\mathbb{R} in Actuarial Science a brief overview

Arthur Charpentier

charpentier.arthur@uqam.ca
http ://freakonometrics.hypotheses.org/

UQÃM
 Université du Québec à Montréal

January 2013, Universiteit van Amsterdam

Agenda

- Introduction to R
- Why R in actuarial science?
- Actuarial science?
- A vector-based language
- A large number of packages and libraries for predictive models
- Working with (large) databases in R
- A language to plot graphs
- Reproducibility issues
- Comparing R with other statistical softwares
- R in the insurance industry and amongst statistical researchers
- R versus MsExcel Matlab, SAS, SPSS, etc
- The R community
- Conclusion (?)

R

" R (and S) is the 'lingua franca' of data analysis and statistical computing, used in academia, climate research, computer science, bioinformatics, pharmaceutical industry, customer analytics, data mining, finance and by some insurers. Apart from being stable, fast, always up-to-date and very versatile, the chief advantage of R is that it is available to everyone free of charge. It has extensive and powerful graphics abilities, and is developing rapidly, being the statistical tool of choice in many academic environments."

Appendix A
The ' R ' in Modern ART

A brief history of R

R is based on the S statistical programming language developed by Joe Chambers at Bell labs in the 80's

R is an open-source implementation of the S language, developed by Robert Gentlemn and Ross Ihaka

actuarial science?

- students in actuarial programs
- researchers in actuarial science
- actuaries in insurance companies (or consulting firms, or financial institutions, etc)

Using a vector-based language for life contingencies

A life table is a vector

> $\operatorname{TD}[39: 52$,			> TV [39:52,]	
	Age	Lx	Age	Lx
39	38	95237	38	97753
40	39	94997	39	97648
41	40	94746	40	97534
42	41	94476	41	97413
43	42	94182	42	97282
44	43	93868	43	97138
45	44	93515	44	96981
46	45	93133	45	96810
47	46	92727	46	96622
48	47	92295	47	96424
49	48	91833	48	96218
50	49	91332	49	95995
51	50	90778	50	95752
52	51	90171	51	95488

$$
T A B L E I .
$$

$\left\{\begin{array}{c} \text { A G ES } \\ \text { par } \\ \text { annces. } \end{array}\right.$	Survivans felon M. Halky.	$\begin{gathered} \text { Nayant } \\ \text { pas cu } \\ \mathbf{l} \\ \text { pet. vérole. } \end{gathered}$	Ayant eu th pet, verol.	$\left\lvert\, \begin{gathered} \text { Prenant } \\ \text { k } \\ \text { Per. verole } \\ \text { peadant } \\ \text { ch. anike. } \end{gathered}\right.$	Monts de la pet. rérule pendent chay, ann.	SOMME der morts de la pet. vérole.	Monts par diautre madadies pend. chaq annce.
0	1;00	1300	-				
1	1000^{-}	896	104	137	17,1	17,1	83
2	855	685	170	99	12,4	29,5	133
3	798	571	227	78	9.7	39,2	47
4	760	485	275	66	8.3	47,5	30
5	732	416	316	56	7:0	54,5	21
6	710	359	351	4^{8}	6,0	60,5	16
7	692	311	381	42	5,2	65,7	12,8
8	680	272	408	36	4.5	70,2	7,5
9	670	237	433	32	4,0	74,2	6
10	66 :	208	453	28	3.5	77.7	5,5
11	653	182	471	24.4	3,0	80,7	5
12	646	160	486	21,4	2,7	83.4	4.3
13	640	140	500	18,7	2,3	85.7	3.7
14	634	123	511	16,6	2,1	87,8	3.9
15	628	108	520	$14.4{ }^{\circ}$	1,8	89.6	4,2
16	622	94	528	12,6	1.6	91,2	4.4
17	616	83	533	11,0	1,4	92,6	4,6
18	610	72	538	9,7	1,2	93,8	4.8
19	604	63	541	8.4	1,0	94.8	5
20	59^{8}	56	542	7.4	0.9	95.7	5,1
21	592	48,5	543	6,5	0,8	96,5	5,2
22	586	42,5	543	5.6	0.7	97,2	5.3
23	579	37	542	5,0	0,6	97,8	6,4
24	572	32.4	540	$4 \cdot 4$	0,5	98,3	6,5

Using a vector-based language for life contingencies

If age $x \in \mathbb{N}_{*}$, define $\boldsymbol{P}=\left[{ }_{k} p_{x}\right]$, and $\mathrm{p}[\mathrm{k}, \mathrm{x}]$ corresponds to ${ }_{k} p_{x}$.
The (curtate) expectation of life defined as

$$
e_{x}=\mathbb{E}\left(K_{x}\right)=\sum_{k=1}^{\infty} k \cdot{ }_{k \mid 1} q_{x}=\sum_{k=1}^{\infty}{ }_{k} p_{x}
$$

and we can compute $\boldsymbol{e}=\left[e_{x}\right]$ using
> life.exp $=$ function($x)\{\operatorname{sum}(p[1: \operatorname{nrow}(p), x])\}$
> e = Vectorize(life.exp)(1:m)

The expected present value (or actuarial value) of a temporary life annuity-due is

$$
\ddot{a}_{x: \bar{n} \mid}=\sum_{k=0}^{n-1} \nu^{k} \cdot{ }_{k} p_{x}=\frac{1-A_{x: \bar{n}}}{1-\nu}
$$

Using a vector-based language for life contingencies

and we can define $\boldsymbol{A}=\left[\ddot{a}_{x: n}\right]$ as
$>\operatorname{for}(j$ in $1:(m-1))\left\{\operatorname{adot}[, j]<-\operatorname{cumsum}\left(1 /(1+i)^{\wedge}(0:(m-1)) * c(1, p[1:(m-1), j])\right)\right\}$
Define similarly the expected present value of a term insurance

$$
A_{x: \bar{n}}^{1}=\sum_{k=0}^{n-1} \nu^{k+1} \cdot{ }_{k \mid} q_{x}
$$

and the associated matrix $\boldsymbol{A}=\left[A_{x: \bar{n}]}^{1}\right]$ as
$>\operatorname{for}(j$ in 1:(m-1))\{a[,j]<-cumsum(1/(1+i)~(1:m)*d[,j])\}

Remark : See also Giorgio Alfredo Spedicatos lifecontingencies package, and functions pxt, Axn, Exn, etc.

Using a matrix-based language for prospective life models

Life table $\boldsymbol{L}=\left[L_{x}\right]$ is no longer a matrix (function of age x) but a matrix $\boldsymbol{L}=\left[L_{x, t}\right]$ function of the date t.
$>\mathrm{t}(\mathrm{DTF})[1: 10,1: 10]$

	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908
0	64039	61635	56421	53321	52573	54947	50720	53734	47255	46997
1	12119	11293	10293	10616	10251	10514	9340	10262	10104	9517
2	6983	6091	5853	5734	5673	5494	5028	5232	4477	4094
3	4329	3953	3748	3654	3382	3283	3294	3262	2912	2721
4	3220	3063	2936	2710	2500	2360	2381	2505	2213	2078
5	2284	2149	2172	2020	1932	1770	1788	1782	1789	1751
6	1834	1836	1761	1651	1664	1433	1448	1517	1428	1328
7	1475	1534	1493	1420	1353	1228	1259	1250	1204	1108
8	1353	1358	1255	1229	1251	1169	1132	1134	1083	961
9	1175	1225	1154	1008	1089	981	1027	1025	957	885

Similarly, define the force of mortality matrix $\boldsymbol{\mu}=\left[\mu_{x, t}\right]$

Using a matrix-based language for prospective life models

Assume - as in Lee \& Carter (1992) model - that

$$
\log \mu_{x, t}=\alpha_{x}+\beta_{x} \cdot \kappa_{t}+\varepsilon_{x, t},
$$

with some i.i.d. noise $\varepsilon_{x, t}$.
Package demography can be used to fit a Lee-Carter model,
> library(demography)
> MUH =matrix(DEATH\$Male/EXPOSURE\$Male,nL,nC)
> POPH=matrix (EXPOSURE\$Male,nL,nC)
> BASEH <- demogdata(data=MUH, pop=POPH, ages=AGE, years=YEAR, type="mortality",

+ label="France", name="Hommes", lambda=1)
> RES=residuals(LCH,"pearson")

Residuals in Lee \& Carter model

Residuals in Lee \& Carter model

Using a matrix-based language for prospective life models

One can consider more advanced functions to study mortality, e.g. bagplots, since $\mu_{x, t}$ is a functional time series,
> library (rainbow)
> MUH=fts(x = AGE[1:90], y = log(MUH), xname = "Age", yname = "Log Mortality Rate")
> fboxplot(data = MUHF, plot.type = "functional", type = "bag")
> fboxplot(data = MUHF, plot.type = "bivariate", type = "bag")

Source : http ://robjhyndman.com/

Using a matrix-based language for prospective life models

Predictive models in actuarial science

$>$ TREE $=$ tree ((nbr>0) ageconducteur, data=sinistres,split="gini",mincut = 1)
$>$ age $=$ data.frame (ageconducteur=18:90)
> y1 = predict(TREE, age)
$>\operatorname{reg}=\operatorname{glm}\left((n b r>0)^{\sim} b s(a g e c o n d u c t e u r)\right.$, data=sinistres,family="binomial")
> y = predict(reg,age,type="response")

Working with databases

> baseCOUT = read.table("http://freakonometrics.free.fr/baseCOUT.csv",

+ sep=";",header=TRUE, encoding="latin1")
> tail(baseCOUT,4)
numeropol debut_pol fin_pol freq_paiement langue type_prof alimentation type.
ter
6512 87291 2002-10-16 2003-01-22 mensuel A Professeur Vegetarien

6513 87301 2002-10-01 2003-09-30 mensuel A Technicien Vegetarien
6514 87417 2002-10-24 2003-10-21 mensuel F Technicien Vegetalien
6515 88128 2003-01-17 2004-01-16 mensuel F Avocat Vegetarien
utilisation presence_alarme marque_voiture sexe exposition age duree_permf
6512 Travail-occasionnel
6513 Loisir
oui
oui
FORD
M 47

6514 Travail-occasionnel
6515
Loisir
non VOLKSWAGEN F 0.9917808
44
.
Lois
non
FIAT
F 0.9972603
23

Working with databases

> str(baseCOUT)
'data.frame':
\$ numeropol
\$ debut_pol
\$ fin_pol
\$ freq_paiement
\$ langue
\$ type_prof
\$ alimentation
\$ type_territoire:
\$ utilisation : Factor w/ 3 levels "Loisir", "Travail-occasionnel", ..: 22222
\$ presence_alarme: Factor w/ 2 levels "non", "oui": $2211111222 \ldots$
\$ marque_voiture : Factor w/ 30 levels "ALFA ROMEO","AUDI",..: 19111199292929
\$ sexe : Factor w/ 2 levels "F", "M": $2221121222 \ldots$
\$ exposition : num $0.9950 .244110 .997 \ldots$
\$ age
\$ duree_permis
\$ age_vehicule
\$ coutsin
6515 obs. of 18 variables:
: int $62727767687105139145145 \ldots$
: Factor w/ 2223 levels "1995-02-06","1995-03-01",..: 241510301018
: Factor w/ 2252 levels "1995-09-22","1995-10-04",..: 152811097108
: Factor w/ 2 levels "annuel","mensuel": 1222222122 ...
: Factor w/ 2 levels "A","F": 122222222 ...
: Factor w/ 10 levels "Actuaire","Autre",..: 1010101010610610
: Factor w/ 3 levels "Carnivore", "Vegetalien",..: 111113131
type_territoire: Factor w/ 3 levels "Rural","Semi-urbain",..: 3223323222
utilisation : Factor w/ 3 levels "Loisir","Travail-occasionnel",..: 222222
: int $425153424447 \quad 37433232 \ldots$
: int $21222421231816241212 \ldots$.
: int $19241615151410231616 \ldots$
: num $28081413760918687 \ldots$

Working with databases

> cost = aggregate(coutsin ${ }^{\sim}$ AgeSex,mean, data=baseCOUT)
> frequency $=$ merge(aggregate(nbsin~ AgeSex, sum, data=baseFREQ),

+ aggregate(exposition~ AgeSex,sum, data=baseFREQ))
> frequency\$freq = frequency\$nbsin/frequency\$exposition
> base.freq.cost $=$ merge(frequency, cost)

Working with MSExcel folders

On a Windows platform, it is possible to use the odBConnectExcel function of the library (RODBC). The
first step is to connect the file, using
> sheet $=$ "c:
Documents and Settings
user
excelsheet.xls"
> connection = odbcConnectExcel(sheet)
> spreadsheet $=$ sqlTables(connection)

Here, spreadsheet\$TABLE_name will return sheet names. Then, we can make a SQL request
> query = paste("SELECT * FROM",spreadsheet\$TABLE_NAME[1],sep=" ")
> result = sqlQuery (connection, query)

Remark : An alternative, available to all platform, is to use the read.xls function of the library (gdata).

Working with large databases

It is possible to read zipped files (even online ones)
> import.zip $=$ function(file)\{

+ temp = tempfile()
+ download.file(file,temp);
+ read.table(unz(temp, "baseFREQ.csv"), sep=";", header=TRUE, encoding="latin1")\}
> system.time(import.zip("http://freakonometrics.free.fr/baseFREQ.csv.zip"))
trying URL 'http://freakonometrics.free.fr/baseFREQ.csv.zip'
Content type 'application/zip' length 692655 bytes (676 Kb)
opened URL

downloaded 676 Kb

```
user system elapsed
    0.762 0.029 4.578
```

> system.time(read.table("http://freakonometrics.free.fr/baseFREQ.csv",

+ sep=";", header=TRUE, encoding="latin1"))
user system elapsed
0.591
0.072
9.277

Working with large databases

It is possible to import only some parts of a large database, e.g. specific colums ...

```
> mycols = rep("NULL",18)
```

$>\operatorname{mycols}[c(1,4,5,12,13,14,18)]<-$ NA
> baseCOUTsubC = read.table("http://freakonometrics.free.fr/baseCOUT.csv",

+ colClasses = mycols,sep=";",header=TRUE,encoding="latin1")
> head(baseCOUTsubC, 4)
numeropol freq_paiement langue sexe exposition age coutsin

1	6	annuel	A	M	0.9945205	42	279.5839
2	27	mensuel	F	M	0.2438356	51	814.1677
3	27	mensuel	F	M	1.000000	53	136.8634
4	76	mensuel	F	F	1.0000000	42	608.7267

Working with large databases

... or specific raws in the dataset
> baseCOUTsubCR = read.table("http://freakonometrics.free.fr/baseCOUT.csv",

+ colClasses = mycols,sep=";",header=TRUE, encoding="latin1", nrows=100)
> tail(baseCOUTsubCR,4)

| numeropol | freq_paiement | langue | sexe | exposition | age | coutsin |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1193 | mensuel | F | F | 0.9972603 | 55 | 265.0621 |
| 1204 | mensuel | F | F | 0.9972603 | 38 | 9547.7267 |
| 1231 | mensuel | F | M | 1.000000 | 40 | 442.7267 |
| 1245 | annuel | F | F | 0.6767123 | 48 | 179.1925 |

Remark: With library(colbycol) read big text files column by column.

Working with huge databases

Problem : Poisson regression, with 150 million observations, 70 degrees of freedom

- Proc GENMOD in SAS (16-core Sun Server) takes around 5 hours
- installing a Hadoop cluster takes around 15 hours
- (standard) R on a 250 Gb server, still running after 3 days,
- Use of RevoScaler package in R, 5.7 minutes (same output as SAS)

Source : http ://www.inside-r.org/blogs/2012/10/25/allstate-compares-sas-hadoop-and-r-big-data-insurance-models

Graphs, R and © ©be

'If you can picture it in your head, chances are good that you can make it work in R. R makes it easy to read data, generate lines and points, and place them where you want them. Its very flexible and super quick. When youve only got two or three hours until deadline, R can be brilliant." Amanda Cox, a graphics editor at the New York Times. " R is particularly valuable in deadline situations when data is scant and time is precious.".

Source : http ://chartsnthings.tumblr.com/post/36978271916/r-tutorial-simple-charts

State Government Control Since 1938

There are now more state capitals dominated by a single party - where one party controls the legislature and the governor's office - than at any time since 1952.

* Virginia is counted as unified Republican because its State Senate is tied and its tiebreaker, the lieutenant governor, is a Republican.
\dagger Early results appeared to show that New York had unified Democratic control, but votes are still being counted in many races.

Graphs, R and ©he enewlidorkeimes

Graphs, R and ©he ètw Ildork ©imes

What Happens After the I.P.O.?

\qquad E-MAIL

Passing Patterns of the U.S.'s Top Playmakers

Below, passing patterns from three U.S. players at every stage of the women's Olympic soccer tournament. In Thursday's gold medal match, the U.S. put pressure on Japan, hoping to cancel out its opponent's usual strong ball possession. Related Article s

Carli Lloyd

Against Japan, she wasn't as busy organizing the U.S. attack, which gave her more free rein to create individual opportunities like her second goal.

ROUND ROBIN POOL
vs. France U.S. Won, 4-2

vs. Colombla Won, 3-0

QUARTERFNALS
vs. New Zealand Won, 2-0

SEMFINALS
vs. Canada Won, 4-3 (OT)

AVG. PASSES PER GAME

QUARTERFINALS

vs. New Zealand Won, 2-0

Graphs in actuarial communication

"Its not just about producing graphics for publication. Its about playing around and making a bunch of graphics that help you explore your data. This kind of graphical analysis is a really useful way to help you understand what youre dealing with, because if you cant see it, you cant really understand it. But when you start graphing it out, you can really see what youve got." Peter Aldhous, San Francisco bureau chief of New Scientist magazine.
"The commercial insurance underwriting process was rigorous but also quite subjective and based on intuition. R enables us to communicate our analytic results in appealing and innovative ways to non-technical audiences through rapid development lifecycles. R helps us show our clients how they can improve their processes and effectiveness by enabling our consultants to conduct analyses efficiently". John Lucker, team of advanced analytics professionals at Deloitte Consulting Principal.
see also Gelman (2011).

Graphs in actuarial communication

Histogram of claim counts with BonusMalus and Age

Source : http ://www.londonr.org/Presentations/RInActuarialAnalysis.pptx, data from Kaas et al. (2001)

Graphs in actuarial communication

Boxplots of exposure weighted severity with BonusMalus and Age

Source : http ://www.londonr.org/Presentations/RInActuarialAnalysis.pptx, data from Kaas et al. (2001)

Reproducibility issues

"Commonly research involving scientific computations are reproducible in principle, but not in practice. The published documents are merely the advertisement of scholarship whereas the computer programs, input data, parameter values, etc. embody the scholarship itself. Consequently authors are usually unable to reproduce their own work after a few months or years."

Schwab et al. (2000)
"The goal of reproducible research is to tie specific instructions to data analysis and experimental data so that scholarship can be recreated, better understood and verified. '

Source : http ://cran.open-source-solution.org/web/views/ReproducibleResearch.html

Reproducibility issues

Repeatability of published microarray gene expression analyses

John P A Ioannidis ${ }^{1-3}$, David B Allison ${ }^{4}$, Catherine A Ball ${ }^{5}$, Issa Coulibaly ${ }^{4}$, Xiangqin Cui ${ }^{4}$, Aedín C Culhane ${ }^{6,7}$, Mario Falchi ${ }^{8,9}$, Cesare Furlanello ${ }^{10}$, Laurence Game ${ }^{11}$, Giuseppe Jurman ${ }^{10}$, Jon Mangion ${ }^{11}$, Tapan Mehta ${ }^{4}$, Michael Nitzberg ${ }^{5}$, Grier P Page ${ }^{4,12}$, Enrico Petretto ${ }^{11,13}$ \& Vera van Noort ${ }^{14}$

Figure 1 Summary of the efforts to replicate the published analyses.

\mathbf{R} versus other (statistical) softwares

"The power of the language R lies with its functions for statistical modelling, data analysis and graphics; its ability to read and write data from various data sources; as well as the opportunity to embed R in excel or other languages like $V B A$. In the way $S A S$ is good for data manipulations, R is superior for modelling and graphical output"

Source : http ://www.actuaries.org.uk/system/files/documents/pdf/actuarial-toolkit.pdf

R versus other (statistical) softwares

```
Gsas
    SAS PC: \(\$ 6,000\) per seat - server : \(\$ 28,000\) per processor
    Matlab \(\quad \$ 2,150\) (commercial)
    Excel
    SPSS \$ 4,975
EVIEWS7 EViews \$1,075 (commercial)
RATS RATS \$500
HendSS滕: Gauss
STEIE
S-PLUS* 6
Stata \(\quad \$ 1,195\) (commercial)
S-Plus \$ 2,399 per year
```

[^0]
R in the non-academic world

What software skills are employers seeking?

R in the insurance industry

From 2011, Asia Capital Reinsurance Group (ACR) uses R to Solve Big Data Challenges
Source : http ://www.reuters.com/article/2011/07/21/idUS133061+21-Jul-2011+BW20110721

From 2011, Lloyd's uses motion charts created with R to provide analysis to investors.
Source : http ://blog.revolutionanalytics.com/2011/07/r-visualizes-Iloyds.htm|

©JeffreyBreen
Jettrey Breen
This tweet is longer than the R code in my
blog post to make a Hans Rosling-style motion chart with googleVis.
http://ow.ly/5F4Zl \#rstats
4 hours ago via HootSuite if Favcrite 27 Retweet i Reply

Source : http ://www.revolutionanalytics.com/what-is-open-source-r/companies-using-r.php
R in the insurance industry

Source : http ://jeffreybreen.wordpress.com/2011/07/14/r-one-liners-googlevis/

\mathbf{R} in the insurance industry

Source : http ://jeffreybreen.wordpress.com/2011/07/14/r-one-liners-googlevis/

\mathbf{R} in the insurance industry

Source: http ://lamages.blogspot.ca/2011/09/r-and-insurance.html, i.e. Markus Gesmann's blog

Popularity of R versus other languages

as at January 2013,
Transparent Language Popularity

1.	C	17.780%	1.	C	17.855%
2.	Java	15.031%	2.	Java	17.417%
8.	Python	4.409%	7.	Visual Basic	4.749%
12.	R	1.183%	8.	Python	4.749%
22.	Matlab	0.627%	17.	Matlab	0.641%
27. SAS	0.530%	23.	SAS	0.571%	
			26.	R	0.444%

[^1]Source : http ://www.tiobe.com/index.php/

Popularity of R versus other languages

as at January 2013, tags

stackoverflow	
C++	399,323
Java	348,418
Python	154,647
R	21,818
Matlab	14,580
SAS	899

Cross	Validated
R	3,008
Matlab	210
SAS	187
Stata	153
Java	26

R versus other statistical languages

Source : http ://meta.stats.stackexchange.com/questions/1467/tag-map-for-crossvalidated

R versus other statistical languages

Plot of listserv discussion traffic by year (through December 31, 2011)

Source : http ://r4stats.com/articles/popularity/

R versus other statistical languages

Software used by competitors on Kaggle

Source : http ://r4stats.com/articles/popularity/ and http ://www.kaggle.com/wiki/Software

R versus other statistical languages

Data mining/analytic tools reported in use on Rexer Analytics survey, 2009.

Source : http ://r4stats.com/articles/popularity/

R versus other statistical languages

"What programming languages you used for data analysis in the past 12 months?"

Source : http ://r4stats.com/articles/popularity/

\mathbf{R} versus other statistical languages

"What programming languages you used for data analysis?"

What programming languages you used for data mining / data analysis in the past 12 months? [570 voters]	
R (257)	45\%
SQL (184)	32\%
Python (140)	25\%
Java (139)	24\%
SAS (121)	21\%
MATLAB (83)	-15\%
C/C++ (73)	-13\%
Unix shell/awk/gawk/sed (59)	- 10\%
Perl (45)	\square 7.9\%
Hadoop/Pig/Hive (35)	$\square 6.1 \%$
Lisp (4)	1 0.7\%
Other (70)	$\square 12.0 \%$
None (7)	\| 1.2\%

Source : http ://r4stats.com/articles/popularity/

R versus other 'statistical' softwares, for actuaries

Softwares used by UK actuaries, and CAS actuaries

Source: : http ://www.palisade.com/downloads/pdf/Pryor.pdf

R versus other statistical softwares, for actuaries

Statistical softwares used by UK actuaries, and CAS actuaries

Source : : http ://www.palisade.com/downloads/pdf/Pryor.pdf

The R community, forums, blogs, books

"I cant think of any programming language that has such an incredible community of users. If you have a question, you can get it answered quickly by leaders in the field. That means very little downtime." Mike King, Quantitative Analyst, Bank of America.
"The most powerful reason for using R is the community" Glenn Meyers, in the Actuarial Review.
"The great beauty of R is that you can modify it to do all sorts of things. And you have a lot of prepackaged stuff thats already available, so youre standing on the shoulders of giants", Hal Varian, chief economist at Google.

Source : : http ://www.nytimes.com/2009/01/07/technology/business-computing/07program.html
(R) R news and tutorials contributed by 425 R bloggers (as at Jan. 2013)

Source : : http ://www.r-bloggers.com/

\mathbf{R} versus other softwares used in actuarial science

SAS is a commercial software developed by the SAS Institute;

- it includes well-validated statistical algorithms,
- licensing is expensive
- new statistical methods might be incorporated only after a significant lag
- it includes data management tools, and is undertaken using row by row (observation-level) operations
(see Kleinman \& Horton (2010) for more details)
Matlab better programming environment (e.g. better documentation, better debuggers, better object browser), can be without doing any programming. It is a commercial software, there are more integrated add-ons and more support (but one has to pay for it). R is stronger for statistic.

To define a vector, the common syntax is $\mathrm{v}=[0,1,2]$, then we use $\mathrm{v}(2)$.
Consider the smoothing function in Matlab,

```
[f,df,gcv,sse,penmat,y2cmat] = smooth_basis(argvals, y, fdparobj)
```

(see chapter 2 in Ramsay, Hooker \& Graves (2009) for more details)
R is a free, open-source software, developed by R development core team, and people from the R community.

- programming environment for data analysis
- statisticians often release R functions to implement their work concurrently with publication
- R is a vector-based language, where columns (variables) are manipulated

To define a vector, the common syntax is $v=c(0,1,2)$, then we use v[2] Consider the smoothing function in Matlab,
smoothlist $=$ smooth.basis(argvals, y, fdparobj)
i.e. the output is a single object (a list, the counterpart of struct objects in Matlab)

Take-home message

"The best thing about R is that it was developed by statisticians. The worst thing about R is that it was developed by statisticians." Bo Cowgill, Google

To go further...
forthcoming book on Computational Actuarial Science

[^0]: Source : http ://en.wikipedia.org/wiki/Comparison_of_statistical_packages

[^1]: Source : http ://lang-index.sourceforge.net/

