) time series if and only if p ∈ [0, 1).

Proposition If (Xt)t∈N is a stationary INAR(1) time series, (Xt)t∈N is an
homogeneous Markov chain.
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π(xt, xt−1) = P(Xt = xt|Xt−1 = xt−1) =
xt∑
k=0

P

(
xt−1∑
i=1

Yi = xt − k

)
︸ ︷︷ ︸

Binomial

·P(ε = k)︸ ︷︷ ︸
Poisson

.
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Inference of Integer AutoRegressive processes INAR(1)
Consider a Poisson INAR(1) process, then the likelihood is

L(p, λ;X0,X ) =
[
n∏
t=1

ft(Xt)
]
· λX0

(1− p)X0X0! exp
(
− λ

1− p

)
where

ft(y) = exp(−λ)
min{Xt,Xt−1}∑

i=0

λy−i

(y − i)!

(
Yt−1

i

)
pi(1− p)Yt−1−y, for t = 1, · · · , n.

Maximum likelihood estimators are

(p̂, λ̂) ∈ argmax logL(p, λ; (X0,X ))
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Multivariate Integer Autoregressive processes MINAR(1)
Let Nt := (N1,t, · · · , Nd,t), denote a multivariate vector of counts.

Definition Let P := [pi,j ] be a d× d matrix with entries in [0, 1]. If
N = (N1, · · · , Nd) is a random vector with values in Nd, then P ◦N is a
d-dimensional random vector, with i-th component

[P ◦N ]i =
d∑
j=1

pi,j ◦Nj ,

for all i = 1, · · · , d, where all counting variates Y in pi,j ◦Nj ’s are assumed to be
independent.

Note that P ◦ (Q ◦N) L= [PQ] ◦N .

Further, E (P ◦N) = PE(N), and

E ((P ◦N)(P ◦N)′) = PE(NN ′)P ′ + ∆,

with ∆ := diag(V E(N)) where V is the d× d matrix with entries pi,j(1− pi,j).
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Definition A time series (Xt) with values in Nd is called a d-variate MINAR(1)
process if

Xt = P ◦Xt−1 + εt (4)

for all t, for some d× d matrix P with entries in [0, 1], and some i.i.d. random
vectors εt with values in Nd.

(Xt) is a Markov chain with states in Nd with transition probabilities

π(xt,xt−1) = P(Xt = xt|Xt−1 = xt−1) (5)

satisfying

π(xt,xt−1) =
xt∑

k=0
P(P ◦ xt−1 = xt − k) · P(ε = k).
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Parameter inference for MINAR(1)
Proposition Let (Xt) be a d-variate MINAR(1) process satisfying stationary
conditions, as well as technical assumptions (called C1-C6 in Franke & Subba
Rao (1993)), then the conditional maximum likelihood estimate θ̂ of θ = (P ,Λ)
is asymptotically normal,

√
n(θ̂ − θ) L→ N (0,Σ−1(θ)), as n→∞.

Further,

2[logL(N , θ̂|N0)− logL(N ,θ|N0)] L→ χ2(d2 + dim(λ)), as n→∞.

35



Arthur CHARPENTIER & Mathieu BOUDREAULT, Bivariate counting processes in risk management

Granger causality with BINAR(1)
(X1,t) and (X2,t) are instantaneously related if ε is a noncorrelated noise,g g g
g g g g g g g g g g g

X1,t

X2,t


︸ ︷︷ ︸

Xt

=

p1,1 p1,2

p2,1 p2,2


︸ ︷︷ ︸

P

◦

X1,t−1

X2,t−1


︸ ︷︷ ︸

Xt−1

+

ε1,t

ε2,t


︸ ︷︷ ︸

εt

, with var

ε1,t

ε2,t

 =

λ1 ϕ

ϕ λ2


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Granger causality with BINAR(1)
1. (X1) and (X2) are instantaneously related if ε is a noncorrelated noise, g g g g

g g g g g g g g g g

X1,t

X2,t


︸ ︷︷ ︸

Xt

=

p1,1 p1,2

p2,1 p2,2


︸ ︷︷ ︸

P

◦

X1,t−1

X2,t−1


︸ ︷︷ ︸

Xt−1

+

ε1,t

ε2,t


︸ ︷︷ ︸

εt

, with var

ε1,t

ε2,t

 =

λ1 ?

? λ2


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Granger causality with BINAR(1)
2. (X1) and (X2) are independent, (X1)⊥(X2) if P is diagonal, i.e.
p1,2 = p2,1 = 0, and ε1 and ε2 are independent,

X1,t

X2,t


︸ ︷︷ ︸

Xt

=

p1,1 0
0 p2,2


︸ ︷︷ ︸

P

◦

X1,t−1

X2,t−1


︸ ︷︷ ︸

Xt−1

+

ε1,t

ε2,t


︸ ︷︷ ︸

εt

, with var

ε1,t

ε2,t

 =

λ1 0
0 λ2


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Granger causality with BINAR(1)
3. (N1) causes (N2) but (N2) does not cause (X1), (X1)→(X2), if P is a lower

triangle matrix, i.e. p2,1 6= 0 while p1,2 = 0,

X1,t

X2,t


︸ ︷︷ ︸

Xt

=

p1,1 0
? p2,2


︸ ︷︷ ︸

P

◦

X1,t−1

X2,t−1


︸ ︷︷ ︸

Xt−1

+

ε1,t

ε2,t


︸ ︷︷ ︸

εt

, with var

ε1,t

ε2,t

 =

λ1 ϕ

ϕ λ2


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Granger causality with BINAR(1)
4. (N2) causes (N1) but (N1,t) does not cause (N2), (N1)←(N2,t), if P is a upper

triangle matrix, i.e. p1,2 6= 0 while p2,1 = 0,

X1,t

X2,t


︸ ︷︷ ︸

Xt

=

p1,1 ?

0 p2,2


︸ ︷︷ ︸

P

◦

X1,t−1

X2,t−1


︸ ︷︷ ︸

Xt−1

+

ε1,t

ε2,t


︸ ︷︷ ︸

εt

, with var

ε1,t

ε2,t

 =

λ1 ϕ

ϕ λ2


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Granger causality with BINAR(1)
5. (N1) causes (N2) and conversely, i.e. a feedback effect (N1)↔(N2), if P is a

full matrix, i.e. p1,2, p2,1 6= 0

X1,t

X2,t


︸ ︷︷ ︸

Xt

=

p1,1 ?

? p2,2


︸ ︷︷ ︸

P

◦

X1,t−1

X2,t−1


︸ ︷︷ ︸

Xt−1

+

ε1,t

ε2,t


︸ ︷︷ ︸

εt

, with var

ε1,t

ε2,t

 =

λ1 ϕ

ϕ λ2


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Bivariate Poisson BINAR(1)
A classical distribution for εt is the bivariate Poisson distribution, with one
common shock, i.e. ε1,t = M1,t +M0,t

ε2,t = M2,t +M0,t

where M1,t, M2,t and M0,t are independent Poisson variates, with parameters
λ1 − ϕ, λ2 − ϕ and ϕ, respectively. In that case, εt = (ε1,t, ε2,t) has joint
probability function

e−[λ1+λ2−ϕ] (λ1 − ϕ)k1

k1!
(λ2 − ϕ)k2

k2!

min{k1,k2}∑
i=0

(
k1

i

)(
k2

i

)
i!
(

ϕ

[λ1 − ϕ][λ2 − ϕ]

)
with λ1, λ2 > 0, ϕ ∈ [0,min{λ1, λ2}].

λ =

λ1

λ2

 and Λ =

λ1 ϕ

ϕ λ2


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Bivariate Poisson BINAR(1) and Granger causality
For instantaneous causality, we test

H0 : ϕ = 0 against H1 : ϕ 6= 0

Proposition Let λ̂ denote the conditional maximum likelihood estimate of
λ = (λ1, λ2, ϕ) in the non-constrained MINAR(1) model, and λ⊥ denote the
conditional maximum likelihood estimate of λ⊥ = (λ1, λ2, 0) in the constrained
model (when innovation has independent margins), then under suitable
conditions,

2[logL(N , λ̂|N0)− logL(N , λ̂
⊥
|N0)] L→ χ2(1), as n→∞, under H0.
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Bivariate Poisson BINAR(1) and Granger causality
For lagged causality, we test

H0 : P ∈ P against H1 : P /∈ P,

where P is a set of constrained shaped matrix, e.g. P is the set of d× d diagonal
matrices for lagged independence, or a set of block triangular matrices for lagged
causality.

Proposition Let P̂ denote the conditional maximum likelihood estimate of P in
the non-constrained MINAR(1) model, and P̂

c
denote the conditional maximum

likelihood estimate of P in the constrained model, then under suitable conditions,

2[logL(N , P̂ |N0)− logL(N , P̂
c
|N0)] L→ χ2(d2−dim(P)), as n→∞, under H0.

Example Testing (N1,t)←(N2,t) is testing whether p1,2 = 0, or not.
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Autocorrelation of MINAR(1) processes
Proposition Consider a MINAR(1) process with representation
Xt = P ◦Xt−1 + εt, where (εt) is the innovation process, with λ := E(εt) and
Λ := var(εt). Let µ := E(Xt) and γ(h) := cov(Xt,Xt−h). Then µ = [I− P ]−1λ

and for all h ∈ Z, γ(h) = P hγ(0) with γ(0) solution of
γ(0) = Pγ(0)P ′ + (∆ + Λ).
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Multivariate models ?
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The dataset, and stationarity issues
We work with 16 (17) tectonic plates,
– Japan is at the limit of 4 tectonic plates (Pacific, Okhotsk, Philippine and

Amur),
– California is at the limit of the Pacific, North American and Juan de Fuca

plates.
Data were extracted from the Advanced National Seismic System database
(ANSS) http://www.ncedc.org/cnss/catalog-search.html

– 1965-2011 for magnitude M > 5 earthquakes (70,000 events) ;
– 1992-2011 for M > 6 earthquakes (3,000 events) ;
– To count the number of earthquakes, used time ranges of 3, 6, 12, 24, 36 and

48 hours ;
– Approximately 8,500 to 135,000 periods of observation ;

47



Arthur CHARPENTIER & Mathieu BOUDREAULT, Bivariate counting processes in risk management

Multivariate models : comparing dynamics

X1,t

X2,t

 =

p1,1 p1,2

p2,1 p2,2

 ◦
X1,t−1

X2,t−1

+

ε1,t

ε2,t

 with var

ε1,t

ε2,t

 =

λ1 ϕ

ϕ λ2


Complete model, with full dependence
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Multivariate models : comparing dynamics

X1,t

X2,t

 =

p1,1 0
0 p2,2

 ◦
X1,t−1

X2,t−1

+

ε1,t

ε2,t

 with var

ε1,t

ε2,t

 =

λ1 ϕ

ϕ λ2


Partial model, with diagonal thinning matrix, no-crossed lag correlation
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Multivariate models : comparing dynamics

X1,t

X2,t

 =

p1,1 0
0 p2,2

 ◦
X1,t−1

X2,t−1

+

ε1,t

ε2,t

 with var

ε1,t

ε2,t

 =

λ1 0
0 λ2


Two independent INAR processes
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Multivariate models : comparing dynamics

X1,t

X2,t

 =

p1,1 0
0 p2,2

 ◦
X1,t−1

X2,t−1

+

ε1,t

ε2,t

 with var

ε1,t

ε2,t

 =

λ1 0
0 λ2


Two independent INAR processes
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Multivariate models : comparing dynamics

X1,t

X2,t

 =

0 0
0 0

 ◦
X1,t−1

X2,t−1

+

ε1,t

ε2,t

 with var

ε1,t

ε2,t

 =

λ1 ϕ

ϕ λ2


Two (possibly dependent) Poisson processes
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Multivariate models : tectonic plates interactions
– For all pairs of tectonic plates, at all frequencies, autoregression in time is

important (very high statistical significance) ;
– Long sequence of zeros, then mainshocks and aftershocks ;
– Rate of aftershocks decreases exponentially over time (Omori’s law) ;

– For 7-13% of pairs of tectonic plates, diagonal BINAR has significant better fit
than independent INARs ;
– Contribution of dependence in noise ;
– Spatial contagion of order 0 (within h hours) ;
– Contiguous tectonic plates ;

– For 7-9% of pairs of tectonic plates, proposed BINAR has significant better fit
than diagonal BINAR ;
– Contribution of spatial contagion of order 1 (in time interval [h, 2h]) ;
– Contiguous tectonic plates ;

– for approximately 90%, there is no significant spatial contagion for M > 5
earthquakes

53



Arthur CHARPENTIER & Mathieu BOUDREAULT, Bivariate counting processes in risk management

Granger causality N1 → N2 or N1 ← N2

1. North American Plate, 2. Eurasian Plate,3. Okhotsk Plate, 4. Pacific Plate (East), 5. Pacific Plate (West), 6. Amur

Plate, 7. Indo-Australian Plate, 8. African Plate, 9. Indo-Chinese Plate, 10. Arabian Plate, 11. Philippine Plate, 12.

Coca Plate, 13. Caribbean Plate, 14. Somali Plate, 15. South American Plate, 16. Nasca Plate, 17. Antarctic Plate
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Granger causality N1 → N2 or N1 ← N2

1. North American Plate, 2. Eurasian Plate,3. Okhotsk Plate, 4. Pacific Plate (East), 5. Pacific Plate (West), 6. Amur

Plate, 7. Indo-Australian Plate, 8. African Plate, 9. Indo-Chinese Plate, 10. Arabian Plate, 11. Philippine Plate, 12.

Coca Plate, 13. Caribbean Plate, 14. Somali Plate, 15. South American Plate, 16. Nasca Plate, 17. Antarctic Plate
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Granger causality N1 → N2 or N1 ← N2

1. North American Plate, 2. Eurasian Plate,3. Okhotsk Plate, 4. Pacific Plate (East), 5. Pacific Plate (West), 6. Amur

Plate, 7. Indo-Australian Plate, 8. African Plate, 9. Indo-Chinese Plate, 10. Arabian Plate, 11. Philippine Plate, 12.

Coca Plate, 13. Caribbean Plate, 14. Somali Plate, 15. South American Plate, 16. Nasca Plate, 17. Antarctic Plate
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Multivariate models : frequency versus magnitude
X1,t =

∑
i=1

1(Ti ∈ [t, t+ 1),Mi ≤ s) and X2,t =
∑
i=1

1(Ti ∈ [t, t+ 1),Mi > s)

Here we work on two sets of data : medium-size earthquakes (M ∈ (5, 6)) and
large-size earthquakes (M > 6).

– Investigate direction of relationship (which one causes the other, or both) ;
– Pairs of tectonic plates :

– Uni-directional causality : most common for contiguous plates (North
American causes West Pacific, Okhotsk causes Amur) ;

– Bi-directional causality : Okhotsk and West Pacific, South American and
Nasca for example ;

– Foreshocks and aftershocks :
– Aftershocks much more significant than foreshocks (as expected) ;
– Foreshocks announce arrival of larger-size earthquakes ;
– Foreshocks significant for Okhotsk, West Pacific, Indo-Australian,

Indo-Chinese, Philippine, South American ;
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Risk management issues
– Interested in computing P

(∑T
t=1 (N1,t +N2,t) ≥ n

∣∣∣F0

)
for various values of T

(time horizons) and n (tail risk measure) ;
– Total number of earthquakes on a set of two tectonic plates ;

– 100 000 simulated paths of diagonal and proposed BINAR models ;
– Use estimated parameters of both models ;
– Pair : Okhotsk and West Pacific ;

– Scenario : on a 12-hour period, 23 earthquakes on Okhotsk and 46 earthquakes
on West Pacific (second half of March 10th, 2011) ;
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Diagonal model

n / days 1 day 3 days 7 days 14 days

5 0.9680 0.9869 0.9978 0.9999
10 0.5650 0.7207 0.8972 0.9884
15 0.1027 0.2270 0.4978 0.8548
20 0.0067 0.0277 0.1308 0.4997

Proposed model

n / days 1 day 3 days 7 days 14 days

5 0.9946 0.9977 0.9997 1.0000
10 0.8344 0.9064 0.9712 0.9970
15 0.3638 0.5288 0.7548 0.9479
20 0.0671 0.1573 0.3616 0.7256
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