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Modeling future lifetime

Let (x) denote a life aged x, with x ≥ 0.

The future lifetime of (x) is a continuous random variable Tx

Let Fx and F x (or Sx) denote the cumulative distribution function of Tx and the
survival function, respectively,

Fx(t) = P(Tx ≤ t) and F x(t) = P(Tx > t) = 1− Fx(t).

Let µx denote the force of mortality at age x (or hazard rate),

µx = lim
h↓0

P(T0 ≤ x+ h|T0 > x)

h
= lim

h↓0

P(Tx ≤ h)
h

=
−1
F 0(x)

dF 0(x)

dx
= −d logF 0(x)

dx

or conversely,

F x(t) =
F 0(x+ t)

F (x)
= exp

(
−
∫ x+t

x

µsds

)
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Modeling future lifetime

Define tpx = P(Tx > t) = F x(t) and tqx = P(Tx ≤ t) = Fx(t), and

t|hqx = P(t < Tx ≤ t+ h) = tpx − t+hpx

the defered mortality probability. Further, px = 1px and qx = 1qx.

Several equalities can be derived, e.g.

tqx =

∫ t

0
spxµx+sds.
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Modeling curtate future lifetime

The curtate future lifetime of (x) is the number of future years completed by (x)

priors to death, Kx = bTxc.

Its probability function is

kdx = P(Kx = k) = k+1qx − kqx = k|qx

for k ∈ N, and it cumulative distribution function is P(Kx ≤ k) = k+1qx.
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Modeling future lifetime

Define the (complete) expectation of life,

◦
ex = E(Tx) =

∫ ∞
0

F x(t)dt =

∫ ∞
0

tpxdt

and its discrete version, curtate expectation of life

ex = E(bTxc) =
∞∑
k=1

tpx
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Life tables

Given x0 (initial age, usually x0 = 0), define a function lx where x ∈ [x0, ω] as

lx0+t = lx0
· tpx0

Usually l0 = 100, 000. Then

tpx =
lx+t
lx

Remark : some kind of Markov property,

k+hpx =
Lx+k+h
Lx

=
Lx+k+h
Lx+k

· Lx+k
Lx

= hpx+k · kpx

Let dx = lx − lx+1 = lx · qx
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(old) French life tables

> TD[39:52,]
Age Lx

39 38 95237
40 39 94997
41 40 94746
42 41 94476
43 42 94182
44 43 93868
45 44 93515
46 45 93133
47 46 92727
48 47 92295
49 48 91833
50 49 91332
51 50 90778
52 51 90171
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(old) French life tables

> plot(TD$Age,TD$Lx,lwd=2,col="red",type="l",xlab="Age",ylab="Lx")
> lines(TV$Age,TV$Lx,lwd=2,col="blue")
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Playing with life tables

From life tables, it is possible to derive probabilities, e.g. 10p40 = P(T40 > 10)

> TD$Lx[TD$Age==50]
[1] 90778
> TD$Lx[TD$Age==40]
[1] 94746
> x <- 40
> h <- 10
> TD$Lx[TD$Age==x+h]/TD$Lx[TD$Age==x]
[1] 0.9581196
> TD$Lx[x+h+1]/TD$Lx[x+1]
[1] 0.9581196
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Defining matrices P = [kpx], Q = [kqx] and D = [kdx]

For k = 1, 2, · · · and x = 0, 1, 2, · · · it is possible to calculate kpx. If x ∈ N∗,
define P = [kpx].

> Lx <- TD$Lx
> m <- length(Lx)
> p <- matrix(0,m,m); d <- p
> for(i in 1:(m-1)){
+ p[1:(m-i),i] <- Lx[1+(i+1):m]/Lx[i+1]
+ d[1:(m-i),i] <- (Lx[(1+i):(m)]-Lx[(1+i):(m)+1])/Lx[i+1]}
> diag(d[(m-1):1,]) <- 0
> diag(p[(m-1):1,]) <- 0
> q <- 1-p

Here, p[10,40] corresponds to 10p40 :

> p[10,40]
[1] 0.9581196

Remark : matrices will be more convenient than functions for computations...
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Working with matrices P = [kpx] and Q = [kqx]

(Curtate) expactation of life is

ex = E(Kx) =
∞∑
k=1

k · k|1qx =
∞∑
k=1

kpx

> x <- 45
> S <- p[,45]/p[1,45]
> sum(S)
[1] 30.46237

It is possible to define a function

> life.exp=function(x){sum(p[1:nrow(p),x])}
> life.exp(45)
[1] 30.32957
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Insurance benefits and expected present value

Let i denote a (constant) interest rate, and ν = (1 + i)−1 the discount factor.

Consider a series of payments C = (C1, · · · , Ck) due with probability
p = (p1, · · · , pk), at times t = (t1, · · · , tk). The expected present value of those
benefits is

k∑
j=1

Cj · pj
(1 + i)tj

=

k∑
j=1

νtj · Cj · pj

Consider here payments at dates {1, 2, · · · , k}.
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Insurance benefits and expected present value

Example : Consider a whole life insurance, for some insured aged x, where
benefits are payables following the death, if it occurs with k years from issue, i.e.
pj = jdx,

n∑
j=1

C · P(Kx = j)

(1 + i)j
= C ·

n∑
j=1

νj · j|qx.

> k <- 20; x <- 40; i <- 0.03
> C <- rep(100,k)
> P <- d[1:k,x]
> sum((1/(1+i)^(1:k))*P*C)
[1] 9.356656
> sum(cumprod(rep(1/(1+i),k))*P*C)
[1] 9.356656
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Insurance benefits and expected present value
Example : Consider a temporary life annuity-immediate, where benefits are
paid at the end of the year, as long as the insured (x) survives, for up a total of k
years (k payments)

n∑
j=1

C · P(Kx = j)

(1 + i)j
= C

n∑
j=1

νj · jpx.

> k <- 20; x <- 40; i <- 0.03
> C <- rep(100,k)
> P <- p[1:k,x]
> sum((1/(1+i)^(1:k))*P*C)
[1] 1417.045
> sum(cumprod(rep(1/(1+i),k))*P*C)
[1] 1417.045

it is possible to define a general function

> LxTD<-TD$Lx
> TLAI <- function(capital=1,m=1,n,Lx=TD$Lx,age,rate=.03)
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+ {
+ proba <- Lx[age+1+m:n]/Lx[age+1]
+ vap <- sum((1/(1+rate)^(m:n))*proba*capital)
+ return(vap)
+ }
> TLAI(capital=100,n=20,age=40)
[1] 1417.045

It is possible to visualize the impact of the discount factor i and the age x on
that expected present value

> TLAI.R <- function(T){TLAI(capital=100,n=20,age=40,rate=T)}
> vect.TLAI.R <- Vectorize(TLAI.R)
> RT <- seq(.01,.07,by=.002)
> TLAI.A <- function(A){VAP(capital=100,n=20,age=A,rate=.035)}
> vect.TLAI.A <- Vectorize(TLAI.A)
> AGE <- seq(20,60)
> par(mfrow = c(1, 2))
> plot(100*RT,vect.TLAI.R(TAUX),xlab="discount rate (%)",
+ ylab="Expected Presebt Value")
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> plot(AGE,vect.TLAI.A(AGE),xlab="age of insured",
+ ylab="Expected Present Value")
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Whole life insurance, continuous case

For life (x), the present value of a benefit of $1 payable immediately at death is

Z = νTx = (1 + i)−Tx

The expected present value (or actuarial value),

Ax = E(νTx) =

∫ ∞
0

(1 + i)t · tpx · µx+tdt
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Whole life insurance, annual case

For life (x), present value of a benefit of $1 payable at the end of the year of death

Z = νbTxc+1 = (1 + i)−bTxc+1

The expected present value (or actuarial value),

Ax = E(νbTxc+1) =
∞∑
k=0

(1 + i)k+1 · k|qx

Remark : recursive formula

Ax = ν · qx + ν · px ·Ax+1.
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Term insurance, continuous case

For life (x), present value of a benefit of $1 payable immediately at death, if
death occurs within a fixed term n

Z =

 νTx = (1 + i)−Tx if Tx ≤ n
0 if Tx > n

The expected present value (or actuarial value),

A
1

x:n = E(Z) =
∫ n

0

(1 + i)t · tpx · µx+tdt
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Term insurance, discrete case

For life (x), present value of a benefit of $1 payable at the end of the year of
death, if death occurs within a fixed term n

Z =

 νbTxc+1 = (1 + i)−(bTxc+1) if bTxc ≤ n− 1

0 if bTxc ≥ n

The expected present value (or actuarial value),

A1
x:n =

n−1∑
k=0

νk+1 · k|qx

It is possible to define a matrix A = [A1
x:n ] using

> A<- matrix(NA,m,m-1)
> for(j in 1:(m-1)){ A[,j]<-cumsum(1/(1+i)^(1:m)*d[,j]) }
> Ax <- A[nrow(A),1:(m-2)]
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Term insurance, discrete case

Remark : recursion formula

A1
x:n = ν · qx + ν · px ·A1

x:n .

Note that it is possible to compare E(νbTxc+1) and νE(bTxc)+1

> EV <- Vectorize(esp.vie)
> plot(0:105,Ax,type="l",xlab="Age",lwd=1.5)
> lines(1:105,v^(1+EV(1:105)),col="grey")
> legend(1,.9,c(expression(E((1+r)^-(Tx+1))),expression((1+r)^-(E(Tx)+1))),
+ lty=1,col=c("black","grey"),lwd=c(1.5,1),bty="n")
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Pure endowment

A pure endowment benefit of $1, issued to a life aged x, with term of n years has
present value

Z =

 0 if Tx < n

νn = (1 + i)−n if Tx ≥ n

The expected present value (or actuarial value),

A 1
x:n = νn · npx

> E <- matrix(0,m,m)
> for(j in 1:m){ E[,j] <- (1/(1+i)^(1:m))*p[,j] }
> E[10,45]
[1] 0.663491
> p[10,45]/(1+i)^10
[1] 0.663491
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Endowment insurance

A pure endowment benefit of $1, issued to a life aged x, with term of n years has
present value

Z = νmin{Tx,n} =

 νTx = (1 + i)−Tx if Tx < n

νn = (1 + i)−n if Tx ≥ n

The expected present value (or actuarial value),

Ax:n = A
1

x:n +A 1
x:n
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Discrete endowment insurance

A pure endowment benefit of $1, issued to a life aged x, with term of n years has
present value

Z = νmin{bTxc+1,n} =

 νbTxc+1 if bTxc ≤ n
νn if bTxc ≥ n

The expected present value (or actuarial value),

Ax:n = A1
x:n +A 1

x:n

Remark : recursive formula

Ax:n = ν · qx + ν · px ·Ax+1:n−1 .
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Deferred insurance benefits

A benefit of $1, issued to a life aged x, provided that (x) dies between ages x+ u

and x+ u+ n has present value

Z = νmin{Tx,n} =

 νTx = (1 + i)−Tx if u ≤ Tx < u+ n

0 if Tx < u or Tx ≥ u+ n

The expected present value (or actuarial value),

u|A
1

x:n = E(Z) =
∫ u+n

u

(1 + i)t · tpx · µx+tdt
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Annuities

An annuity is a series of payments that might depend on

• the timing payment
– beginning of year : annuity-due
– end of year : annuity-immediate
• the maturity (n)
• the frequency of payments (more than once a year, even continuously)
• benefits

28
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Annuities certain

For integer n, consider an annuity (certain) of $1 payable annually in advance for
n years. Its present value is

än =
n−1∑
k=0

νk = 1 + ν + ν2 + · · ·+ νn−1 =
1− νn

1− ν
=

1− νn

d

In the case of a payment in arrear for n years,

an =
n∑
k=1

νk = ν + ν2 + · · ·+ νn−1 + νn = än + (νn − 1) =
1− νn

i
.

Note that it is possible to consider a continuous version

an =

∫ n

0

νtdt =
νn − 1

log(ν)
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Whole life annuity-due

Annuity of $1 per year, payable annually in advance throughout the lifetime of
an individual aged x,

Z =

bTxc∑
k=0

νk = 1 + ν + ν2 + · · ·+ νbTxc =
1− ν1+bTxc

1− ν
= äbTxc+1
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Whole life annuity-due

The expected present value (or actuarial value),

äx = E(Z) =
1− E

(
ν1+bTxc

)
1− ν

=
1−Ax
1− ν

thus,

äx =
∞∑
k=0

νk · kpx =
∞∑
k=0

kEx =
1−Ax
1− ν

(or conversely Ax = 1− [1− ν](1− äx)).
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Temporary life annuity-due

Annuity of $1 per year, payable annually in advance, at times k = 0, 1, · · · , n− 1

provided that (x) survived to age x+ k

Z =

min{bTxc,n}∑
k=0

νk = 1 + ν + ν2 + · · ·+ νmin{bTxc,n} =
1− ν1+min{bTxc,n}

1− ν
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Temporary life annuity-due

The expected present value (or actuarial value),

äx:n = E(Z) =
1− E

(
ν1+min{bTxc,n}

)
1− ν

=
1−Ax:n
1− ν

thus,

äx:n =
n−1∑
k=0

νk · kpx =
1−Ax:n
1− ν

The code to compute matrix Ä = [äx:n ] is

> adot<-matrix(0,m,m)
> for(j in 1:(m-1)){ adot[,j]<-cumsum(1/(1+i)^(0:(m-1))*c(1,p[1:(m-1),j])) }
> adot[nrow(adot),1:5]
[1] 26.63507 26.55159 26.45845 26.35828 26.25351
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Whole life immediate annuity

Annuity of $1 per year, payable annually in arrear, at times k = 1, 2, · · · ,
provided that (x) survived

Z =

bTxc∑
k=1

νk = ν + ν2 + · · ·+ νbTxc

The expected present value (or actuarial value),

ax = E(Z) = äx − 1.
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Term immediate annuity
Annuity of $1 per year, payable annually in arrear, at times k = 1, 2, · · · , n
provided that (x) survived

Z =

min{bTxc,n}∑
k=1

νk = ν + ν2 + · · ·+ νmin{bTxc,n}.

The expected present value (or actuarial value),

ax:n = E(Z) =
n∑
k=1

νk · kpx

thus,
ax:n = äx:n − 1 + νn · npx
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Whole and term continuous annuities

Those relationships can be extended to the case where annuity is payable
continuously, at rate of $1 per year, as long as (x) survives.

ax = E
(
νTx − 1

log(ν)

)
=

∫ ∞
0

e−δt · tpxdt

where δ = − log(ν).

It is possible to consider also a term continuous annuity

ax:n = E
(
νmin{Tx,n} − 1

log(ν)

)
=

∫ n

0

e−δt · tpxdt
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Deferred annuities

It is possible to pay a benefit of $1 at the beginning of each year while insured
(x) survives from x+ h onward. The expected present value is

h|äx =

∞∑
k=h

1

(1 + i)k
· kpx =

∞∑
k=h

kEx = äx − äx:h

One can consider deferred temporary annuities

h|näx =
h+n−1∑
k=h

1

(1 + i)k
· kpx =

h+n−1∑
k=h

kEx.

Remark : again, recursive formulas can be derived

äx = äx:h + h|äx for all h ∈ N∗.
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Deferred annuities

With h fixed, it is possible to compute matrix Äh = [h|näx]

> h <- 1
> adoth <- matrix(0,m,m-h)
> for(j in 1:(m-1-h)){ adoth[,j]<-cumsum(1/(1+i)^(h+0:(m-1))*p[h+0:(m-1),j]) }
> adoth[nrow(adoth),1:5]
[1] 25.63507 25.55159 25.45845 25.35828 25.25351
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Joint life and last survivor probabilities

It is possible to consider life insurance contracts on two individuals, (x) and (y),
with remaining lifetimes Tx and Ty respectively. Their joint cumulative
distribution function is Fx,y while their joint survival function will be F x,y, where Fx,y(s, t) = P(Tx ≤ s, Ty ≤ t)

F x,y(s, t) = P(Tx > s, Ty > t)

Define the joint life status, (xy), with remaining lifetime Txy = min{Tx, Ty} and
let

tqxy = P(Txy ≤ t) = 1− tpxy

Define the last-survivor status, (xy), with remaining lifetime Txy = max{Tx, Ty}
and let

tqxy = P(Txy ≤ t) = 1− tpxy
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Joint life and last survivor probabilities

Assuming independence
hpxy = hpx · hpy,

while
hpxy = hpx + hpy − hpxy.

> pxt=function(T,a,h){ T$Lx[T$Age==a+h]/T$Lx[T$Age==a] }
> pxt(TD8890,40,10)*pxt(TV8890,42,10)
[1] 0.9376339
> pxytjoint=function(Tx,Ty,ax,ay,h){ pxt(Tx,ax,h)*pxt(Ty,ay,h) }
> pxytjoint(TD8890,TV8890,40,42,10)
[1] 0.9376339
> pxytlastsurv=function(Tx,Ty,ax,ay,h){ pxt(Tx,ax,h)*pxt(Ty,ay,h) -
+ pxytjoint(Tx,Ty,ax,ay,h)}
> pxytlastsurv(TD8890,TV8890,40,42,10)
[1] 0.9991045
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Joint life and last survivor probabilities

It is possible to plot

> JOINT=rep(NA,65)
> LAST=rep(NA,65)
> for(t in 1:65){
+ JOINT[t]=pxytjoint(TD8890,TV8890,40,42,t-1)
+ LAST[t]=pxytlastsurv(TD8890,TV8890,40,42,t-1) }
> plot(1:65,JOINT,type="l",col="grey",xlab="",ylab="Survival probability")
> lines(1:65,LAST)
> legend(5,.15,c("Dernier survivant","Vie jointe"),lty=1, col=c("black","grey"),bty="n")
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Joint life and last survivor insurance benefits

For a joint life status (xy), consider a whole life insurance providing benefits at
the first death. Its expected present value is

Axy =
∞∑
k=0

νk · k|qxy

For a last-survivor status (xy), consider a whole life insurance providing benefits
at the last death. Its expected present value is

Axy =

∞∑
k=0

νk · k|qxy =

∞∑
k=0

νk · [k|qx + k|qy − k|qxy]

Remark : Note that Axy +Axy = Ax +Ay.
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Joint life and last survivor insurance benefits

For a joint life status (xy), consider a whole life insurance providing annuity at
the first death. Its expected present value is

äxy =
∞∑
k=0

νk · kpxy

For a last-survivor status (xy), consider a whole life insurance providing annuity
at the last death. Its expected present value is

äxy =

∞∑
k=0

νk · kpxy

Remark : Note that äxy + äxy = äx + äy.
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Reversionary insurance benefits

A reversionary annuity commences upon the death of a specified status (say (y))
if a second (say (x)) is alive, and continues thereafter, so long as status (x)
remains alive. Hence, reversionary annuity to (x) after (y) is

ay|x =
∞∑
k=1

νk · kpx · kqy =
∞∑
k=1

νk · kpx · [1− kpy] = ax − axy.
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Premium calculation

Fundamental theorem : (equivalence principle) at time t = 0,

E(present value of net premium income) = E(present value of benefit outgo)

Let

L0 = present value of future benefits - present value of future net premium

Then E(L0) = 0.

Example : consider a n year endowment policy, paying C at the end of the year
of death, or at maturity, issues to (x). Premium P is paid at the beginning of
year year throughout policy term. Then, if Kn = min{Kx + 1, n}
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Premium calculation

L0 = C · νKn︸ ︷︷ ︸
future benefit

− P · äKn︸ ︷︷ ︸
net premium

Thus,

E(L0) = C ·Ax:n − P äx:n = 0, thus P =
Ax:n
äx:n

.

> x <-50; n <-30
> premium <-A[n,x]/adot[n,x]
> sum(premium/(1+i)^(0:(n-1))*c(1,p[1:(n-1),x]))
[1] 0.3047564
> sum(1/(1+i)^(1:n)*d[1:n,x])
[1] 0.3047564
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Policy values

From year k to year k + 1, the profit (or loss) earned during that period depends
on interest and mortality (cf. Thiele’s differential equation).

For convenience, let EPV t[t1,t2] denote the expected present value, calculated at
time t of benefits or premiums over period [t1, t2]. Then

EPV 0
[0,n](benefits)︸ ︷︷ ︸
insurer

=EPV 0
[0,n](net premium)︸ ︷︷ ︸

insured

for a contact that ends at after n years.

Remark : Note that EPV 0
[k,n] = EPV k[k,n] · kEx where

kEx =
1

(1 + i)k
· P(Tx > k) = νk · kpx
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Policy values and reserves

Define

Lt = present value of future benefits - present value of future net premium

where present values are calculated at time t.
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For convenient, let EPV t(t1,t2] denote the expected present value, calculated at
time t of benefits or premiums over period (t1, t2]. Then

Ek(Lk) = EPV k(k,n](benefits)︸ ︷︷ ︸
insurer

−EPV 0
(k,n](net premium)︸ ︷︷ ︸

insurer

= kV (k).

Example : consider a n year endowment policy, paying C at the end of the year
of death, or at maturity, issues to (x). Premium P is paid at the beginning of
year year throughout policy term. Let k ∈ {0, 1, 2, · · · , n− 1, n}. From that
prospective relationship

kV (k) = n−kAx+k − π · n−käx+k

> VP <- diag(A[n-(0:(n-1)),x+(0:(n-1))])-
+ primediag(adot[n-(0:(n-1)),x+(0:(n-1))])
> plot(0:n,c(VP,0),pch=4,xlab="",ylab="Provisions mathématiques",type="b")
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An alternative is to observe that

E0(Lk) = EPV 0
(k,n](benefits)︸ ︷︷ ︸
insurer

−EPV 0
(k,n](net premium)︸ ︷︷ ︸

insurer

= kV (0).

while
E0(L0) = EPV 0

[0,n](benefits)︸ ︷︷ ︸
insurer

−EPV 0
[0,n](net premium)︸ ︷︷ ︸

insurer

= 0.

Thus

E0(Lk) = EPV 0
[0,k](net premium)︸ ︷︷ ︸

insurer

−EPV 0
[0,k](benefits)︸ ︷︷ ︸
insurer

= kV (0).

which can be seen as a retrospective relationship.

Here kV (0) = π · käx − kAx, thus

kV (k) =
π · käx − kAx

kEx
=
π · käx − kAx

kEx
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> VR <- (premium*adot[1:n,x]-A[1:n,x])/E[1:n,x]
> points(0:n,c(0,VR))

Another technique is to consider the variation of the reserve, from k − 1 to k.
This will be the iterative relationship. Here

kV (k − 1) = k−1V (k − 1) + π − 1Ax+k−1.

Since kV (k − 1) = kV (k) · 1Ex+k−1 we can derive

kV (k) =
k−1Vx(k − 1) + π − 1Ax+k−1

1Ex+k−1

> VI<-0
> for(k in 1:n){ VI <- c(VI,(VI[k]+prime-A[1,x+k-1])/E[1,x+k-1]) }
> points(0:n,VI,pch=5)

Those three algorithms return the same values, when x = 50, n = 30 and
i = 3.5%
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Policy values and reserves : pension

Consider an insured (x), paying a premium over n years, with then a deferred
whole life pension (C, yearly), until death. Let m denote the maximum number
of years (i.e. xmax − x). The annual premium would be

π = C · n|
ax

näx

Consider matrix |A = [n|ax] computed as follows

> adiff=matrix(0,m,m)
> for(i in 1:(m-1)){ adiff[(1+0:(m-i-1)),i] <- E[(1+0:(m-i-1)),i]*a[m,1+i+(0:(m-i-1))] }

Yearly pure premium is here the following

> x <- 35
> n <- 30
> a[n,x]
[1] 17.31146
> sum(1/(1+i)^(1:n)*c(p[1:n,x]) )
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[1] 17.31146
> (premium <- adiff[n,x] / (adot[n,x]))
[1] 0.1661761
> sum(1/(1+i)^((n+1):m)*p[(n+1):m,x] )/sum(1/(1+i)^(1:n)*c(p[1:n,x]) )
[1] 0.17311

To compute policy values, consider the prospective method, if k < n,

kVx(0) = C · n−k|ax+k − n−käx+k.

but if k ≥ n then
kVx(0) = C · ax+k.

> VP <- rep(NA,n-x)
> VP[1:(n-1)] <- diag(adiff[n-(1:(n-1)),x+(1:(n-1))] -
+ adot[n-(1:(n-1)),x+(1:(n-1))]*prime)
> VP[n:(m-x)] <- a[m,x+n:(m-x)]
> plot(x:m,c(0,VP),xlab="Age of the insured",ylab="Policy value")
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Again, a retrospective method can be used. If k ≤ n,

kVx(0) =
π · käx
kEx

while if k > n,

kVx(0) =
π · näx − C · n|kax

kEx

For computations, recall that

n|kax =
n+k∑
j=n+1

jEx = n|ax − n+k|ax

It is possible to define a matrix Ax = [n|kax] as follows

> adiff[n,x]
[1] 2.996788
> adiff[min(which(is.na(adiffx[,n])))-1,n]
[1] 2.996788

57



Arthur CHARPENTIER, Life insurance, and actuarial models, with R

> adiff[10,n]
[1] 2.000453
> adiff[n,x]- adiff[n+10,x]
[1] 2.000453

The policy values can be computed

> VR <- rep(NA,m-x)
> VR[1:(n)] <- adot[1:n,x]*prime/E[1:n,x]
> VR[(n+1):(m-x)] <- (adot[n,x]*prime - (adiff[(n),x]-
+ adiff[(n+1):(m-x),x]) )/E[(n+1):(m-x),x]
> points(x:m,c(0,VR),pch=4)

An finally, an iterative algorithm can be used. If k ≤ n,

kVx(0) =
k−1Vx(0) + π

1Ex+k−1

while, if k > n

kVx(0) =
k−1Vx(0)

1Ex+k−1
− C.
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> VI<-0
> for(k in 1:n){
+ VI<-c(VI,((VI[k]+prime)/E[1,x+k-1]))
+ }
> for(k in (n+1):(m-x)){
+ VI<-c(VI,((VI[k])/E[1,x+k-1]-1))
+ }
> points(x:m,VI,pch=5)

> provision<-data.frame(k=0:(m-x),
+ retrospective=c(0,VR),prospective=c(0,VP),
+ iterative=VI)
> head(provision)

k retrospective prospective iterative
1 0 0.0000000 0.0000000 0.0000000
2 1 0.1723554 0.1723554 0.1723554
3 2 0.3511619 0.3511619 0.3511619
4 3 0.5367154 0.5367154 0.5367154
5 4 0.7293306 0.7293306 0.7293306
6 5 0.9293048 0.9293048 0.9293048
> tail(provision)
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k retrospective prospective iterative
69 68 0.6692860 0.6692860 6.692860e-01
70 69 0.5076651 0.5076651 5.076651e-01
71 70 0.2760524 0.2760524 2.760525e-01
72 71 0.0000000 0.0000000 1.501743e-10
73 72 NaN 0.0000000 Inf
74 73 NaN 0.0000000 Inf
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Using recursive formulas

Most quantities in actuarial sciences can be obtained using recursive formulas,
e.g.

Ax = E(νTx+1) =
∞∑
k=0

vk+1
k|qx = νqx + νpxAx+1

or

äx =
∞∑
k=0

νkkpx = 1 + νpxäx+1.

Some general algorithms can be used here : consider a sequence u = (un) such
that

un = an + bnun+1,

where n = 1, 2, · · · ,m assuming that um+1 is known, for some a = (an) et
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b = (bn). The general solution is then

un =

um+1

m∏
i=0

bi +

m∑
j=n

aj

j−1∏
i=0

bi

n−1∏
i=0

bi

with convention b0 = 1.

Consider function

> recurrence <- function(a,b,ufinal){
+ s <- rev(cumprod(c(1, b)));
+ return(rev(cumsum(s[-1] * rev(a))) + s[1] * ufinal)/rev(s[-1])
+ }

For remaining life satifsfies

ex = px + px · ex+1
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Le code est alors tout simplement,

> Lx <- TD$Lx
> x <- 45
> kpx <- Lx[(x+2):length(Lx)]/Lx[x+1]
> sum(kpx)
[1] 30.32957
> px <- Lx[(x+2):length(Lx)]/Lx[(x+1):(length(Lx)-1)]
> e<- recurrence(px,px,0)
> e[1]
[1] 30.32957

For the whole life insurance expected value

Ax = νqx + νpxAx+1

Here

> x <- 20
> qx <- 1-px
> v <- 1/(1+i)
> Ar <- recurrence(a=v*qx,b=v*px,xfinal=v)
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For instance if x = 20,

> Ar[1]
[1] 0.1812636
> Ax[20]
[1] 0.1812636
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An R package for life contingencies ?

Package lifecontingencies does (almost) everything we’ve seen.

From dataset TD$Lx define an object of class lifetable containing for all ages x
survival probabilities px, and expected remaining lifetimes ex.

> TD8890 <- new("lifetable",x=TD$Age,lx=TD$Lx,name="TD8890")
removing NA and 0s
> TV8890 <- new("lifetable",x=TV$Age,lx=TV$Lx,name="TV8890")
removing NA and 0s
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An R package for life contingencies ?

> TV8890
Life table TV8890

x lx px ex
1 0 100000 0.9935200 80.2153857
2 1 99352 0.9994162 79.2619494
3 2 99294 0.9996677 78.2881343
4 3 99261 0.9997481 77.3077311
5 4 99236 0.9997783 76.3247626
6 5 99214 0.9997984 75.3400508
7 6 99194 0.9998286 74.3528792
8 7 99177 0.9998387 73.3647956
9 8 99161 0.9998386 72.3765545
10 9 99145 0.9998386 71.3881558

That S4-class object can be used using standard functions. E.g. 10p40 can be
computed through

> pxt(TD8890,x=40,t=10)
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[1] 0.9581196
> p[10,40]
[1] 0.9581196

Similarly 10q40, or
◦
e40:10 are computed using

> qxt(TD8890,40,10)
[1] 0.0418804
> exn(TD8890,40,10)
[1] 9.796076
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Interpolation of survival probabilities

It is also possible to compute hpx when h is not necessarily an integer. Linear
interpolation, with constant mortality force or hyperbolic can be used

> pxt(TD8890,90,.5,"linear")
[1] 0.8961018
> pxt(TD8890,90,.5,"constant force")
[1] 0.8900582
> pxt(TD8890,90,.5,"hyperbolic")
[1] 0.8840554
>
> pxtL <- function(u){pxt(TD8890,90,u,"linear")}; PXTL <- Vectorize(pxtL)
> pxtC <- function(u){pxt(TD8890,90,u,"constant force")}; PXTC <- Vectorize(pxtC)
> pxtH <- function(u){pxt(TD8890,90,u,"hyperbolic")}; PXTH <- Vectorize(pxtH)
> u=seq(0,1,by=.025)
> plot(u,PXTL(u),type="l")
> lines(u,PXTC(u),col="grey")
> lines(u,PXTH(u),pch=3,lty=2)
> points(c(0,1),PXTH(0:1),pch=19)
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Interpolation of survival probabilities

The fist one is based on some linear interpolation between bhcpx et bhc+1px

hp̃x = (1− h+ bhc) bhcpx + (h− bhc) bhc+1px

For the second one, recall that hpx = exp

(
−
∫ h

0

µx+sds

)
. Assume that

s 7→ µx+s is constant on [0, 1), then devient

hpx = exp

(
−
∫ h

0

µx+sds

)
= exp[−µx · h] = (px)

h
.

For the third one (still assuming h ∈ [0, 1)), Baldacci suggested

1

hpx
=

1− h+ bhc
bhcpx

+
h− bhc
bhc+1px

or, equivalently hpx =
bhc+1px

1− (1− h+ bhc) bhc+1hqx
.
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Deferred capital kEx, can be computed as

> Exn(TV8890,x=40,n=10,i=.04)
[1] 0.6632212
> pxt(TV8890,x=40,10)/(1+.04)^10
[1] 0.6632212

Annuities such as äx:n ’s or or Ax:n ’s can be computed as

> Ex <- Vectorize(function(N){Exn(TV8890,x=40,n=N,i=.04)})
> sum(Ex(0:9))
[1] 8.380209
> axn(TV8890,x=40,n=10,i=.04)
[1] 8.380209
> Axn(TV8890,40,10,i=.04)
[1] 0.01446302

It is also possible to have Increasing or Decreasing (arithmetically) benfits,

IAx:n =
n−1∑
k=0

k + 1

(1 + i)k
· k−1px · 1qx+k−1,
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or

DAx:n =
n−1∑
k=0

n− k
(1 + i)k

· k−1px · 1qx+k−1,

The function is here

> DAxn(TV8890,40,10,i=.04)
[1] 0.07519631
> IAxn(TV8890,40,10,i=.04)
[1] 0.08389692

Note finally that it is possible to consider monthly benefits, not necessarily yearly
ones,

> sum(Ex(seq(0,5-1/12,by=1/12))*1/12)
[1] 4.532825

In the lifecontingencies package, it can be done using the k value option

> axn(TV8890,40,5,i=.04,k=12)
[1] 4.532825
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Consider an insurance where capital K if (x) dies between age x and x+ n, and
that the insured will pay an annual (constant) premium π. Then

K ·Ax:m = π · äx:n , i.e. π = K · Ax:n
äx:n

.

Assume that x = 35, K = 100000 and = 40, the benefit premium is

> (p <- 100000*Axn(TV8890,35,40,i=.04)/axn(TV8890,35,40,i=.04))
[1] 366.3827

For policy value, a prospective method yield

kV = K ·Ax+k:n−k − π · äx+k:n−k

i.e.

> V <- Vectorize(function(k){100000*Axn(TV8890,35+k,40-k,i=.04)-
+ p*axn(TV8890,35+k,40-k,i=.04)})
> V(0:5)
[1] 0.0000 290.5141 590.8095 896.2252 1206.9951 1521.3432
> plot(0:40,c(V(0:39),0),type="b")
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