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Self-similar Time Series, and Granularity Issues

Yat
L= a · Yt, see Mandelbrot (1982) or Embrechts & Maejima (2002).

The more data we get, the better... But what about climate time series?
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‘Period of Return’ in the context of Climate Data

Gumbel (1958). Statistics of Extremes. Columbia University Press

Let T be the time of first success for some events occuring with yearly probabiliy
p, then

P[T = k] = (1− p)k−1p so that E[T ] = 1
p

(geometric distribution, discrete version of the exponential distribution).
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Models for River Levels and Flood Events

In hydrological papers, huge interest on Annual Maximum time series

• Hurst (1951) observed that annual maximum exhibit long-range dependence
(so called Hurst effect),

• Gumbel (1958) observed that annual maximum were i.id with a similar
distribution (so called Gumbel distribution)

How could it be identical series be at the same time independent and with
long-range dependence? Hurst (1951) used 700 years of data on the Nile,
Gumbel (1958) used European data, over less than a century.

Can’t we use more data to model flood events?
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Flood Events
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High Frequency Models (for Financial Data)

On financial data,

• “traditional” approach (time series): consider the closing data price, Xt at
the end of day t, i.e. regularly spaced observations,

• “high frequency daya”: the price X is observed at each transaction: let Ti
denote the data of the ith transaction, and Xi the price paid.

See e.g. ACD - Autoregressive Conditional Duration models, introduced par in
Engle & Russell (1998).

In practice, three information are stored: (1) date of transaction, or time between
two consecutive transactions, on the same stock; (2) the volume, i.e. number of
stocks sold and bought (3) the price, i.e. individual stock price (or total price
exchanged)
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Flood Events

The analogous of a transaction is a flood event, where 4 variables are kept,

• time length of the flood event

• time between two consecutive flood events

• volume Vi

• peak Pi

Remark: see Todorovic & Zelenhasic (1970) and et Todorovic &
Rousselle (1970) where marked Poisson processes were considered.
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Some ‘Optimal’ Threshold

The choice of the threshold is crucial. Standard tradeoff

• should be low to have more events

• should be high to have significant flood events

Standard technique in hydrology: given some
function f (e.g. f affine), solve

u? = argmax{P(X > f(u)|X > u)}

or its empirical couterpart

u? = argmax
{

#{Xi > f(u)}
#{Xi > u}

}
with e.g. f(x) = 1, 5x+ 5.
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A Two-Duration Model

Engle & Lunde (2003) in trades and quotes: a bivariate point process, consider
a two duration model, that can be used here.

The two dates are Ti beginning of ith flood, and T ′i end of the flood. Set

• Xi = Ti+1 − Ti the time length between the begining of two consecutive
floods

• Yi = Ti+1 − T ′i the time length between the end of a flood and the begining
of the next one
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Engle & Russell (1998) ACD(p, q) Model

In the one-duration model, let Xi denote the time lengths (Xi = Ti − Ti−1), and
Hi = {X1, ...., Xi−1}. Then

Xi = Ψi · εi, with (εi) i.i.d. noise

E(Xi|Hi−1) = Ψi = ω +
p∑
k=1

αkXi−k +
q∑

k=1
βkΨi−k,

i.e.

Xi = ω +
max{p,q}∑
k=1

(αk + βk)Xk −
q∑

k=1
βkηi−k + ηi,

where ηi = Xi −Ψi = Xi − E(Xi|Hi−1) (ARMA(max{p, q}, q) representation of
the ACD(p, q)).

In the Exponential ACD(1,1), (εi) is an exponential noise

E(Xi|Hi−1) = Ψi = θ + αXi + βΨi−1, with α, β ≥ 0 and θ > 0,
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Engle & Russell (1998) ACD(p, q) Model

More generally, the conditional density of Xi is

f(x|Hi) = 1
Ψi(Hi, θ)

· gε
(
x

Ψi(Hi, θ)
)

e.g. gε(·) = exp[−·], if ε ∼ E(1).

Inference is very similar to GARCH(1,1), the proof being the same as the one in
Lee & Hansen (1994) and Lumsdaine (1996).
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The Two-Duration Model

As in Engle & Lunde (2003), consider some two-EACD model,

f(xi|Hi) = 1
Ψi(Hi, θ1) · exp

(
− xi

Ψi(Hi, θ1)

)
where

Ψi(Hi, θ1) = exp
(
α+ δ log(Ψi−1) + γ

Xi−1

Ψi−1
+ β1Pi−1 + β2Vi−1

)
,

while
g(yi|xi,Hi) = 1

Φi(xi,Hi, θ2) · exp
(
− yi

Φi(xi,Hi, θ2)

)
where

Φi(xi,Hi, θ2) = exp
(
µ+ ρ log(Φi−1) + γ

Yi−1

Φi−1
+ τ

xi
Ψi

+ η1Pi−1 + η2Vi−1

)
.
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The Two-Duration Model

Define residuals
εi = Xi

Ψi(Hi−1, θ1) .

Since there are two kinds of floods, ordinary ones and those related to snow melt,
we should consider a mixture distribution for ε, a mixture of exponentials

f(x) = α · λ1 · e−λ1·x + (1− α) · λ2 · e−λ2·x, x > 0.

or a mixture of Weibull’s

f(x) = α · λ1 · θ−λ1
1 · xλ1−1 · e−(x/θ1)λ1 + (1− α) · λ2 · θ−λ2

2 · xλ2−1 · e−(x/θ2)λ2
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Modeling Marks

Finally,

f(pi, vi, xi, yi|Hi−1) = g(pi, vi|Hi−1, xi, yi) · h(xi, yi|Hi−1).

which can be simplified using a triangle approximation,

Volume = Vi = Pi ·
Xi − Yi

2 = peak× flood duration
2 ,

Modeling Peaks

From the threshod based approach, use Pickands-Balkema-de Haan theorem and
fit a Generalized Pareto distribution

h(pi|Hi−1, xi, yi) = α

(
pi + b(xi − yi) + d

σ

)−(1+α)
.
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Application

In Charpentier & Sibaï (2010), Environmetrics, we considered a mixture of
Weibull distribution, fitted using EM algorithm, see (conditional) QQ plot,
exponential vs. mixture of Weibull,

There is some dynamics, but not long memory here (from the EACD(1,1)
processes).
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Distribution of Time Before Next Flood Event

@freakonometrics 16



Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Long Memory and Wind Speed (very popular application)

Haslett & Raftery (1989). Space-time modelling with long-memory
dependence: assessing Ireland’s wind power resource (with discussion). Applied
Statistics. 38. 1-50.
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Daily Wind Speed in Ireland, long memory, really?
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Modeling Stationary Time Series

Given a stationary time series (Xt) , the autocovariance function, is

h 7→ γX (h) = Cov (Xt, Xt−h) = E (XtXt−h)− E (Xt) · E (Xt−h)

for all h ∈ N, and its Fourier transform is the spectral density of (Xt)

fX (ω) = 1
2π
∑
h∈Z

γX (h) exp (iωh)

for all ω ∈ [0, 2π]. Note that

fX (ω) = 1
2π

+∞∑
h=−∞

γX (h) cos (ωh)

Let ρX(h) denote the autocorrelation function i.e. ρX(h) = γX(h)/γX(0).
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Long-Range Dependence

Stationary time series (Yt) has long range dependence if
∞∑
h=1
|ρX(h)| =∞,

and short range dependence if the sum is bounded. E.g. ARMA processes have
short range dependence since

|ρ(h)| ≤ C · rh, for h = 1, 2, ...

where r ∈ (0, 1).

A popular class of long memory processes is obtained when

ρ(h) ∼ C · h2d−1 as h→∞,

where d ∈ (0, 1/2). This can be obtained with fractionary processes

(1− L)dXt = εt,
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where (εt) is some white noise. Here, (1− L)d is defined as

(1− L)d = 1− dL− d(1− d)
2! L2 − d(1− d)(2− d)

3! L3 + · · · =
∞∑
j=0

φjL
j ,

where
φj = Γ(j − d)

Γ(j + 1)Γ(d) =
∏

0<k≤j

(
k − 1− d

k

)
for j = 0, 1, 2, ...

If V ar(εt) = 1, note that par

γX(h) = Γ(1− 2d)Γ(h+ d)
Γ(d)Γ(1− d)Γ(h+ 1− d) ∼

Γ(1− 2d)
Γ(d)Γ(1− d) · h

2d−1

as h→∞, and

fX(ω) =
(

2 sin ω2

)−2d
∼ ω−2d

as ω → 0.

See also Mandelbrot et Van Ness (1968) for the continuous time version,
with the fractionary Brownian motion.
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Daily Windspeed Time Series
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Defining Long Range Dependence

Hosking (1981, 1984) suggested another definition of long range dependence:
(Xt) is stationnary, and there is ω0 such that fX(ω)→∞ as ω → ω0.

Such a ω0 can be related to seasonality

Gray, Zhang & Woodward (1989) defined GARMA(p, d, q) processes,
inspired by Hosking (1981)

Φ(L)(1− 2uL+ L2)dXt = Θ(L)εt

Hosking (1981) did not studied those processes since it is difficult to invert
(1− 2uL+ L2)d.
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Defining Long Range Dependence with Seasonality

This can be done using Gegenbauer polynomial: for d 6= 0, |Z| < 1 and |u| ≤ 1,

(1− 2uL+ L2)−d =
∞∑
i=0

Pi,d(u)Ln,

where

Pi,d(u) =
[i/2]∑
k=0

(−1)kΓ(d+ n− k)
Γ(d)

(2u)n−2k

[k!(n− 2k)!]

If |u| < 1, the limit of (ω − ω0)2df(ω) exists when ω → ω0, where ω0 = cos−1(u).

Further, if |u| < 1 and 0 < d < 1/2, then

ρ(h) ∼ C · h2d−1 · cos(ω0 · h) as h→∞.

In Bouëtte et al. (2003) Stochastic Environmental Research & Risk Assesment
we obtained on daily windspeed d̂ ∼ 0, 18.
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Estimation ‘Return Periods’

Using Gray, Zhang & Woodward (1989), it is possible to simulate GARMA

processes, to estimate probabilities
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Spectral Density of Hourly Wind Speed in the Netherlands

Some k factor GARMA should be considered, see (Bouëtte et al. (2003)
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The European heatwave of 2003

Third IPCC Assessment, 2001: treatment of extremes (e.g. trends in extreme
high temperature) is “clearly inadequate”. Karl & Trenberth (2003) noticed
that “the likely outcome is more frequent heat waves”, “more intense and longer
lasting” added Meehl & Tebaldi (2004).

In Nîmes, there were more than 30 days with temperatures higher than 35◦ C
(versus 4 in hot summers, and 12 in the previous heat wave, in 1947).

Similarly, the average maximum (minimum) temperature in Paris peaked over
35◦ C for 10 consecutive days, on 4-13 August. Previous records were 4 days in
1998 (8 to 11 of August), and 5 days in 1911 (8 to 12 of August).

Similar conditions were found in London, where maximum temperatures peaked
above 30◦C during the period 4-13 August

(see e.g. Burt (2004), Burt & Eden (2004) and Fink et al. (2004).)
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Minimum Daily Temperature in Paris, France
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Modelling the Minimum Daily Temperature

Karl & Knight (1997) , modeling of the 1995 heatwave in Chicago: minimum
temperature should be most important for health impact (see also Kovats &
Koppe (2005)), several nights with no relief from very warm nighttime
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Modelling the Minimum Daily Temperature

Instead of boxplots, consider some quantile regression
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Modelling the Minimum Daily Temperature

Note that the slope for various probability levels is rather stable

unless we focus on heat-waves,
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Which temperature might be interesting ?

Consider the following decomposition

Yt = µt +Xt

where

• µt is a (linear) general tendency

• Xt is the remaining (stationary) noise
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Nonstationarity and linear trend

Consider a spline and lowess regression
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Nonstationarity and linear trend

or a polynomial regression,and compare local slopes,
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Linear trend, and Gaussian noise

Benestad (2003) or Redner & Petersen (2006) suggested that temperature
for a given (calendar) day is an “independent Gaussian random variable with
constant standard deviation σ and a mean that increases at constant speed ν”

In the U.S., ν = 0.03◦ C per year, and σ = 3.5◦ C

In Paris, ν = 0.027◦ C per year, and σ = 3.23◦ C
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The Seasonal Component

There is a seasonal pattern in the daily temperature
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The Residual Part (or stationary component)

Let X̂t = Yt −
(
β̂0 + β̂1t+ Ŝt

)
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The Residual Part (or stationary component)

X̂t might look stationary,

One can consider some short-range dependence (ARMA) model, with either light
or heavy tailed innovation process.
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Long range dependence ?

Smith (1993) “we do not believe that the autoregressive model provides an
acceptable method for assessing theses uncertainties” (on temperature series)

Dempster & Liu (1995) suggested that, on a long period, the average annual
temperature should be decomposed as follows

• an increasing linear trend,

• a random component, with long range dependence.

Consider GARMA time serie models, as in Charpentier (2011), Climatic
Change.
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Long range dependence ?
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On return periods, optimistic scenario
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On return periods, pessimistic scenario
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Long Memory, non Stationarity and Temporal Granularity

Hourly Temperature in Montreal, QC, in January,
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Hourly Temperature as a Random Walk?

Use of various test to test for integrated time series (random walk)

• ADF, Augmented Dickey-Fuller, see Fuller (1976) and Said & Dickey
(1984)

• KPSS, Kwiatkowski–Phillips–Schmidt–Shin, see Kwiatkowski et al. (1992)

• PP, Phillips–Perron, see Phillips & Perron (1988)

where random-walk vs. stationnary
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March in Montréal: Which Winter Was ‘Abnormal’
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Detecting Abnormalities and Outliers

Consider the case where Xi,t denote the temperature at date/time t, for year i.

Let ϕ1,t, ϕ2,t, ϕ3,t, · · · denote the principal components, and Yi,1, Yi,2, Yi,3, · · · the
principal component scores.

To detect outliers, see Jones & Rice (1992), Sood et al. (2009) or Hyndman
& Shang (2010) use a bivariate depth plot on {(Y1,i, Y2,i), i = 1, · · · , n}.

E.g. monthly sea surface temperatures,
from January 1950 to December 2006
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Detecting Abnormalities and Outliers

The first two components are
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And we can use a depth plot on the first two principal component scores.
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Detecting Abnormalities and Outliers
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Depth Set and Bag Plot

Here we use Tukey’s depth set concept. In dimension 1, define

depth(y) = min{F (y), 1− F (y)}

and the associated depth set of level α ∈ (0, 1) as

Dα = {y ∈ R : depth(y) ≥ 1− α}

In higher dimension,
depth(y) = inf

u:u6=0
{P[Hu(y)]}

where Hu(y) = {x ∈ Rd : uTx ≤ uTy} and the associated depth set of level
α ∈ (0, 1) as

Dα = {y ∈ Rd : depth(y) ≥ 1− α}

@freakonometrics 49



Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Winter Temperature in Montreal
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Day of winter (from Dec. 1st till March 31st)
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DECEMBER JANUARY FEBRUARY MARCH

Winter temperature in Montréal, from December 1st till March 31st, with
Monthly, Weekly, Daily and Hourly temperatures. Winter 2011 is in red.
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Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Robust `1 PCA Scores
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Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Robust `1 PCA Scores
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Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Standard `2 PCA Scores

0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

Dim.1

D
im

.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1953

1954

1955

1956

1957

1958

1959

1960

19611962

1963

1964
1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975
1976

1977
1978

1979

1980

1981 1982

1983

19841985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

20082009

2010

2011

Monthly dataset

0.2 0.4 0.6 0.8

−
0.

5
0.

0
0.

5

Dim.1

D
im

.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977
1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991
1992

1993

1994

1995

1996

1997
1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Weekly dataset

@freakonometrics 53



Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Standard `2 PCA Scores
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Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Robust `1 PCA Principal Components
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Day of winter (from Dec. 1st till March 31st)
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Arthur CHARPENTIER - Granularity Issues of Climatic Time Series

Take-Home Message

When dealing with time series, having ‘big data’ with a more detailed granularity
(higher frequency) looks nice (T is larger, higher accuracy) but usually leads to
more complex models...

Still seems difficult to reconcile...

charpentier.arthur@uqam.ca

or @freakonometrics
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