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Modeling future lifetime

Let (x) denote a life aged =, with x > 0.
The future lifetime of (x) is a continuous random variable 7,

Let I, and I, (or S,) denote the cumulative distribution function of T}, and the

survival function, respectively,

F.(t) =P(T, <t)and F,(t) =P(T, >t) =1— F,(t).

Let 11, denote the force of mortality at age x (or hazard rate),

. P(Ty <x+h|Ty>z) .. —1 dFy(x) dlog Fo(x)
te = lim _
h10 h dx

or conversely,




ARTHUR CHARPENTIER, LIFE INSURANCE, AND ACTUARIAL MODELS, WITH R

Modeling future lifetime

Define 1p, =P(T, > t) = F.(t) and ;q, = P(T, <t) = F,(t), and
t|hdzx = P(t <Ty <t+ h) — tPx — t+hPx

the defered mortality probability. Further, p, = 1p, and ¢, = 1q..

Several equalities can be derived, e.g.

t
tdx :/ spa:,ux-l—sds-
0

time
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Modeling curtate future lifetime

The curtate future lifetime of (x) is the number of future years completed by (z)
priors to death, K, = |T,|.

Its probability function is
kdy =P(Ky = k) = k4192 — kG2 = k|2

for £ € N, and it cumulative distribution function is P(K, < k) = r114.-

time
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Modeling future lifetime

Define the (complete) expectation of life,

ew:E(Tw)—/ E(t)dt:/ P dt
0 0

and its discrete version, curtate expectation of life

O

k=1
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Life tables

Given x( (initial age, usually xg = 0), define a function [,, where = € [xg,w]| as

lCL'()—I—t — lxo ) tpil?()

Usually lp = 100, 000. Then
lzc—l—t
L

Remark : some kind of Markov property,

_ Loykyn  Loyktrn Lavr
k+hPx = = : — hPxz+Ek " kPx
La: La:—l—k Lx

Let d:c — la: _l:c—i—l — le:c
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(old) French life tables

TABLE 1

AGEs | Survivans | Niayane Aymt Prenant

> TD[39:52,]
h

Age Lx pro| fdon | PO pe. véeole
années, |M. Halley. | pet. vérole. | pet, vérot.| perdant

39 38 95237 —
40 39 94997 35¢

685
41 40 94746 pr
8
42 41 94476 T

359

43 42 94182 202
44 43 93868 272

237

45 44 93515 aes

182

46 45 93133 160

140

47 46 92727 123

108

48 AT 92295 | >
49 48 91833 =

63
50 49 91332 - Z
51 50 90778

52 51 90171
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(old) French life tables

> plot (TD$Age ,TD$Lx,1lwd=2,col="red" ,type="1",xlab="Age",ylab="Lx")
> lines(TV$Age,TV$Lx,1wd=2,col="blue")
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Playing with life tables

From life tables, it is possible to derive probabilities, e.g. 19ps0 = P(Tyo > 10)

> TD$Lx [TD$Age==50]

[1] 90778

> TD$Lx [TD$Age==40]

[1] 94746

> x <- 40

> h <- 10

> TD$Lx [TD$Age==x+h]/TD$Lx [TD$Age==x]
[1] 0.9581196

> TD$Lx[x+h+1]/TD$Lx [x+1]

[1] 0.9581196




ARTHUR CHARPENTIER, LIFE INSURANCE, AND ACTUARIAL MODELS, WITH R

Defining matrices P = [;p,|, Q = [xq.] and D = [d,]

For k=1,2,--- and x =0,1,2,--- it is possible to calculate pp,. If x € N,
define P = [kp.].

Lx <- TD$Lx

m <- length(Lx)

p <- matrix(O,m,m); d <- p

for(i in 1:(m-1)){

pll:(m-i),i] <- Lx[1+(i+1):m]/Lx[i+1]

dl1l: (m-1i),i] <- (Lx[(1+i):(m)]-Lx[(1+1i):(m)+1])/Lx[i+1]1}
diag(d[(m-1):1,]) <- 0

diag(p[(m-1):1,]) <- 0

q<- 1-p

>
>
>
>
-+
-+
>
>
>

Here, p[10,40] corresponds to 19p40 :

> pl10,40]
[1] 0.9581196

Remark : matrices will be more convenient than functions for computations...




ARTHUR CHARPENTIER, LIFE INSURANCE, AND ACTUARIAL MODELS, WITH R

Working with matrices P = [;p.] and Q = [.q,]

(Curtate) expactation of life is

k=1 k=1

> x <- 45

> S <- pl,45]/pl[1,45]
> sum(S)

[1] 30.46237

It is possible to define a function

> life.exp=function(x){sum(p[1:nrow(p),x])}
> life.exp(45)
[1] 30.32957
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Insurance benefits and expected present value

Let i denote a (constant) interest rate, and v = (1 +14) ' the discount factor.

Consider a series of payments C = (C4, - -- , Ck) due with probability
p=(p1, - ,pPk), at times t = (t1,--- ,tx). The expected present value of those

benefits is
k

Cj-py L
e =22V Cip
j=1

k

71=1

Consider here payments at dates {1,2,--- ,k}.
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Insurance benefits and expected present value

Example : Consider a whole life insurance, for some insured aged z, where

benefits are payables following the death, if it occurs with k years from issue, i.e.
Pj = jdu;

n

C-P(K:=3) _ . < ;
) (1 + )7 _67;;” il

j=1

k <- 20; x <- 40; i <- 0.03

C <- rep(100,k)

P <- d[1:k,x]
sum((1/(1+i)~(1:k) ) *P*C)

[1] 9.356656

> sum(cumprod(rep(1/(1+i) ,k))*P*C)
[1] 9.356656

>
>
>
>
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Insurance benefits and expected present value

Example : Consider a temporary life annuity-immediate, where benefits are
paid at the end of the year, as long as the insured () survives, for up a total of k

years (k payments)

n (7'1P(l{¢ . .) B n ;
) (1+ 1)) =C) v pa

> k <- 20; x <- 40; i <- 0.03
> C <- rep(100,k)
>
>

P <- pl1:k,x]

sum( (1/(1+i)~(1:k) ) *P*C)
[1] 1417.045
> sum(cumprod(rep(1/(1+i) ,k))*P*C)
[1] 1417.045

it is possible to define a general function

> LxTD<-TD$Lx
> TLAI <- function(capital=1,m=1,n,Lx=TD$Lx,age,rate=.03)
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proba <- Lx[age+l+m:n]/Lx[age+1]

return(vap)

}
TLAI (capital=100,n=20,age=40)
[1] 1417.045

+
+
+ vap <- sum((1/(1+rate) " (m:n))*proba*capital)
+
+
>

It is possible to visualize the impact of the discount factor ¢ and the age x on

that expected present value

TLAI.R <- function(T){TLAI(capital=100,n=20,age=40,rate=T)}
vect.TLAI.R <- Vectorize(TLAI.R)

RT <- seq(.01,.07,by=.002)

TLATI.A <- function(A){VAP(capital=100,n=20,age=A,rate=.035)}
vect.TLAI.A <- Vectorize(TLAI.A)

AGE <- seq(20,60)

par (mfrow = c(1, 2))

plot (100*RT,vect.TLAI .R(TAUX) ,xlab="discount rate (%)",
ylab="Expected Presebt Value")

>
>
>
>
>
>
>
>
-+
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> plot (AGE,vect.TLAI.A(AGE) ,xlab="age of insured",
+ ylab="Expected Present Value")
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Whole life insurance, continuous case

For life (x), the present value of a benefit of $1 payable immediately at death is
Z=vle=(1+4) 1=

The expected present value (or actuarial value),

/ (1+10)" - pg - pgtedt
0

IL

xr+1

probability

present value
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Whole life insurance, annual case

For life (x), present value of a benefit of $1 payable at the end of the year of death

Z = 41 = (14 )= LTI+

The expected present value (or actuarial value),

0

Ar =E@EI =5 (140" g
k=0

Remark : recursive formula

Ar =V Qe+ V- -ps-Ari1.
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Term insurance, continuous case

For life (x), present value of a benefit of $1 payable immediately at death, if
death occurs within a fixed term n

vlie = (144) 1= if T, <n
0if7, >n

/=

The expected present value (or actuarial value),

/ (144)" - 1Dy - potedl
0
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Term insurance, discrete case

For life (x), present value of a benefit of $1 payable at the end of the year of
death, if death occurs within a fixed term n

plTel 1 = (1 4 4) W=+ §f | T, <n—1
0if |T,.| >n

7 —

The expected present value (or actuarial value),

n—1

1 _ E : k+1
Ax:ﬁl T v ) k:|Qx
k=0

It is possible to define a matrix A = [Al ] using

> A<- matrix(NA,m,m-1)
> for(j in 1:(m-1)){ A[,jl<-cumsum(1/(1+i)~(1:m)*d[,jl) }
> Ax <- A[nrow(A),1:(m-2)]
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Term insurance, discrete case

Remark : recursion formula

Azlc:m:V'Qx"l'V‘pw'A:ln:m-

Note that it is possible to compare E(vT=)+1) and pB(LT=))+1

EV <- Vectorize(esp.vie)

plot(0:105,Ax,type="1",xlab="Age" ,1wd=1.5)
lines(1:105,v~(1+EV(1:105)),col="grey")

legend (1, .9,c(expression(E((1+r)~-(Tx+1))) ,expression((1+r)~-(E(Tx)+1))),
1ty=1,col=c("black","grey"),lwd=c(1.5,1) ,bty="n")
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- -(Tx+1)
E((1+r
- (l( E_ r)—(Z(Tx)ﬂ))
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Pure endowment

A pure endowment benefit of $1, issued to a life aged x, with term of n years has

present value
0ift7T, <n
V=144 "ifT, >n

The expected present value (or actuarial value),

n

1
‘4xﬁﬂ:::V " nPx

> E <- matrix(O,m,m)

> for(j in 1:m){ E[,j] <- (1/(1+i)~(1:m))*p[,j] }
> E[10,45]

[1] 0.663491

> p[10,45]/(1+i)~10

[1] 0.663491
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Endowment insurance
A pure endowment benefit of $1, issued to a life aged x, with term of n years has

present value

vle = (1+4)" 1= if T, <n
v = (144)""if T, >n

7 Vmin{Tx,n} _

The expected present value (or actuarial value),

- 1 1
Aa::_l — Am:ﬁl + A:U:ﬁl
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Discrete endowment insurance

A pure endowment benefit of $1, issued to a life aged x, with term of n years has

present value
plT=+1if | T, <n
v it [T, >n

7 — Vmin{ [Tz ] +1,n}

The expected present value (or actuarial value),

Aw:ﬁl — Aiﬁl + Aazlﬁl

Remark : recursive formula

Am:ﬁl =V Qg TV Py Aa;—l—l:nTll°




ARTHUR CHARPENTIER, LIFE INSURANCE, AND ACTUARIAL MODELS, WITH R

Deferred insurance benefits
A benefit of $1, issued to a life aged x, provided that (x) dies between ages x + u

and z + u + n has present value

7 — ymin{Ty,n} _ ple = (1 —|—’i)_Tw ifu<T,<u+n

Oif T, <uorT,>u+n

The expected present value (or actuarial value),

u+mn
1 .
U’Ax:ﬁl / (1 -+ Z)t " tPx :ua:—i-tdt
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Annuities

An annuity is a series of payments that might depend on

the timing payment
beginning of year : annuity-due
end of year : annuity-immediate

the maturity (n)

the frequency of payments (more than once a year, even continuously)
benefits
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Annuities certain

For integer n, consider an annuity (certain) of $1 payable annually in advance for

n years. Its present value is

n—1
dm:Zszl—l—y—l—y2—|—~-—|—V”_1:
k=0

1 —v

In the case of a payment in arrear for n years,

am:ZVk:V—I—I/2—|—---—|—V”_1—I—V”:dm—l—(yn—l)
k=1

Note that it is possible to consider a continuous version

mn n __ 1
S
o /0 g log(v)
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Whole life annuity-due

Annuity of $1 per year, payable annually in advance throughout the lifetime of

an individual aged x,

I_T:cJ " 5 T 1_V1‘|‘|_Ta:J

k=0
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Whole life annuity-due

The expected present value (or actuarial value),

_ E (V1+LTmJ )

1 —v

i, = E(2)

Ay = Zyk "kPx — ZkEx — 11__14;0
k=0 k=0

(or conversely A, =1 —[1 —v|(1 —dy)).
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Temporary life annuity-due

Annuity of $1 per year, payable annually in advance, at times £k =0,1,--- ,n —1
provided that (x) survived to age x + k

min{ | Ty |,n} Cemin 170 |
A= Z l/k:1—|—y—|—y2_|_...—|—ymin{LTxJ7n}:1_V {T%],n}
k=0

1 —v

| 7~ -
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Temporary life annuity-due

The expected present value (or actuarial value),

1 —F (Vl—l—min{ LTmJ,n}) B 1 — Am:ﬁl

1 —v 1 —v

a/ZL'I

1 —v

n—1
. L k L 1 _'quﬁﬂ
Qg — E V- kPx —

k=0

The code to compute matrix A= G| 1S

> adot<-matrix(O,m,m)

> for(j in 1:(m-1)){ adot[,jl<-cumsum(1/(1+i)~(0:(m-1))*c(1,p[1l:(m-1),j]1)) }
> adot [nrow(adot) ,1:5]

[1] 26.63507 26.55159 26.45845 26.35828 26.25351




ARTHUR CHARPENTIER, LIFE INSURANCE, AND ACTUARIAL MODELS, WITH R

Whole life immediate annuity

Annuity of $1 per year, payable annually in arrear, at times k = 1,2, - -

provided that (x) survived

[T ]
k=1

The expected present value (or actuarial value),
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Term immediate annuity

Annuity of $1 per year, payable annually in arrear, at times k = 1,2, - --

provided that (x) survived

min{|T, |,n} |
k=1

The expected present value (or actuarial value),

,
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Whole and term continuous annuities

Those relationships can be extended to the case where annuity is payable

continuously, at rate of $1 per year, as long as (x) survives.

T, 1 o0
a, =K (V—) = / e ot D dt
log(v) 0

where § = —log(v).

It is possible to consider also a term continuous annuity

min{Tz,n} _ q n 5
Qg ) — / e b, tpxdt
log(v) 0
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Deferred annuities

It is possible to pay a benefit of $1 at the beginning of each year while insured
() survives from z + h onward. The expected present value is

o

) 1
h@x:Z(l_l_—k kPz = ZkE = Qg — Gy
k=h

One can consider deferred temporary annuities

h+n—1 h+n—1

. 1
hinGz = Z <1_|_—k; kPz = Z kB

k=h

Remark : again, recursive formulas can be derived

Gy = Q.7 + h|da: for all h € N,..
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Deferred annuities

With h fixed, it is possible to compute matrix Ah — [h|ndx]

>h <-1

> adoth <- matrix(O,m,m-h)

> for(j in 1:(m-1-h)){ adothl[,jl<-cumsum(1/(1+i)~(h+0: (m-1))*p[h+0: (m-1),j]) }
> adoth[nrow(adoth),1:5]

[1] 25.63507 25.55159 25.45845 25.35828 25.25351
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Joint life and last survivor probabilities

It is possible to consider life insurance contracts on two individuals, (z) and (y),
with remaining lifetimes 7}, and 7}, respectively. Their joint cumulative

distribution function is F, , while their joint survival function will be F',. ,,, where

Fpy(s,t) =PI, <s,T,<t)
Fuy(s,t) =P(T, > s, T, >t)

Define the joint life status, (zy), with remaining lifetime 77, = min{7,,, 7} } and
let

tdzy — P(Tmy < t) =1- tPxy

Define the last-survivor status, (Zy), with remaining lifetime 7%; = max{7,,7),}
and let

Gy = P(Tey <t) =1 — ipay
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Joint life and last survivor probabilities

Assuming independence

hPxy — hPzx * hPy;

while

hPzg = hPx T hPy — hPzy-

> pxt=function(T,a,h){ T$Lx[T$Age==a+h]/T$Lx[T$Age==a] }

> pxt (TD8890,40,10) *xpxt (TV8890,42,10)

[1] 0.9376339

> pxytjoint=function(Tx,Ty,ax,ay,h){ pxt(Tx,ax,h)*pxt(Ty,ay,h) }

> pxytjoint (TD8890,TV8890,40,42,10)

[1] 0.9376339

> pxytlastsurv=function(Tx,Ty,ax,ay,h){ pxt(Tx,ax,h)*pxt(Ty,ay,h) -
+ pxytjoint(Tx,Ty,ax,ay,h)}

> pxytlastsurv(TD8890,TV8890,40,42,10)

[1] 0.9991045
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Joint life and last survivor probabilities

It is possible to plot

JOINT=rep(NA,65)

LAST=rep(NA,65)

for(t in 1:65){

JOINT [t]=pxytjoint (TD8890,TV8890,40,42,t-1)
LAST[t]=pxytlastsurv(TD8890,TV8890,40,42,t-1) }
plot(1:65,J0INT,type="1",col="grey",xlab="",ylab="Survival probability")
lines(1:65,LAST)

legend(5,.15,c("Dernier survivant","Vie jointe"),lty=1, col=c("black","grey"),bty="n})

vV V vV 4+ 4+ V V V

41
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Joint life and last survivor insurance benefits

For a joint life status (zy), consider a whole life insurance providing benefits at
the first death. Its expected present value is

00
_ k
14my — E 14 'k|Qxy
k=0

For a last-survivor status (7y), consider a whole life insurance providing benefits

at the last death. Its expected present value is

oo oo
Arp =D V" wgtey = D V" [kie + 1%y — 1G]
k=0 k=0

Remark : Note that A,, + Az = A, + A,,.
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Joint life and last survivor insurance benefits

For a joint life status (xy), consider a whole life insurance providing annuity at
the first death. Its expected present value is

" kPzxy

For a last-survivor status (7y), consider a whole life insurance providing annuity

at the last death. Its expected present value is

Remark : Note that a,y + dzy = az + ay.
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Reversionary insurance benefits

A reversionary annuity commences upon the death of a specified status (say (y))
if a second (say (x)) is alive, and continues thereafter, so long as status ()

remains alive. Hence, reversionary annuity to (x) after (y) is

00
:Zyk’kpx'ka ZV 1_kpy]
k=1
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Premium calculation

Fundamental theorem : (equivalence principle) at time ¢t = 0,

E(present value of net premium income) = E(present value of benefit outgo)

Let

Lo = present value of future benefits - present value of future net premium

Then E(Lo) = 0.

Example : consider a n year endowment policy, paying C at the end of the year
of death, or at maturity, issues to (x). Premium P is paid at the beginning of

year year throughout policy term. Then, if K,, = min{ K, + 1,n}
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death

probability xpx

present value v

k

y

kPx * 19x+k
I/k
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Premium calculation

L(): C'VKn — PCLK
N—— K,

future benefit net premium

Az

a’.ﬁBZ

E(Ly) =C - Ay — Pz = 0, thus P =

> x <-50; n <-30

> premium <-A[n,x]/adot[n,x]

> sum(premium/(1+i)~(0: (n-1))*c(1l,pl1l: (n-1),x]))
[1] 0.3047564

> sum(1/(1+i)~(1:n)*d[1:n,x])

[1] 0.3047564
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Policy values

From year k to year k 4 1, the profit (or loss) earned during that period depends
on interest and mortality (cf. Thiele’s differential equation).

For convenience, let EPV[i1 o] denote the expected present value, calculated at

time ¢ of benefits or premiums over period [t1,t2]. Then

\EPV[&H] (beneﬁtsz = \EPV[&H] (net premiumz

TV TV
insurer insured

for a contact that ends at after n years.

Remark : Note that EPV[2 n = EPV[z "] . where

1

Bp=
: (1414

P(T, > k) =v" - 1ps
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Policy values and reserves

Define
L; = present value of future benefits - present value of future net premium

where present values are calculated at time t.

time
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For convenient, let EPV(ft1 o] denote the expected present value, calculated at

time ¢ of benefits or premiums over period (¢1,%2]. Then

Ex (L) = \EPV(]ZW] (beneﬁtsl—\EPV(%,n] (net premium) = .V (k).

7

TV TV
insurer insurer

Example : consider a n year endowment policy, paying C' at the end of the year
of death, or at maturity, issues to (x). Premium P is paid at the beginning of
year year throughout policy term. Let k € {0,1,2,--- ,n — 1,n}. From that

prospective relationship

LV (k) = n_pAptk — T n_klrtk

> VP <- diag(A[n-(0:(n-1)),x+(0:(n-1))])-
+ primediag(adot[n-(0:(n-1)),x+(0:(n-1))1)
> plot(0:n,c(VP,0) ,pch=4,xlab="",ylab="Provisions mathématiques",type="b")
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An alternative is to observe that

FEo(Ly) = ZEPV(%,WJ] (beneﬁtsz — zEPV(%,n] (net premiumz =, V(0).

WV WV
insurer insurer

Eo(Lg) = EPV[&,”] (benefits) — EPV[&,”] (net premium) = 0.

VO WV
insurer insurer

Eo(Ly) = EPV[SM (net premium) — EPV[&R] (benefits) = 1V (0).

\ 4

WV WV
insurer insurer

which can be seen as a retrospective relationship.
Here kV(O) =7 rdy — A, thus

T - kéix —

klEx

KV (k) =
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> VR <- (premium*adot[l:n,x]-A[1:n,x])/E[1:n,x]
> points(0:n,c(0,VR))

Another technique is to consider the variation of the reserve, from k — 1 to k.

This will be the iterative relationship. Here

kV(k — ].) = k_1V(]€ — 1) —1— mw — 1A:I:—|—k—1-

Since  V(k —1) =V (k) - 1Ez1k_1 we can derive

k1 Ve(k — 1)+ 7 —1As4k-1

KV (k) = Forr

> VI<-0
> for(k in 1:n){ VI <- c(VI,(VI[k]+prime-A[1,x+k-1])/E[1,x+k-1]) }
> points(0:n,VI,pch=5)

Those three algorithms return the same values, when x = 50, n = 30 and
i = 3.5%
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Policy values and reserves : pension

Consider an insured (z), paying a premium over n years, with then a deferred
whole life pension (C, yearly), until death. Let m denote the maximum number

of years (i.e. Tmax — ). The annual premium would be

a

n X

™T=C" l,,
’I’La’a’)

Consider matrix |A = [, a;] computed as follows

> adiff=matrix(0,m,m)
> for(i in 1:(m-1)){ adiff[(1+0:(m-i-1)),i] <- E[(1+0: (m-i-1)),il*a[m,1+i+(0: (m-i-1)]] }

Yearly pure premium is here the following

> x <- 35
> n <- 30

> al[n,x]
[1] 17.31146
> sum(1/(1+i)~(1:n)*c(pll:n,x]) )

59
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[1] 17.31146

> (premium <- adiff[n,x] / (adot[n,x]))

[1] 0.1661761

> sum(1/(1+i)~((n+1) :m)*p[(n+1) :m,x] )/sum(1/(1+i)~(1:n)*c(pll:n,x]) )
[1] 0.17311

To compute policy values, consider the prospective method, if £ < n,

kL%(O)::Cj'n—Maw+k__n—kdw+k-

but if £ > n then
ka(O) =C - Ar+k-

VP <- rep(NA,n-x)

VP[1:(n-1)] <- diag(adiff[n-(1:(n-1)),x+(1:(n-1))] -
adot[n-(1:(n-1)) ,x+(1:(n-1))]*prime)

VP[n: (m-x)] <- alm,x+n: (m-x)]

plot(x:m,c(0,VP),xlab="Age of the insured",ylab="Policy value")
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Again, a retrospective method can be used. If £ < n,

ﬂ-'kdx

Ve (0) =
- ( ) klix

while if & > n,
KV (0) —

For computations, recall that

n+k

n|kQx = E jﬁarzznﬁkt__n+%ﬂam
J=n-+1

It is possible to define a matrix A, = |,,|ya.] as follows

> adiff[n,x]
[1] 2.996788
> adiff[min(which(is.na(adiffx[,n])))-1,n]
[1] 2.996788
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> adiff[10,n]
[1] 2.000453
> adiff[n,x]- adiff[n+10,x]
[1] 2.000453

The policy values can be computed

> VR <- rep(NA,m-x)

> VR[1:(n)] <- adot[1l:n,x]*prime/E[1:n,x]

> VR[(n+1) : (m-x)] <- (adot[n,x]*prime - (adiff[(n),x]-
+

>

adiff[(n+1) : (m-x),x]) )/E[(n+1): (m-x),x]
points(x:m,c(0,VR) ,pch=4)

An finally, an iterative algorithm can be used. If £ < n,

k—lvx(o) + T

V,.(0) =
eV (0) 1Erik—1

while, if £ > n

= — (.
1Byt k—1
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v + + Vv + 4+ V V

VI<-0

for(k in 1:n){
VI<-c(VI, ((VI[k]+prime)/E[1,x+k-1]))

}

for(k in (n+1):(m-x)){
VI<-c(VI, ((VI[k])/E[1,x+k-1]-1))

}

points(x:m,VI,pch=5)

provision<-data.frame (k=0: (m-x),

retrospective=c(0,VR) ,prospective=c(0,VP),

iterative=VI)

head (provision)

k retrospective

.0000000
.1723554
.3511619
.5367154
. 7293306
.9293048

tail (provision)

prospective

0.

0000000

0.1723554

.3511619
.5367154
. 7293306
.9293048

iterative
0.0000000
.1723554
.3511619
.5367154
. 7293306
.9293048
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k retrospective prospective iterative

68 0.6692860 0.6692860 6.692860e-01
69 0.5076651 .5076651 5.076651e-01
70 0.2760524 .2760524 2.760525e-01
71 0.0000000 .0000000 1.501743e-10
72 NaN .0000000 Inf
73 NaN .0000000 Inf
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Using recursive formulas

Most quantities in actuarial sciences can be obtained using recursive formulas,

e.g.

00
A, = E(VTx—l—l) — ka+1k|Qw = vq, + Vp:UAa:—i—l
k=0

(©. @)
Ay = E V' kPr = 1+ Uprlyqr.
k=0

Some general algorithms can be used here : consider a sequence u = (u,,) such
that

Up = Ay + bnun—l—la

where n = 1,2,--- ,m assuming that u,,.1 is known, for some a = (a,) et
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(br). The general solution is then

m

m g—1
Um+1 H}bi ‘I‘Zaj H)bz'
- n—lj_ -
0
1=0

Up —

with convention by = 1.

Consider function

recurrence <- function(a,b,ufinal){
s <- rev(cumprod(c(1l, b)));

return(rev(cumsum(s[-1] * rev(a))) + s[1] * ufinal)/rev(s[-1])

}

For remaining life satifsfies




ARTHUR CHARPENTIER, LIFE INSURANCE, AND ACTUARIAL MODELS, WITH R

Le code est alors tout simplement,

> Lx <- TD$Lx

> x <- 45

> kpx <- Lx[(x+2):length(Lx)]/Lx[x+1]

> sum(kpx)

[1] 30.32957

> px <- Lx[(x+2):length(Lx)]/Lx[(x+1):(length(Lx)-1)]
> e<- recurrence(px,px,0)

> e[1]

[1] 30.32957

For the whole life insurance expected value

ACB — V({y + Vprx—i—l

Here

x <- 20
gqx <- 1-px
v <- 1/(1+1i)

Ar <- recurrence(a=v*qx,b=v*px,xfinal=v)
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For instance if x = 20,

> Ar[1]

[1] 0.1812636
> Ax[20]

[1] 0.1812636
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An R package for life contingencies ?

Package lifecontingencies does (almost) everything we’ve seen.

From dataset Tp$Lx define an object of class 1ifetable containing for all ages x

survival probabilities p,, and expected remaining lifetimes e,.

> TD8890 <- new("lifetable",x=TD$Age,1x=TD$Lx,name="TD8890")
removing NA and Os
> TV8890 <- new("lifetable",x=TV$Age,1x=TV$Lx,name="TV8890")

removing NA and Os
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An R package for life contingencies ?

> TV8890
Life table TV8890

1x px ex
100000 0.9935200 80.2153857
99352 0.9994162 79.2619494
99294 0.9996677 78.2881343
99261 0.9997481 77.3077311
99236 0.9997783 76.3247626
99214 0.9997984 75.3400508
99194 0.9998286 74.3528792
99177 0.9998387 73.3647956
99161 0.9998386 72.3765545
99145 0.9998386 71.3881558

1
2
3
4
5
6
7
8
9

© 00 N O O » W N = O M
O O O O O O O o o o

-
(@

That sa4-class object can be used using standard functions. E.g. 19p40 can be

computed through

> pxt (TD8890,x=40,t=10)
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[1] 0.9581196
> p[10,40]
[1] 0.9581196

. . o .
Similarly 19q40, or e49.75 are computed using

> qxt(TD8890,40,10)
[1] 0.0418804

> exn(TD8890,40,10)
[1] 9.796076
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Interpolation of survival probabilities

It is also possible to compute ;p, when h is not necessarily an integer. Linear

interpolation, with constant mortality force or hyperbolic can be used

> pxt(TD8890,90,.5,"linear")

[1] 0.8961018

> pxt(TD8890,90, .5,"constant force")
[1] 0.8900582

> pxt(TD8890,90, .5, "hyperbolic")

[1] 0.8840554

pxtL <- function(u){pxt(TD8890,90,u,"linear")}; PXTL <- Vectorize(pxtL)

pxtC <- function(u){pxt(TD8890,90,u,"constant force")}; PXTC <- Vectorize(pxtC)
pxtH <- function(u){pxt(TD8890,90,u, "hyperbolic")}; PXTH <- Vectorize (pxtH)
u=seq(0,1,by=.025)

plot (u,PXTL(u) ,type="1")

lines(u,PXTC(u),col="grey")

lines(u,PXTH(u) ,pch=3,1ty=2)

points(c(0,1) ,PXTH(0:1) ,pch=19)

YV V V vV V V V V V
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Interpolation of survival probabilities

The fist one is based on some linear interpolation between |, p, et |5 41Px

hPz = (1 —h+ LhJ) |h| Pz + (h _ LhJ) |h|+1Pz

h
For the second one, recall that ;p, = exp (— / ,ux+3d3>. Assume that
0

S+ lg1s 18 constant on [0, 1), then devient

h
hPx — €XP (/ :ua:—i—sd5> = exp[_:u h] — (px)h'
0

For the third one (still assuming h € [0, 1)), Baldacci suggested

1 1-—h+|h] N h — |h]
hPz |h| Pz |h]+1Pz

|h]|+1Pz
1= (1 —=h+[h]) |h)+1nde

or, equivalently pp, =
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Deferred capital . E,., can be computed as

> Exn(TV8890,x=40,n=10,i=.04)

[1] 0.6632212

> pxt (TV8890,x=40,10)/(1+.04)~10
[1] 0.6632212

Annuities such as d,.;’'s or or A,.m;’s can be computed as

> Ex <- Vectorize(function(N){Exn(TV8890,x=40,n=N,i=.04)})
> sum(Ex(0:9))

[1] 8.380209

> axn(TV8890,x=40,n=10,i=.04)

[1] 8.380209

> Axn(TV8890,40,10,i=.04)

[1] 0.01446302

It is also possible to have Increasing or Decreasing (arithmetically) benfits,

n—1

E+1

TA, 7 = Z m "k—1Pz - 149z+k—1,
k=0
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n—1
n—k
DAym = E —Z)k "k—1Pz " 19z+k—1;
k=0

The function is here

> DAxn(TV8890,40,10,i=.04)
[1] 0.07519631
> IAxn(TV8890,40,10,i=.04)
[1] 0.08389692

Note finally that it is possible to consider monthly benefits, not necessarily yearly

ones,

> sum(Ex(seq(0,5-1/12,by=1/12))*1/12)
[1] 4.532825

In the 1ifecontingencies package, it can be done using the x value option

> axn(TV8890,40,5,i=.04,k=12)
[1] 4.532825
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Consider an insurance where capital K if (z) dies between age x and x + n, and

that the insured will pay an annual (constant) premium 7. Then

Ax:ﬁl

K ° Am:m — 7-‘. ° dx:m’ i-e. 7-‘- — K ¢ .
Qg .m

Assume that x = 35, K = 100000 and = 40, the benefit premium is

> (p <- 100000%Axn(TV8890,35,40,i=.04) /axn(TV8890,35,40,i=.04))
[1] 366.3827

For policy value, a prospective method yield

kv = K - A:c—l—k:n—k — T Oy n—k
1.e.

> V <- Vectorize(function(k){100000*Axn(TV8890,35+k,40-k,i=.04)-
+ p*axn(TV8890,35+k,40-k,i=.04)})

> V(0:5)

[1] 0.0000 290.5141 590.8095 896.2252 1206.9951 1521.3432
> plot(0:40,c(V(0:39),0),type="b")
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