Actuarial Science with ***** 2. life insurance & mortality tables

Arthur Charpentier

joint work with Christophe Dutang & Vincent Goulet and Rob Hyndman's demography package

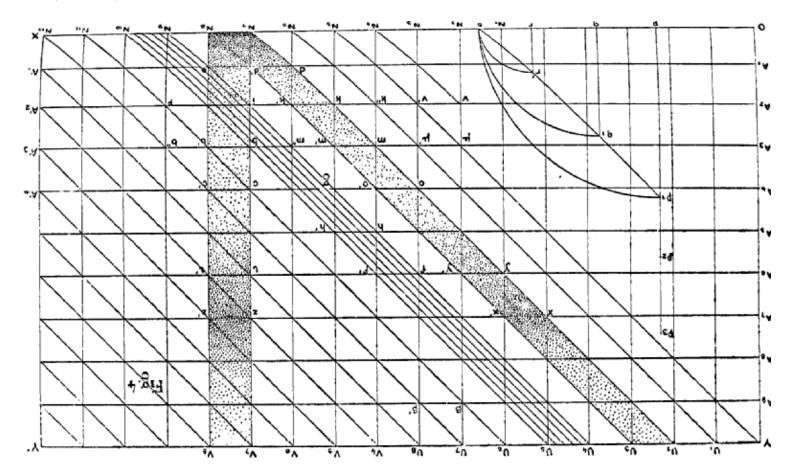
Meielisalp 2012 Conference, June

6th R/Rmetrics Meielisalp Workshop & Summer School on Computational Finance and Financial Engineering

Some (standard) references

Pitacco, E., Denuit, M., Haberman, S.
& Olivieri, A. (2008) *Modeling Longevity Dynamics for Pensions and Annuity Business*Oxford University Press

Schoen, R. (2007) *Dynamic Population Models* Springer Verlag



A possible motivation?

J.P.Morgan	Asset Management	Commercial Banking	Investment Bank	Private Banking	Securities Services	Treasury Services	Client Log On 🔻	Regional Sites		
About Us Product	s & Solutions Globa	Presence	Conferences	Onlin	ne Services	Contact Us				
Investment Banking			11/11/1		111		lifo	Netrics		
Equities							IIIC	NELIIUS		
Fixed Income	Pension Adviso	ory					<u>Overview »</u> Index Descrip	otion »		
Foreign Exchange					e e e e e e e e e e e e e e e e e e e	Print 🔀 Email	Data Sources	-		
Commodities	LifeMetrics -	LifeMetrics - Software						Current Index Data » Historic Index Data » Library » Software » Glossary » Contact Us » TOWERS WATSON CON TOWERS WATSON		
Risk Management	Note: New Excel ve	Note: New Excel version now available								
Derivatives LifeMetrics Index Description Data Sources Library Software Glossary Contact Us Transition Management Credit Liquidity Solutions Prime Services Emerging Markets	Note: New Excel version now available The LifeMetrics toolkit includes a set of computer based models that can be used in forecasting mortality and longevity. These models were evaluated in the research paper, "A quantitative comparison of eight stochastic mortality models using data from England & Wales and the United States". In order to run these models 'R', a free statistical software package, is available from www.r-project.org. The software required to run the forecast models is available for download along with a user guide. The LifeMetrics forecasting software was written by Professor Andrew Cairns and a new user friendly Excel interface has been developed by the LifeMetrics team. Unless otherwise specified, neither the data providers nor any third party endorses LifeMetrics.						Glossary » Contact Us » TOWERS			
Structured Products	Downloads									
Research Global Corporate Bank	 Download <u>"R"</u> Download Life Download Life Download Life 	eMetrics foreca eMetrics softwa	sting model so	<u>ftware</u>						

Lexis diagram, age and time

From Lexis (1880), idea of visualizing lifetime, age x, time t and year of birth y

Lexis diagram, age and time

Idea : Life tables L_x should depend on time, $L_{x,t}$.

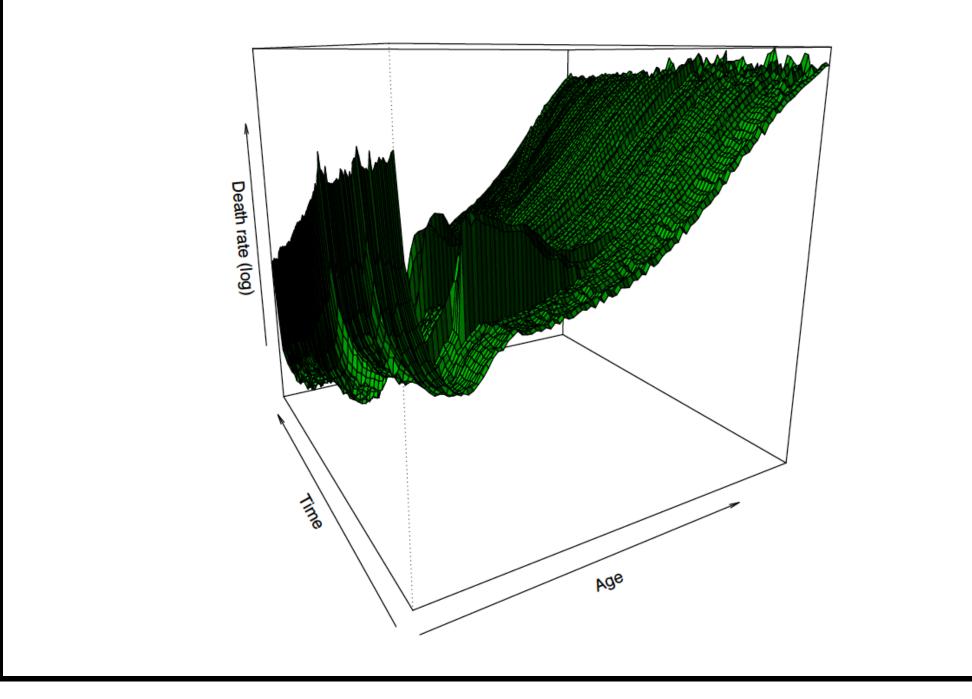
Let $D_{x,t}$ denote the number of deaths of people aged x, during year t, data frame DEATH and let $E_{x,t}$ denote the exposure, of age x, during year t, data frame EXPOSURE, from http://www.mortality.org/

The Human Mortality Database

John R. Wilmoth, Director	University of California, Berkeley
Vladimir Shkolnikov, Co-Director	Max Planck Institute for Demographic Research

The Human Mortality Database (HMD) was created to provide detailed mortality and population data to researchers, students, journalists, policy analysts, and others interested in the history of human longevity. The project began as an outgrowth of earlier projects in the <u>Department of Demography at the University of California, Berkeley, USA</u>, and at the <u>Max</u> <u>Planck Institute for Demographic Research in Rostock, Germany</u> (see <u>history</u>). It is the work of two teams of researchers in the USA and Germany (see <u>research teams</u>), with the help of financial backers and scientific collaborators from around the world (see <u>acknowledgements</u>).

Lexis diagram, age and time


Remark : be carefull of age 110+

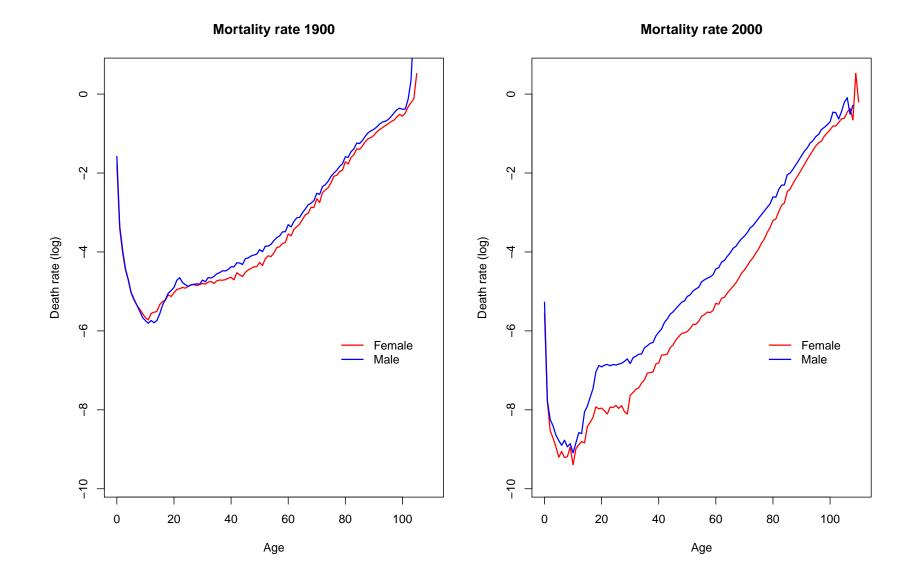
- > DEATH\$Age=as.numeric(as.character(DEATH\$Age))
- > DEATH\$Age[is.na(DEATH\$Age)]=110
- > EXPOSURE\$Age=as.numeric(as.character(EXPOSURE\$Age))
- > EXPOSURE\$Age[is.na(EXPOSURE\$Age)]=110

Consider force of mortality function

$$\mu_{x,t} = \frac{D_{x,t}}{E_{x,t}}$$

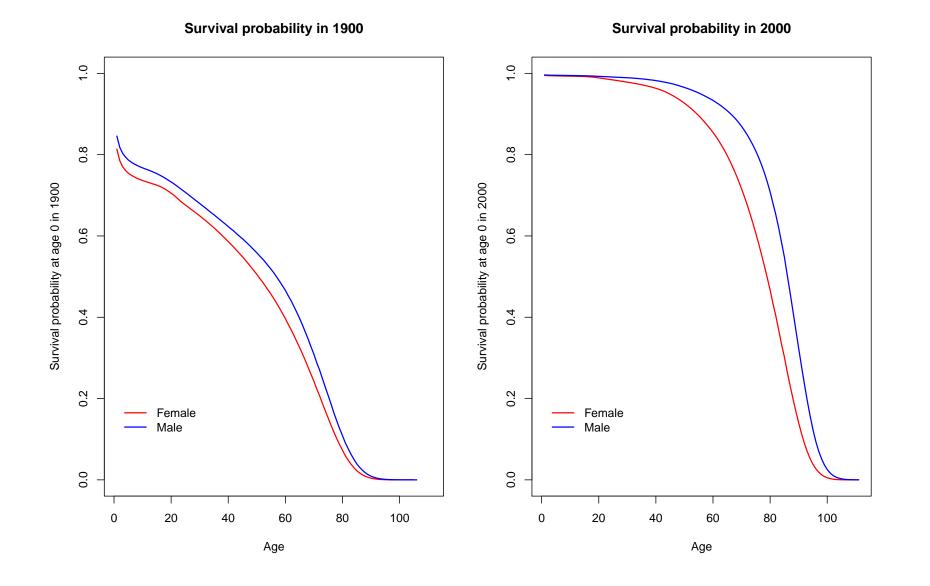
- > MU=DEATH[,3:5]/EXPOSURE[,3:5]
- > MUT=matrix(MU[,3],length(AGE),length(ANNEE))
- > persp(AGE[1:100],ANNEE,log(MUT[1:100,]),
- + theta=-30,col="light green",shade=TRUE)

Tables, per year t and Survival lifetimes

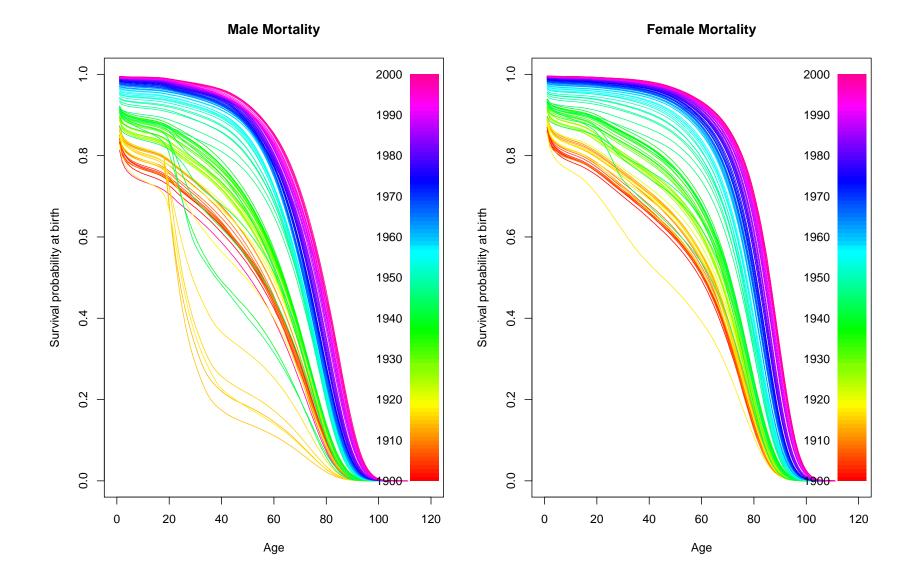

Let us study deaths occurred in year=1900 or 2000, $x \mapsto \log \mu_{x,t}$ when t = 1900 or 2000.

- > D=DEATH[DEATH\$Year==year,]; E=EXPOSURE[EXPOSURE\$Year==year,]
- > MU = D[,3:5]/E[,3:5]
- > plot(0:110,log(MU[,1]),type="l",col="red"); lines(0:110,log(MU[,2]),col="blue")

Evolution of
$$x \mapsto L_{x,t} = \exp\left(-\int_0^x \mu_{h,t} dh\right)$$
 when $t = 1900$ or 2000,


- > PH=PF=matrix(NA,111,111)
- > for(x in 0:110){
- + PH[x+1,1:(111-x)]=exp(-cumsum(MU[(x+1):111,2]))
- + PF[x+1,1:(111-x)]=exp(-cumsum(MU[(x+1):111,1]))}
- > x=0; plot(1:111,PH[x+1,],ylim=c(0,1),type="l",col="blue")
- > lines(1:111,PF[x+1,],col="red")

Tables, per year t and Survival lifetimes



9

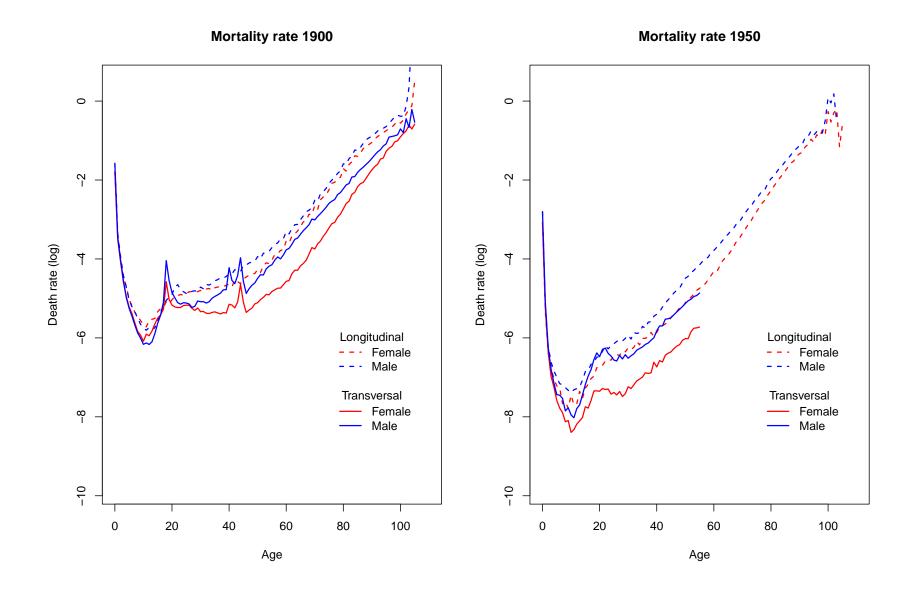
Tables, per year t and Survival lifetimes

Survival lifetimes and rectangularization'

Life table and transversality

- > XV<-unique(Deces\$Age); YV<-unique(Deces\$Year)</pre>
- > DTF<-t(matrix(Deces[,3],length(XV),length(YV)))</pre>
- > ownames(DTF)=YV;colnames(DTF)=XV
- > t(DTF)[1:13,1:10]

	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908
0	64039	61635	56421	53321	52573	54947	50720	53734	47255	46997
1	12119	11293	10293	10616	10251	10514	9340	10262	10104	9517
2	6983	6091	5853	5734	5673	5494	5028	5232	4477	4094
3	4329	3953	3748	3654	3382	3283	3294	3262	2912	2721
4	3220	3063	2936	2710	2500	2360	2381	2505	2213	2078
5	2284	2149	2172	2020	1932	1770	1788	1782	1789	1751
6	1834	1836	1761	1651	1664	1433	1448	1517	1428	1328
7	1475	1534	1493	1420	1353	1228	1259	1250	1204	1108
8	1353	1358	1255	1229	1251	1169	1132	1134	1083	961
9	1175	1225	1154	1008	1089	981	1027	1025	957	885
10	1174	1114	1063	984	977	882	955	937	942	812
11	1162	1055	1038	1020	945	954	931	936	880	851
12	1100	1254	1076	1034	1023	1009	1041	1026	954	908
13	1251	1283	1190	1126	1108	1093	1111	1054	1103	940


Life table and transversality

It might be interesting to follow a cohort, per year of birth x - t,

- > Nannee <- max(DEATH\$Year)</pre>
- > naissance <- 1950</pre>
- > taille <- Nannee naissance</pre>
- > Vage <- seq(0,length=taille+1)</pre>
- > Vnaissance <- seq(naissance,length=taille+1)</pre>
- > Cagreg <- DEATH\$Year*1000+DEATH\$Age</pre>
- > Vagreg <- Vnaissance*1000+Vage</pre>
- > indice <- Cagreg%in%Vagreg</pre>
- > DEATH[indice,]

	Year	Age	Female	Male	Total
5662	1950	0	18943.05	25912.38	44855.43
5774	1951	1	2078.41	2500.70	4579.11
5886	1952	2	693.20	810.32	1503.52
5998	1953	3	375.08	467.12	842.20
6110	1954	4	287.04	329.09	616.13
6222	1955	5	205.03	246.07	451.10
6334	1956	6	170.00	244.00	414.00

Life table and transversality

Lee & Carter (1992) model

Assume here (as in the original model)

 $\log \mu_{x,t} = \alpha_x + \beta_x \cdot \kappa_t + \varepsilon_{x,t},$

with some i.i.d. noise $\varepsilon_{x,t}$. Identification assumptions are usually

$$\sum_{x=x_m}^{x_M} \beta_x = 1 \text{ and } \sum_{t=t_m}^{t_M} \kappa_t = 0$$

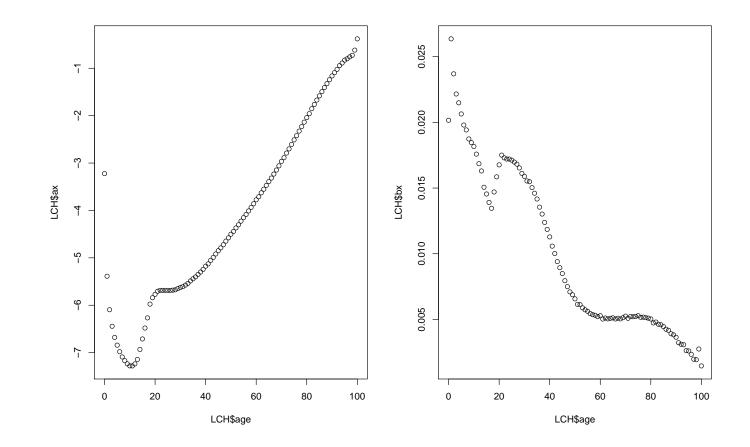
Then sets of parameters $\boldsymbol{\alpha} = (\alpha_x), \, \boldsymbol{\beta} = (\beta_x)$ and $\boldsymbol{\kappa} = (\kappa_t)$, are obtained solving

$$\left(\hat{\alpha}_x, \hat{\beta}_x, \kappa_t\right) = \arg\min\sum_{x,t} \left(\ln\mu_{xt} - \alpha_x - \beta_x \cdot k_t\right)^2$$

Using demography package

Package demography can be used to fit a Lee-Carter model

- > library(forecast)
- > library(demography)
- > YEAR=unique(DEATH\$Year);nC=length(YEAR)
- > AGE =unique(DEATH\$Age);nL=length(AGE)
- > MUF =matrix(DEATH\$Female/EXPOSURE\$Female,nL,nC)
- > MUH =matrix(DEATH\$Male/EXPOSURE\$Male,nL,nC)
- > POPF=matrix(EXPOSURE\$Female,nL,nC)
- > POPH=matrix(EXPOSURE\$Male,nL,nC)


Then we use the demogdata format

```
> BASEH <- demogdata(data=MUH, pop=POPH, ages=AGE, years=YEAR, type="mortality",
+ label="France", name="Hommes", lambda=1)
> BASEF <- demogdata(data=MUF, pop=POPF,ages=AGE, years=YEAR, type="mortality",
+ label="France", name="Femmes", lambda=1)
```

Estimation of
$$\alpha = (\alpha_x)$$
 and $\beta = (\beta_x)$

The code is simply LCH <- lca(BASEH)

> plot(LCH\$age,LCH\$ax,col="blue"); plot(LCH\$age,LCH\$bx,col="blue")

Estimation and projection of $\kappa = (\kappa_t)$'s

Use library(forcast) to predict future κ_t 's, e.g. using exponential smoothing

```
> library(forecast)
> Y <- LCH$kt
> (ETS <- ets(Y))
ETS(A,N,N)
Call:
ets(y = Y)
  Smoothing parameters:
    alpha = 0.8923
  Initial states:
    1 = 71.5007
  sigma:
         12.3592
             AICc
     AIC
                        BIC
```

1042.074 1042.190 1047.420

> plot(forecast(ETS,h=100))

But as in Lee & Carter original model, it is possible to fit an ARMA(1,1) model, on the differentiate series $(\Delta \kappa_t)$

$$\Delta \kappa_t = \phi \Delta \kappa_{t-1} + \delta + u_t - \theta u_{t-1}$$

It is also possible to consider a linear tendency

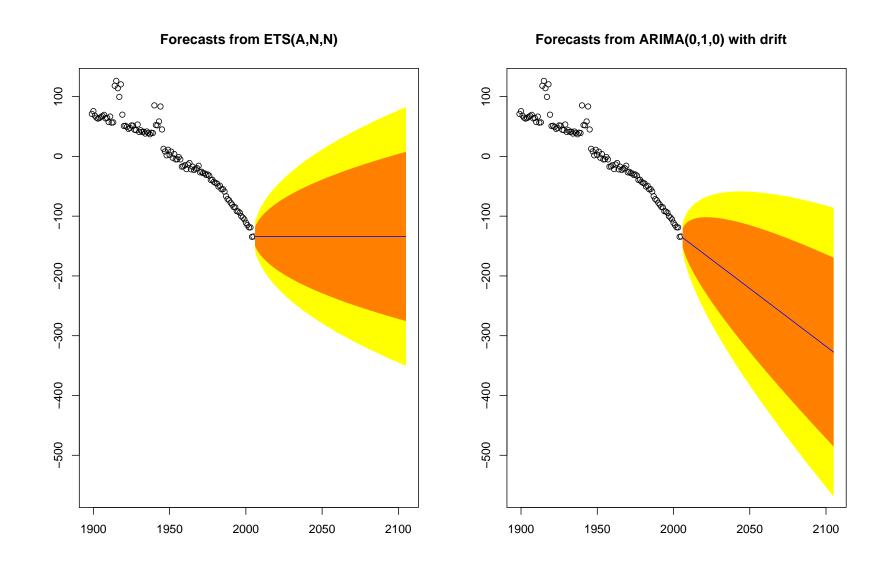
$$\kappa_t = \alpha + \beta t + \phi \kappa_{t-1} + u_t - \theta u_{t-1}.$$

```
> (ARIMA <- auto.arima(Y,allowdrift=TRUE))
Series: Y
ARIMA(0,1,0) with drift</pre>
```

```
Call: auto.arima(x = Y, allowdrift = TRUE)
```

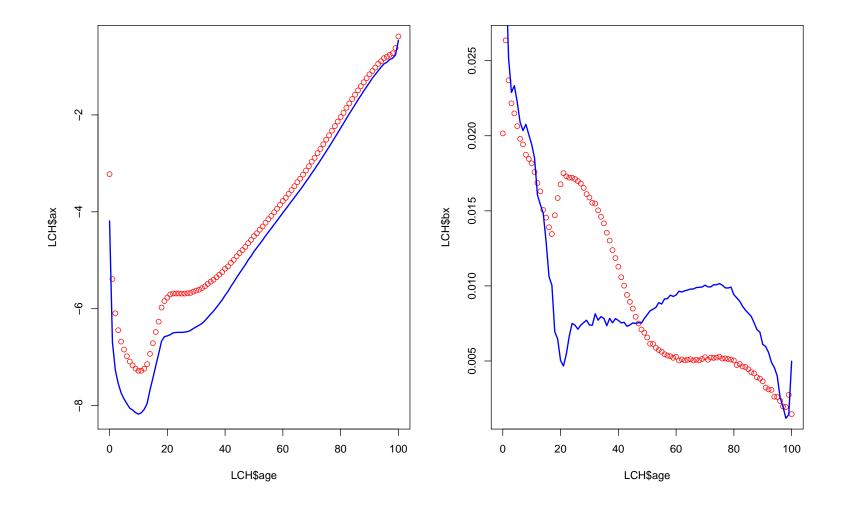
Coefficients:

```
drift
```

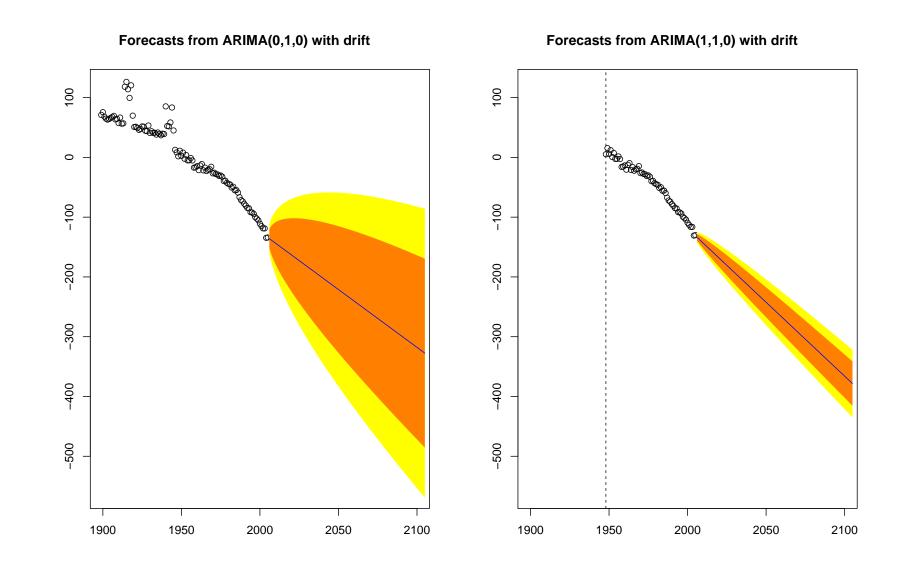

-1.9346

s.e. 1.1972

sigma^2 estimated as 151.9: log likelihood = -416.64
AIC = 837.29 AICc = 837.41 BIC = 842.62

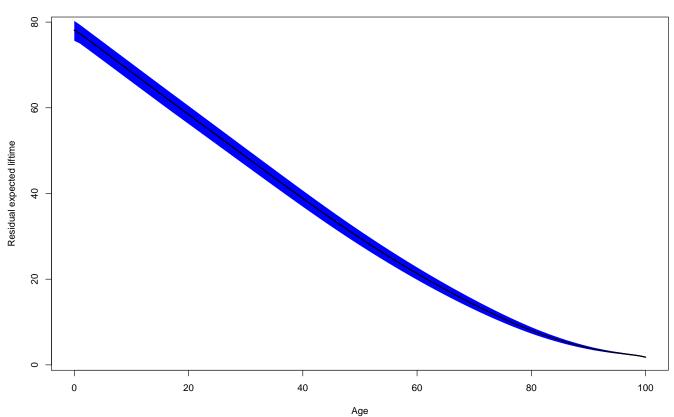

```
> plot(forecast(ARIMA,h=100))
```

Projection of $\hat{\kappa}_t$'s



Shouldn't we start modeling after 1945?

Starting in 1948, LCH0 <- lca(BASEH, years=1948:2005)</pre>



Projection of $\hat{\kappa}_t$'s

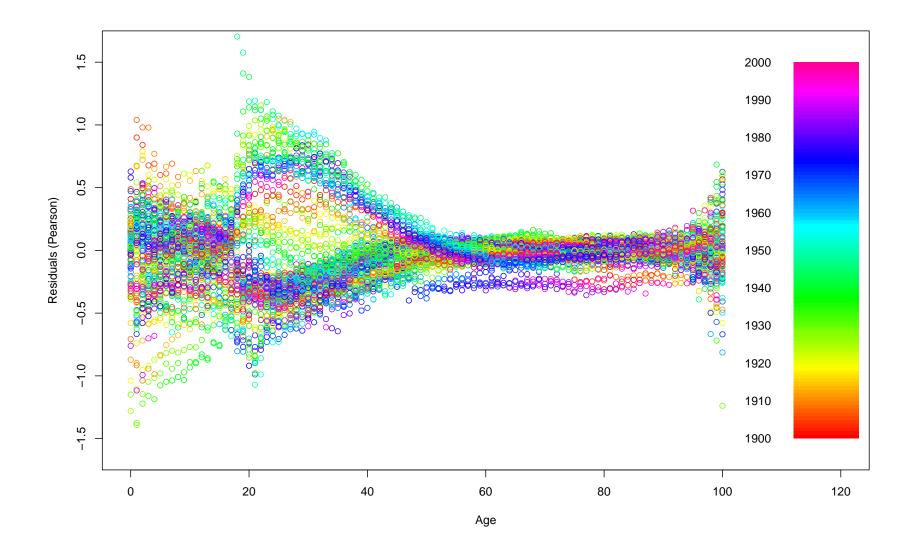
Projection of life expectancy, born in 2005

- > LCHT=lifetable(LCHf); plot(0:100,LCHT\$ex[,5],type="l",col="red")
- > LCHTu=lifetable(LCHf,"upper"); lines(0:100,LCHTu\$ex[,5],lty=2)
- > LCHTl=lifetable(LCHf,"lower"); lines(0:100,LCHTl\$ex[,5],lty=2)

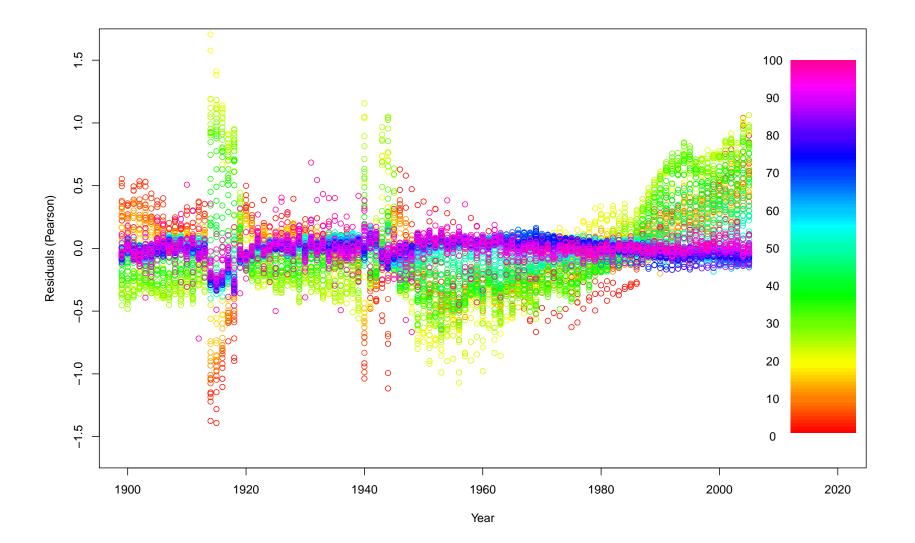
Life expectancy in 2005

Residuals in Lee & Carter model

Recall that


$$\log \mu_{x,t} = \alpha_x + \beta_x \cdot \kappa_t + \varepsilon_{x,t}$$

Let $\hat{\varepsilon}_{x,t}$ denote pseudo-residuals, obtained from estimation


$$\widehat{\varepsilon}_{x,t} = \log \mu_{x,t} - \left(\widehat{\alpha}_x + \widehat{\beta}_x \cdot \widehat{\kappa}_t\right).$$

- > RES=residuals(LCH,"pearson")
- > colr=function(k) rainbow(110)[k*100]
- > couleur=Vectorize(colr)(seq(.01,1,by=.01))
- > plot(rep(RES\$y,length(RES\$x)),(RES\$z),col=couleur[rep(RES\$x,
- + each=length(RES\$y))-RES\$x[1]+1])
- > plot(rep(RES\$x,each=length(RES\$y)),t(RES\$z),col=couleur[rep(RES\$y,length(RES\$x))+1])

Residuals in Lee & Carter model

Residuals in Lee & Carter model

LifeMetrics Functions

LifeMetrics is based on R functions that can be downloaded from JPMorgan's website, that can be uploaded using source("fitModels.r").

Standard functions are based on two matrices etx (for the exposure) and dtx for death counts, respectively at dates t and ages x.

Recall that, with discrete notation,

 $m(x,t) = \frac{\# \text{ deaths during calendar year } t \text{ aged } x \text{ last birthday}}{\text{average population during calendar year } t \text{ aged } x \text{ last birthday}}$

Note that not only the Lee-Carter model is implemented, but several models, LEE & CARTER (1992), $\log m(x,t) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)}$, RENSHAW & HABERMAN (2006), $\log m(x,t) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)} + \beta_x^{(3)} \gamma_{t-x}^{(3)}$, CURRIE (2006), $\log m(x,t) = \beta_x^{(1)} + \kappa_t^{(2)} + \gamma_{t-x}^{(3)}$, CAIRNS, BLAKE & DOWD (2006), $\operatorname{logit}(1 - e^{-m(x,t)}) = \kappa_t^{(1)} + (x - \alpha)\kappa_t^{(2)}$, CAIRNS *et al.* (2007), $\operatorname{logit}(1 - e^{-m(x,t)}) = \kappa_t^{(1)} + (x - \alpha)\kappa_t^{(2)} + \gamma_{t-x}^{(3)}$.

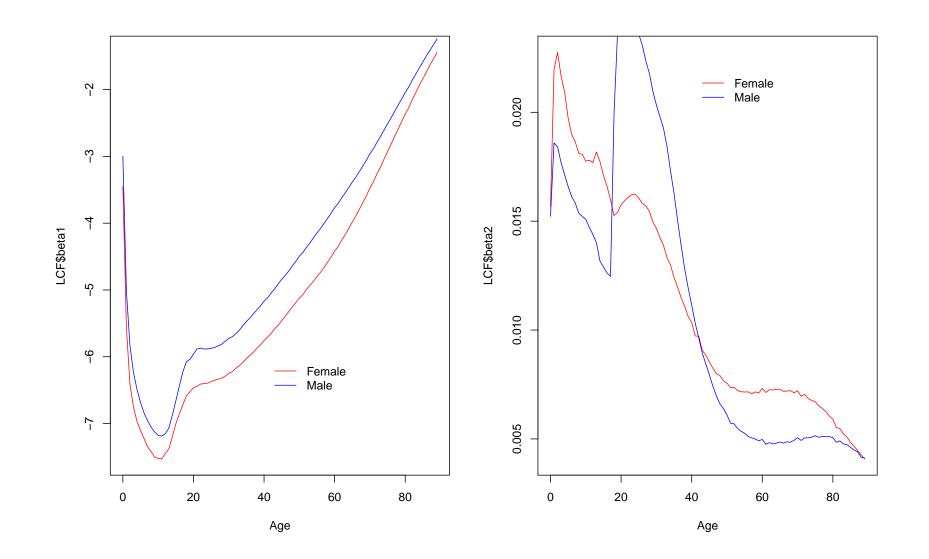
LifeMetrics Functions

For Lee & Carter model,

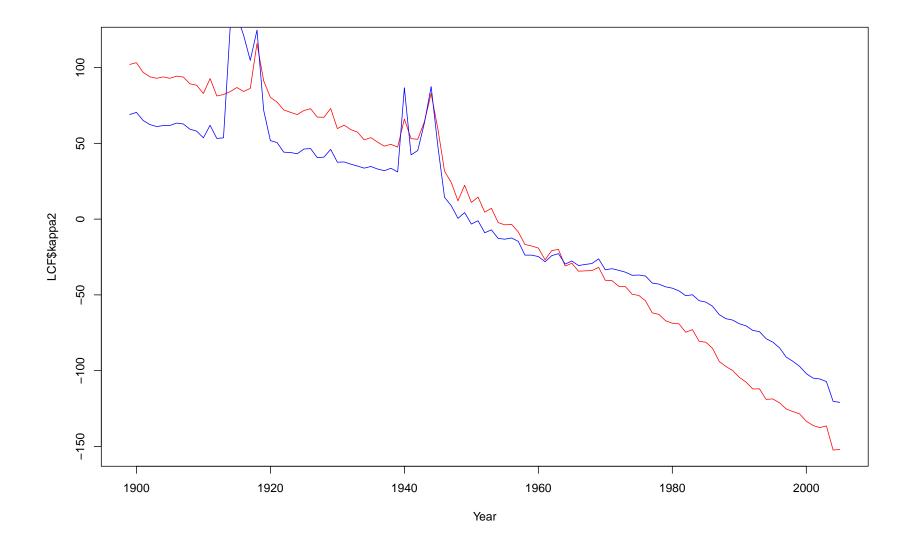
```
> res <- fit701(x, y, etx, dtx, wa)</pre>
```

where wa is a (possible) weight function. Here, assume that wa=1.

Remark : we have to remove very old ages,


- > DEATH <- DEATH[DEATH\$Age<90,]</pre>
- > EXPOSURE <- EXPOSURE[EXPOSURE\$Age<90,]</pre>
- > XV <- unique(DEATH\$Age)</pre>
- > YV <- unique(DEATH\$Year)</pre>
- > ETF <- t(matrix(EXPOSURE[,3],length(XV),length(YV)))</pre>
- > DTF <- t(matrix(DEATH[,3],length(XV),length(YV)))</pre>
- > ETH <- t(matrix(EXPOSURE[,4],length(XV),length(YV)))</pre>
- > DTH <- t(matrix(DEATH[,4],length(XV),length(YV)))</pre>
- > WA <- matrix(1,length(YV),length(XV))</pre>
- > LCF <- fit701(xv=XV,yv=YV,etx=ETF,dtx=DTF,wa=WA)</pre>
- > LCH <- fit701(xv=XV,yv=YV,etx=ETH,dtx=DTH,wa=WA)</pre>

LifeMetrics Functions


The output is the following, LC\$kappa1, LC\$beta1, ... LC\$ll for the maximum log-likelihood estimators of different parameters, LC\$mtx is an array with crude death rates, and LC\$mhat with fitted death rates. LC\$cy is the vector of cohort years of birth (corresponding to LC\$gamma3).

It it then possible to plot one of the cofficients against either LC\$x or LC\$y.

- > plot(LCF\$x,LCF\$beta1,type="l",col="red")
- > lines(LCH\$x,LCH\$beta1,col="blue",lty=2)
- > plot(LCF\$x,LCF\$beta2,type="l",col="red")
- > lines(LCH\$x,LCH\$beta2,col="blue",lty=2)

- > plot(LCF\$y,LCF\$kappa2,type="l",col="red")
- > lines(LCH\$y,LCH\$kappa2,col="blue")

Using the gnm package

(Much) more generally, it is possible to use the gnm package, to run a regression. Assume here that

 $D_{x,t} \sim \mathcal{P}(\lambda_{x,t})$ where $\lambda_{x,t} = E_{x,t} \exp(\alpha_x + \beta_x \cdot \kappa_t)$

which is a generalized nonlinear regression model.

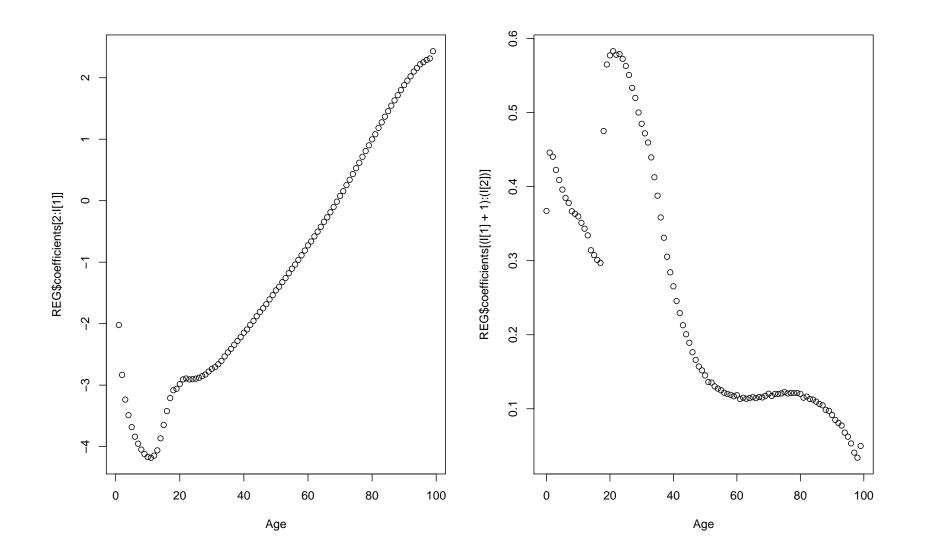
- > library(gnm)
- > Y=DEATH\$Male
- > E=EXPOSURE\$Male
- > Age= DEATH\$Age
- > Year=DEATH\$Year
- > I=(DEATH\$Age<100)</pre>
- > base=data.frame(Y=Y[I],E=E[I],Age=Age[I],Year=Year[I])
- > REG=gnm(Y^{factor(Age)+Mult((factor(Age)),factor(Year)),}

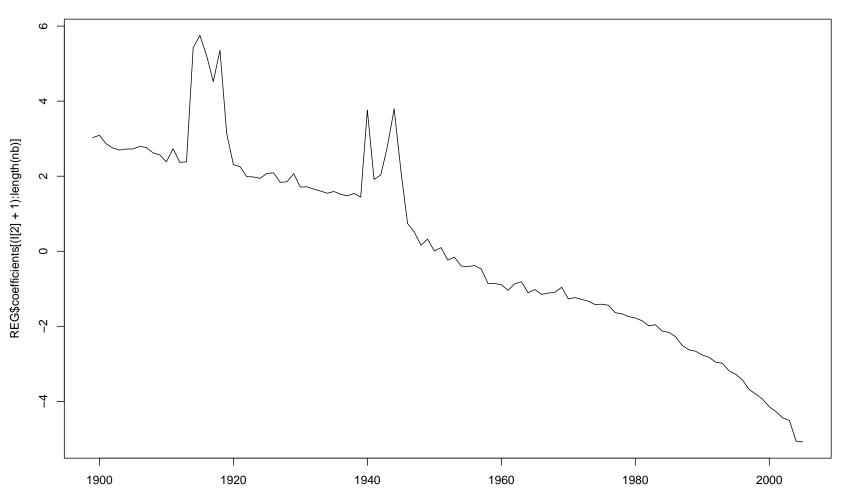
```
data=base,offset=log(E),family=quasipoisson)
```

Initialising

Running start-up iterations..

Running main iterations.....

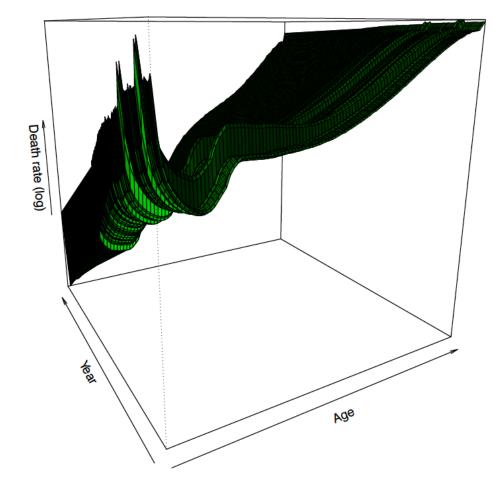

Done


Using the gnm package

- > names(REG\$coefficients[c(1:5,85:90)])
- [1] "(Intercept)" "factor(Age)1" "factor(Age)2" "factor(Age)3"
- [5] "factor(Age)4" "factor(Age)84" "factor(Age)85" "factor(Age)86"
- [9] "factor(Age)87" "factor(Age)88" "factor(Age)89"
- > names(REG\$coefficients[c(91:94,178:180)])
- [1] "Mult(., factor(Year)).factor(Age)0" "Mult(., factor(Year)).factor(Age)1"
- [3] "Mult(., factor(Year)).factor(Age)2" "Mult(., factor(Year)).factor(Age)3"
- [5] "Mult(., factor(Year)).factor(Age)87" "Mult(., factor(Year)).factor(Age)88"
- [7] "Mult(., factor(Year)).factor(Age)89"
- > nomvar <- names(REG\$coefficients)</pre>
- > nb3 <- substr(nomvar,nchar(nomvar)-3,nchar(nomvar))</pre>
- > nb2 <- substr(nomvar,nchar(nomvar)-1,nchar(nomvar))</pre>
- > nb1 <- substr(nomvar,nchar(nomvar),nchar(nomvar))</pre>

```
> nb <- nb3
```

- > nb[substr(nb,1,1)=="g"]<- nb1[substr(nb,1,1)=="g"]</pre>
- > nb[substr(nb,1,1)=="e"]<- nb2[substr(nb,1,1)=="e"]</pre>
- > nb <- as.numeric(nb)</pre>
- > I <- which(abs(diff(nb))>1)



Année

Using Lee & Carter projections

Using estimators of α_x 's, β_x 's, as well as projection of κ_t 's, it is possible to obtain projection of any actuarial quantities, based on projections of $\mu_{x,t}$'s. E.g.

```
> A <- LCH$ax; B <- LCH$bx
> K1 <- LCH$kt; K2 <- LCH$kt[99]+LCHf$kt.f$mean; K <- c(K1,K2)
> MU <- matrix(NA,length(A),length(K))
> for(i in 1:length(A)){ for(j in 1:length(K)){
+ MU[i,j] <- exp(A[i]+B[i]*K[j]) }}</pre>
```


It is then possible to extrapolate $k \mapsto {}_k p_x$'s

- > t=2000
- > x=40
- > s=seq(0,99-x-1)

- > MUd=MU[x+1+s,t+s-1898]
- > (Pxt=cumprod(exp(-diag(MUd))))

```
[1] 0.99838440 0.99663098 0.99469369 0.99248602 0.99030804 0.98782725
[7] 0.98417947 0.98017722 0.97575106 0.97098896 0.96576107 0.96006617
[13] 0.95402111 0.94749333 0.94045500 0.93291535 0.92484762 0.91622709
[19] 0.90707101 0.89726011 0.88690981 0.87577047 0.86405282 0.85159220
[25] 0.83850049 0.82472277 0.81011757 0.79478797 0.77847592 0.76144457
[31] 0.74364218 0.72457570 0.70474824 0.68387491 0.66193090 0.63903821
[37] 0.61469237 0.58924560 0.56257772 0.53478172 0.50577349 0.47480005
[43] 0.44324965 0.41055038 0.37750446 0.34390607 0.30973747 0.27613617
[49] 0.24253289 0.21038508 0.17960626 0.14970800 0.12276231 0.09902686
[55] 0.07742879 0.05959964 0.04495042 0.03281240 0.02366992
```

and then we can derive projections of several actuarial (or demography) quantities. E.g. remaining lifetimes

> x=40

- > E=rep(NA,150)
- > for(t in 1900:2040){
- + s = seq(0, 90 x 1)
- + MUd=MU[x+1+s,t+s-1898]

```
+ Pxt=cumprod(exp(-diag(MUd)))
```

```
+ ext=sum(Pxt)
```

```
+ E[t-1899]=ext}
```

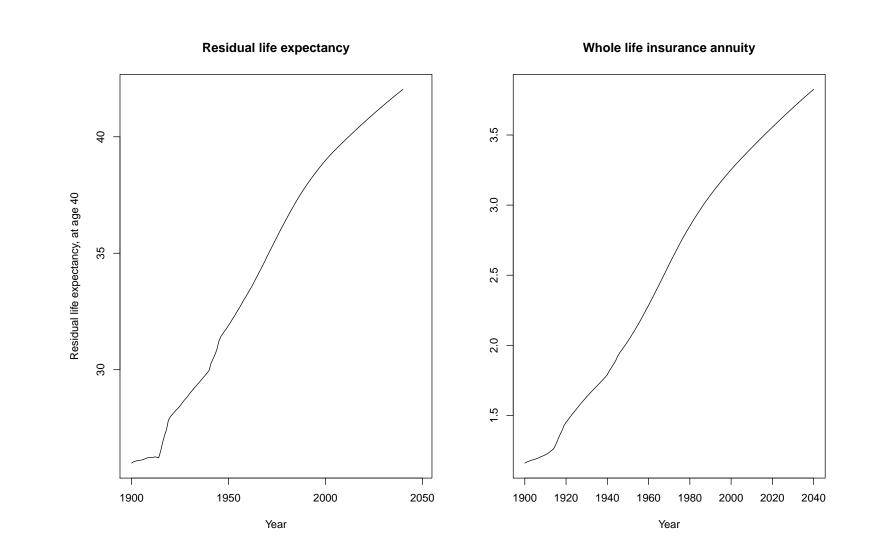
```
> plot(1900:2049,E)
```

or expected present value of deferred whole life annuities, purchased at age 40, deferred of 30 years

```
> r=.035: m=70
```

```
> VV=rep(NA,141)
```

```
> for(t in 1900:2040){
```


```
+ s = seq(0, 90 - x - 1)
```

```
+ MUd=MU[x+1+s,t+s-1898]
```

```
+ Pxt=cumprod(exp(-diag(MUd)))
```

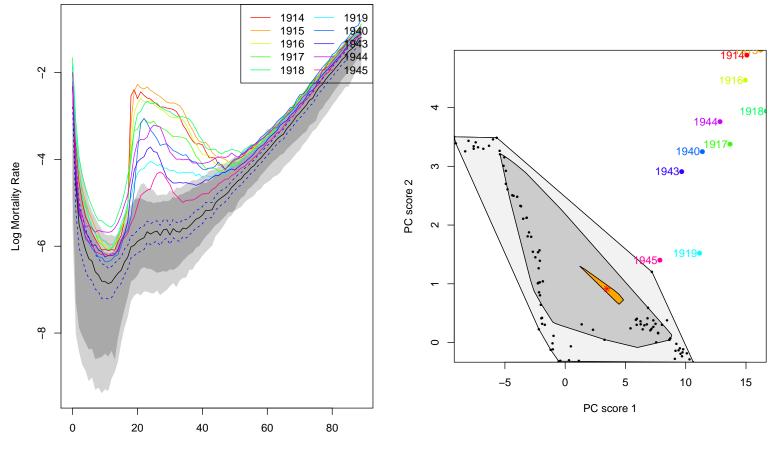
- + h = seq(0, 30)
- + $V=1/(1+r)^{(m-x+h)}*Pxt[m-x+h]$
- + VV[t-1899]=sum(V,na.rm=TRUE)}

```
> plot(1900:2040,VV)
```


Mortality rates as functional time series

It is possible to consider functional time series using rainbow package

- > library(rainbow)
- > rownames(MUH)=AGE
- > colnames(MUH)=YEAR
- > rownames(MUF)=AGE
- > colnames(MUF)=YEAR
- > MUH=MUH[1:90,]
- > MUF=MUF[1:90,]


```
> MUHF=fts(x = AGE[1:90], y = log(MUH), xname = "Age",yname = "Log Mortality Rate")
```

```
> MUFF=fts(x = AGE[1:90], y = log(MUF), xname = "Age",yname = "Log Mortality Rate")
```

```
> fboxplot(data = MUHF, plot.type = "functional", type = "bag")
```

Using principal components, it is possible to detect outliers

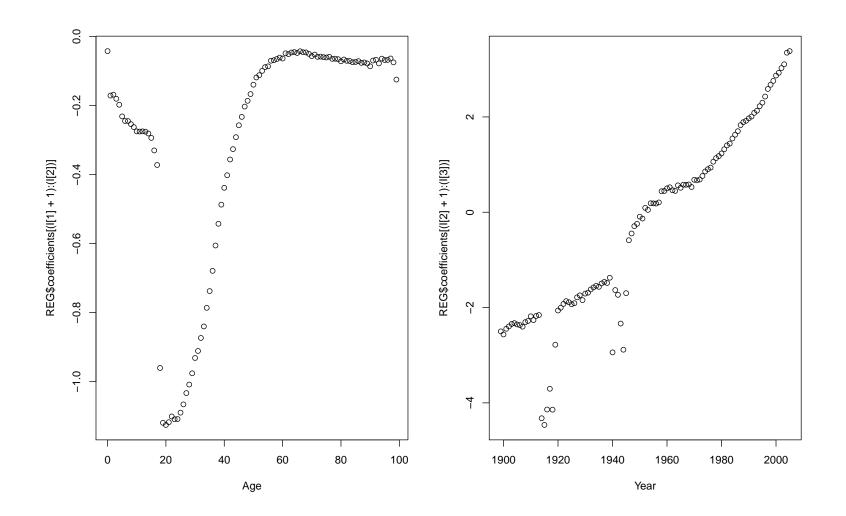
```
> fboxplot(data = MUHF, plot.type = "bivariate", type = "bag")
```

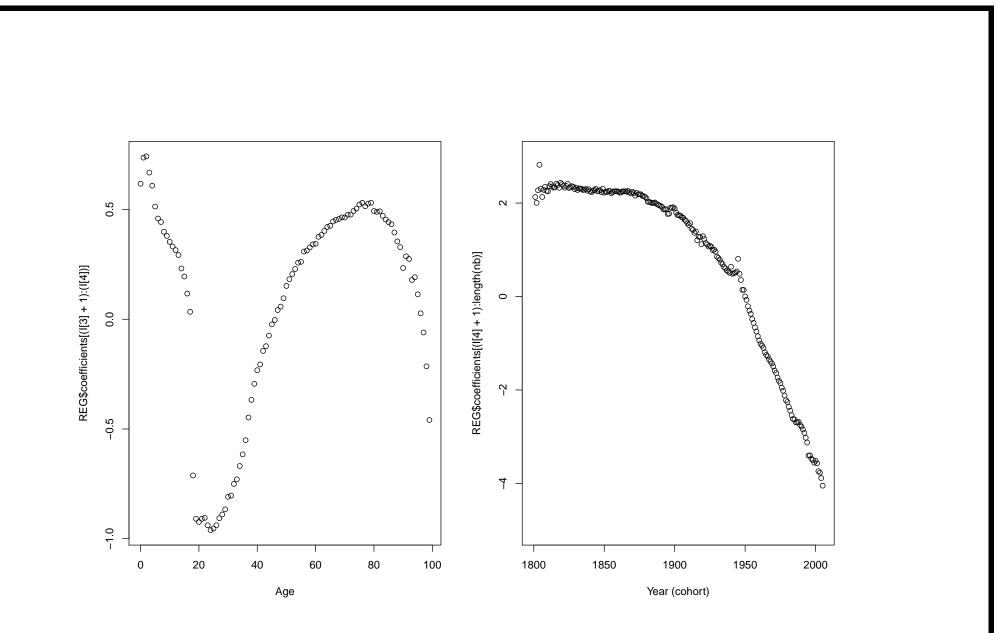

Age

Cohort effect and Lee & Carter model

A natural idea is to include (on top of the age x and the year t) a cohort factor, based on the year of birth, t - x

$$\log \mu_{x,t} = \alpha_x + \beta_x \cdot \kappa_t + \gamma_x \cdot \delta_{t-x} + \eta_{x,t},$$


as in RENSHAW & HABERMAN (2006).


Using gnm function, it is possible to estimate that model, assuming again that a log-Poisson model for death counts is valid,

```
> D=as.vector(BASEB)
```

```
> E=as.vector(BASEC)
```

- > A=rep(AGE,each=length(ANNEE))
- > Y=rep(ANNEE,length(AGE))
- > C=Y-A
- > base=data.frame(D,E,A,Y,C,a=as.factor(A),
- + y=as.factor(Y),c=as.factor(C))
- > LCC=gnm(D~a+Mult(a,y)+Mult(a,c),offset=log(E), family=poisson,data=base)

