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Econometrics and ‘Regression’ ?

Galton (1870, Heriditary Genius, 1886, Regression to-
wards mediocrity in hereditary stature) and Pearson &
Lee (1896, On Telegony in Man, 1903 On the Laws of
Inheritance in Man) studied genetic transmission of
characterisitcs, e.g. the heigth.

On average the child of tall parents is taller than
other children, but less than his parents.

“I have called this peculiarity by the name of regres-
sion”, Francis Galton, 1886.
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http://galton.org/criticism/10-14-02/merrivale-1870-her-gen-review.pdf
http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
http://www.jstor.org/discover/10.2307/115849?uid=3738016&uid=2129&uid=2&uid=70&uid=4&sid=21105436708543
http://www.jstor.org/discover/10.2307/2331507?uid=3738016&uid=2129&uid=2&uid=70&uid=4&sid=21105436708543
http://www.jstor.org/discover/10.2307/2331507?uid=3738016&uid=2129&uid=2&uid=70&uid=4&sid=21105436708543
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Econometrics and ‘Regression’ ?

1 > library ( HistData )

2 > attach ( Galton )

3 > Galton $ count <- 1

4 > df <- aggregate (Galton , by=list(parent ,

child ), FUN=sum)[,c(1 ,2 ,5)]

5 > plot(df [ ,1:2] , cex=sqrt(df [ ,3]/3))

6 > abline (a=0,b=1, lty =2)

7 > abline (lm( child ~parent ,data= Galton ))

8 > coefficients (lm( child ~parent ,data= Galton )

)[2]
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10 0.6462906
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It is more an autoregression issue here :

if Yt = φYt−1 + εt cor[Yt, Yt+h] = φh → 0 as h→∞.
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Econometrics and ‘Regression’ ?

Regression is a correlation problem.
Overall, children are not smaller than parents
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Overview

◦ Linear Regression Model: yi = β0 + xT
i β + εi = β0 + β1x1,i + β2x2,i + εi

• Nonlinear Transformations : smoothing techniques

h(yi) = β0 + β1x1,i + β2x2,i + εi

yi = β0 + β1x1,i + h(x2,i) + εi

• Asymptotics vs. Finite Distance : boostrap techniques

• Penalization : Parcimony, Complexity and Overfit

• From least squares to other regressions : quantiles, expectiles, distributional,

@freakonometrics 5
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Deterministic or Parametric Transformations

Consider child mortality rate (y) as a function of GDP per capita (x).

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ● ● ●
●

●
● ●●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
50

10
0

15
0

PIB par tête

T
au

x 
de

 m
or

ta
lit

é 
in

fa
nt

ile

Afghanistan

Albania

Algeria

American.Samoa

Angola

Argentina

Armenia

Austria

Azerbaijan

Bahamas

Bangladesh

Belarus
Belgium

Belize

Benin

BhutanBolivia

Bosnia.and.Herzegovina
Brunei.Darussalam

Bulgaria

Burkina.Faso

Cambodia

Canada

Cape.Verde

Central.African.Republic

Chad

Channel.Islands Chile

China

Comoros

Congo

Cook.Islands

Côte.dIvoire

Cuba CyprusCzech.Republic

Korea

Democratic.Republic.of.the.Congo

Denmark

Djibouti

Egypt

El.Salvador

Equatorial.Guinea

Estonia

Fiji

FinlandFrance

French.Guiana
French.Polynesia

Gabon

Gambia

Ghana

Gibraltar
Greece

Grenada

Guam

Guatemala

Guinea

Guinea−Bissau

Guyana
Haiti

Honduras

India

Indonesia
Iran

IrelandIsrael Italy

Jamaica

Japan

Jordan
Kazakhstan

Kenya

KyrgyzstanLaos

Latvia

Lesotho

Libyan.Arab.Jamahiriya

Liechtenstein
Lithuania

Luxembourg

Madagascar

Malawi

Malaysia
Malta

Marshall.Islands

Martinique
Mauritius

Micronesia.(Federated.States.of)
Mongolia

Montenegro

Morocco

Mozambique

Myanmar

Namibia

Netherlands

Netherlands.Antilles

New.Caledonia

Nicaragua

Nigeria

Niue

Norway

Occupied.Palestinian.Territory
Oman

Pakistan
Papua.New.Guinea

Paraguay

Peru

Poland Puerto.Rico Qatar
Republic.of.Korea

Republic.of.Moldova
RéunionRomaniaRussian.Federation

Saint.Vincent.and.the.GrenadinesSamoa

San.Marino

Saudi.Arabia

Serbia

Sierra.Leone

Singapore
Slovakia Slovenia

Solomon.Islands

Somalia

Sri.Lanka

Sudan

Suriname

Sweden

Syrian.Arab.Republic

Tajikistan

Thailand
Macedonia

Timor−Leste

Togo

Tunisia

Turkey

Turkmenistan

Tuvalu

Ukraine
United.Arab.EmiratesUnited.Kingdom

United.Republic.of.Tanzania

United.States.of.America
United.States.Virgin.Islands

Uruguay
Venezuela
Viet.Nam

YemenZimbabwe

@freakonometrics 7



Arthur CHARPENTIER, Advanced Econometrics Graduate Course, Winter 2017, Université de Rennes 1

Deterministic or Parametric Transformations

Logartihmic transformation, log(y) as a function of log(x)
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Deterministic or Parametric Transformations

Reverse transformation
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Box-Cox transformation

See Box & Cox (1964) An Analysis of Transformations ,

h(y, λ) =


yλ − 1
λ

if λ 6= 0

log(y) if λ = 0

or

h(y, λ, µ) =


[y + µ]λ − 1

λ
if λ 6= 0

log([y + µ]) if λ = 0

@freakonometrics 10
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Profile Likelihood

In a statistical context, suppose that unknown parameter can be partitioned
θ = (λ,β) where λ is the parameter of interest, and β is a nuisance parameter.

Consider {y1, · · · , yn}, a sample from distribution Fθ, so that the log-likelihood is

logL(θ) =
n∑
i=1

log fθ(yi)

θ̂
MLE

is defined as θ̂
MLE

= argmax {logL(θ)}

Rewrite the log-likelihood as logL(θ) = logLλ(β). Define

β̂
pMLE

λ = argmax
β

{logLλ(β)}

and then λ̂pMLE = argmax
λ

{
logLλ(β̂

pMLE

λ )
}
. Observe that

√
n(λ̂pMLE − λ) L−→ N (0, [Iλ,λ − Iλ,βI−1

β,βIβ,λ]−1)

@freakonometrics 11
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Profile Likelihood and Likelihood Ratio Test

The (profile) likelihood ratio test is based on

2
(
max

{
L(λ,β)

}
−max

{
L(λ0,β)

})
If (λ0,β0) are the true value, this difference can be written

2
(
max

{
L(λ,β)

}
−max

{
L(λ0,β0)

})
− 2

(
max

{
L(λ0,β)

}
−max

{
L(λ0,β0)

})
Using Taylor’s expension

∂L(λ,β)
∂λ

∣∣∣∣
(λ0,β̂λ0 )

∼ ∂L(λ,β)
∂λ

∣∣∣∣
(λ0,β0 )

− Iβ0λ0I
−1
β0β0

∂L(λ0,β)
∂β

∣∣∣∣
(λ0,β0 )

Thus,
1√
n

∂L(λ,β)
∂λ

∣∣∣∣
(λ0,β̂λ0 )

L→ N (0, Iλ0λ0)− Iλ0β0I
−1
β0β0

Iβ0λ0

and 2
(
L(λ̂, β̂)− L(λ0, β̂λ0)

)
L→ χ2(dim(λ)).

@freakonometrics 12
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Box-Cox

1 > boxcox (lm(dist~speed ,data=cars))

Here h∗ ∼ 0.5
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Uncertainty: Parameters vs. Prediction

Uncertainty on regression parameters (β0, β1)
From the output of the regression we can derive
confidence intervals for β0 and β1, usually

βk ∈
[
β̂k ± u1−α/2ŝe[β̂k]

]
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Uncertainty: Parameters vs. Prediction
Uncertainty on a prediction, y = m(x). Usually

m(x) ∈
[
m̂(x)± u1−α/2ŝe[m(x)]

]
hence, for a linear model[

xTβ̂ ± u1−α/2σ̂

√
xT[XTX]−1x

]
i.e. (with one covariate)

se2[m(x)]2 = Var[β̂0 + β̂1x]

se2[β̂0] + cov[β̂0, β̂1]x+ se2[β̂1]x2
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1 > predict (lm(dist~speed ,data=cars),newdata =data. frame ( speed =x),

interval =" confidence ")
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Least Squares and Expected Value (Orthogonal Projection Theorem)

Let y ∈ Rd, y = argmin
m∈R


n∑
i=1

1
n

[
yi −m︸ ︷︷ ︸

εi

]2 . It is the empirical version of

E[Y ] = argmin
m∈R


∫ [

y −m︸ ︷︷ ︸
ε

]2
dF (y)

 = argmin
m∈R

E
[
(Y −m︸ ︷︷ ︸

ε

)2]
where Y is a `1 random variable.

Thus, argmin
m(·):Rk→R


n∑
i=1

1
n

[
yi −m(xi)︸ ︷︷ ︸

εi

]2 is the empirical version of E[Y |X = x].

@freakonometrics 16
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The Histogram and the Regressogram

Connections between the estimation of f(y) and E[Y |X = x].

Assume that yi ∈ [a1, ak+1), divided in k classes [aj , aj+1). The histogram is

f̂a(y) =
k∑
j=1

1(t ∈ [aj , aj+1))
aj+1 − aj

1
n

n∑
i=1

1(yi ∈ [aj , aj+1))

Assume that aj+1−aj = hn and hn → 0 as n→∞
with nhn →∞ then

E
[
(f̂a(y)− f(y))2] ∼ O(n−2/3)

(for an optimal choice of hn).

1 > hist( height )

@freakonometrics 17
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The Histogram and the Regressogram
Then a moving histogram was considered,

f̂(y) = 1
2nhn

n∑
i=1

1(yi ∈ [y ± hn)) = 1
nhn

n∑
i=1

k

(
yi − y
hn

)

with k(x) = 1
21(x ∈ [−1, 1)), which a (flat) kernel

estimator.
1 > density (height , kernel = " rectangular ")
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The Histogram and the Regressogram

From Tukey (1961) Curves as parameters, and touch
estimation, the regressogram is defined as

m̂a(x) =
∑n
i=1 1(xi ∈ [aj , aj+1))yi∑n
i=1 1(xi ∈ [aj , aj+1))

and the moving regressogram is

m̂(x) =
∑n
i=1 1(xi ∈ [x± hn])yi∑n
i=1 1(xi ∈ [x± hn])

@freakonometrics 19
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Nadaraya-Watson and Kernels

Background: Kernel Density Estimator

Consider sample {y1, · · · , yn}, F̂n empirical cumulative distribution function

F̂n(y) = 1
n

n∑
i=1

1(yi ≤ y)

The empirical measure Pn consists in weights 1/n on each observation.

Idea: add (little) continuous noise to smooth F̂n.

Let Yn denote a random variable with distribution F̂n and define

Ỹ = Yn + hU where U ⊥⊥ Yn, with cdf K

The cumulative distribution function of Ỹ is F̃

F̃ (y) = P[Ỹ ≤ y] = E
(
1(Ỹ ≤ y)

)
= E

(
E
[
1(Ỹ ≤ y)

∣∣Yn])
F̃ (y) = E

(
1
(
U ≤ y − Yn

h

) ∣∣∣Yn) =
n∑
i=1

1
n
K

(
y − yi
h

)
@freakonometrics 20
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Nadaraya-Watson and Kernels
If we differentiate

f̃(y)= 1
nh

n∑
i=1

k

(
y − yi
h

)

= 1
n

n∑
i=1

kh (y − yi) with kh(u) = 1
h
k
(u
h

)
f̃ is the kernel density estimator of f , with kernel
k and bandwidth h.
Rectangular, k(u) = 1

21(|u| ≤ 1)

Epanechnikov, k(u) = 3
41(|u| ≤ 1)(1− u2)

Gaussian, k(u) = 1√
2π
e−

u2
2

1 > density (height , kernel = " epanechnikov ")

−2 −1 0 1 2
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Kernels and Statistical Properties

Consider here an i.id. sample {Y1, · · · , Yn} with density f

Given y, observe that E[f̃(y)] =
∫ 1
h
k

(
y − t
h

)
f(t)dt =

∫
k(u)f(y − hu)du. Use

Taylor expansion around h = 0,f(y − hu) ∼ f(y)− f ′(y)hu+ 1
2f
′′(y)h2u2

E[f̃(y)] =
∫
f(y)k(u)du−

∫
f ′(y)huk(u)du+

∫ 1
2f
′′(y + hu)h2u2k(u)du

= f(y) + 0 + h2 f
′′(y)
2

∫
k(u)u2du+ o(h2)

Thus, if f is twice continuously differentiable with bounded second derivative,∫
k(u)du = 1,

∫
uk(u)du = 0 and

∫
u2k(u)du <∞,

then E[f̃(y)] = f(y) + h2 f
′′(y)
2

∫
k(u)u2du+ o(h2)
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Kernels and Statistical Properties
For the heuristics on that bias, consider a flat kernel,
and set

fh(y) = F (y + h)− F (y − h)
2h

then the natural estimate is

f̂h(y) = F̂ (y + h)− F̂ (y − h)
2h = 1

2nh

n∑
i=1

1(yi ∈ [y ± h])︸ ︷︷ ︸
Zi

where Zi’s are Bernoulli B(px) i.id. variables with
px = P[Yi ∈ [x± h]] = 2h · fh(x). Thus, E(f̂h(y)) = fh(y), while

fh(y) ∼ f(y) + h2

6 f
′′(y) as h ∼ 0.
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Kernels and Statistical Properties

Similarly, as h→ 0 and nh→∞

Var[f̃(y)] = 1
n

(
E[kh(z − Z)2]− (E[kh(z − Z)])2

)
Var[f̃(y)] = f(y)

nh

∫
k(u)2du+ o

(
1
nh

)
Hence

• if h→ 0 the bias goes to 0

• if nh→∞ the variance goes to 0
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Kernels and Statistical Properties

Extension in Higher Dimension:

f̃(y) = 1
n|H|1/2

n∑
i=1

k
(
H−1/2(y − yi)

)
f̃(y) = 1

nhd|Σ|1/2

n∑
i=1

k

(
Σ−1/2 (y − yi)

h

)
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Kernels and Convolution

Given f and g, set

(f ? g)(x) =
∫
R
f(x− y)g(y)dy

Then f̃h = (f̂ ? kh), where

f̂(y) = F̂ (y)
dy

=
n∑
i=1

δyi(y)

Hence, f̃ is the distribution of Ŷ + ε where

Ŷ is uniform over {y1, · · · , yn} and ε ∼ kh are independent
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Nadaraya-Watson and Kernels

Here E[Y |X = x] = m(x). Write m as a function of densities

g(x) =
∫
yf(y|x)dy =

∫
yf(y, x)dy∫
f(y, x)dy

Consider some bivariate kernel k, such that∫
tk(t, u)dt = 0 and κ(u) =

∫
k(t, u)dt

For the numerator, it can be estimated using∫
yf̃(y, x)dy = 1

nh2

n∑
i=1

∫
yk

(
y − yi
h

,
x− xi
h

)

= 1
nh

n∑
i=1

∫
yik

(
t,
x− xi
h

)
dt = 1

nh

n∑
i=1

yiκ

(
x− xi
h

)
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Nadaraya-Watson and Kernels

and for the denominator∫
f(y, x)dy = 1

nh2

n∑
i=1

∫
k

(
y − yi
h

,
x− xi
h

)
= 1
nh

n∑
i=1

κ

(
x− xi
h

)
Therefore, plugging in the expression for g(x) yields

m̃(x) =
∑n
i=1 yiκh (x− xi)∑n
i=1 κh (x− xi)

Observe that this regression estimator is a weighted
average (see linear predictor section)

m̃(x) =
n∑
i=1

ωi(x)yi with ωi(x) = κh (x− xi)∑n
i=1 κh (x− xi)
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Nadaraya-Watson and Kernels

One can prove that kernel regression bias is given by

E[m̃(x)] ∼ m(x) + C1h
2
(

1
2m
′′(x) +m′(x)f

′(x)
f(x)

)
In the univariate case, one can get the kernel estimator of derivatives

dm̃(x)
dx

= 1
nh2

n∑
i=1

k

(
x− xi
h

)
yi

Actually, m̃ is a function of bandwidth h.

Note: this can be extended to multivariate x.
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Nadaraya-Watson and Kernels in Higher Dimension

Here m̂H(x) =
∑n
i=1 yikH(xi − x)∑n
i=1 kH(xi − x)

for some symmetric positive definite

bandwidth matrix H, and kH(x) = det[H]−1k(H−1x). Then

E[m̂H(x)] ∼ m(x) + C1

2 trace
(
HTm′′(x)H

)
+ C2

m′(x)THHT∇f(x)
f(x)

while
Var[m̂H(x)] ∼ C3

ndet(H)
σ(x)
f(x)

Hence, if H = hI, h? ∼ Cn−
1

4+dim(x) .
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From kernels to k-nearest neighbours

An alternative is to consider

m̃k(x) = 1
n

n∑
i=1

ωi,k(x)yi

where ωi,k(x) = n

k
if i ∈ Ikx with

Ikx = {i : xi one of the k nearest observations to x}

Lai (1977) Large sample properties of K-nearest neighbor procedures if k →∞ and
k/n→ 0 as n→∞, then

E[m̃k(x)] ∼ m(x) + 1
24f(x)3

[
(m′′f + 2m′f ′)(x)

](k
n

)2

while Var[m̃k(x)] ∼ σ2(x)
k
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From kernels to k-nearest neighbours

Remark: Brent & John (1985) Finding the median requires 2n comparisons
considered some median smoothing algorithm, where we consider the median
over the k nearest neighbours (see section #4).
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k-Nearest Neighbors and Curse of Dimensionality

The higher the dimension, the larger the distance to the closest neigbbor

min
i∈{1,··· ,n}

{d(a,xi)},xi ∈ Rd.

●

dim1 dim2 dim3 dim4 dim5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dim1 dim2 dim3 dim4 dim5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 10 n = 100
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Bandwidth selection : MISE for Density

MSE[f̃(y)] = bias[f̃(y)]2 + Var[f̃(y)]

MSE[f̃(y)] = f(y) 1
nh

∫
k(u)2du+ h4

(
f ′′(y)

2

∫
k(u)u2du

)2
+ o

(
h4 + 1

nh

)
Bandwidth choice is based on minimization of the asymptotic integrated MSE
(over y)

MISE(f̃) =
∫
MSE[f̃(y)]dy ∼ 1

nh

∫
k(u)2du+ h4

∫ (
f ′′(y)

2

∫
k(u)u2du

)2
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Bandwidth selection : MISE for Density

Thus, the first-order condition yields

− C1

nh2 + h3
∫
f ′′(y)2dyC2 = 0

with C1 =
∫
k2(u)du and C2 =

(∫
k(u)u2du

)2
, and

h? = n−
1
5

(
C1

C2
∫
f ′′(y)dy

) 1
5

h? = 1.06n− 1
5
√

Var[Y ] from Silverman (1986) Density Estimation
1 > bw.nrd0(cars$ speed )

2 [1] 2.150016

3 > bw.nrd(cars$ speed )

4 [1] 2.532241

with Scott correction, see Scott (1992) Multivariate Density Estimation
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Bandwidth selection : MISE for Regression Model

One can prove that

MISE[m̂h] ∼

bias2︷ ︸︸ ︷
h4

4

(∫
x2k(x)dx

)2 ∫ [
m′′(x) + 2m′(x)f

′(x)
f(x)

]2
dx

+ σ2

nh

∫
k2(x)dx ·

∫
dx

f(x)︸ ︷︷ ︸
variance

as n→ 0 and nh→∞.

The bias is sensitive to the position of the xi’s.

h? = n−
1
5

 C1
∫

dx
f(x)

C2
∫ [
m′′(x) + 2m′(x) f ′(x)

f(x)
]
dx

 1
5

Problem: depends on unknown f(x) and m(x).
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Bandwidth Selection : Cross Validation
Let R(h) = E

[
(Y − m̂h(X))2].

Natural idea R̂(h) = 1
n

n∑
i=1

(yi − m̂h(xi))2

Instead use leave-one-out cross validation,

R̂(h) = 1
n

n∑
i=1

(
yi − m̂(i)

h (xi)
)2

where m̂(i)
h is the estimator obtained by omitting the ith

pair (yi,xi) or k-fold cross validation,

R̂(h) = 1
n

k∑
j=1

∑
i∈Ij

(
yi − m̂(j)

h (xi)
)2

where m̂(j)
h is the estimator obtained by omitting pairs

(yi,xi) with i ∈ Ij .
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Bandwidth Selection : Cross Validation

Then find (numerically)

h? = argmin
{
R̂(h)

}
In the context of density estimation, see Chiu
(1991) Bandwidth Selection for Kernel Density Es-
timation 2 4 6 8 10

14
16

18
20

22

bandwidth

Usual bias-variance tradeoff, or Goldilock principle:
h should be neither too small, nor too large

• undersmoothed: bias too large, variance too small

• oversmoothed: variance too large, bias too small
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Local Linear Regression

Consider m̂(x) defined as m̂(x) = β̂0 where (β̂0, β̂) is the solution of

min
(β0,β)

{
n∑
i=1

ω
(x)
i

(
yi − [β0 + (x− xi)Tβ]

)2
}

where ω(x)
i = kh(x− xi), e.g.

i.e. we seek the constant term in a weighted least squares regression of yi’s on
x− xi’s. If Xx is the matrix [1 (x−X)T], and if W x is a matrix

diag[kh(x− x1), · · · , kh(x− xn)]

then m̂(x) = 1T(XT
xW xXx)−1XT

xW xy

This estimator is also a linear predictor :

m̂(x) =
n∑
i=1

ai(x)∑
ai(x)yi

@freakonometrics 39



Arthur CHARPENTIER, Advanced Econometrics Graduate Course, Winter 2017, Université de Rennes 1

where
ai(x) = 1

n
kh(x− xi)

(
1− s1(x)Ts2(x)−1x− xi

h

)
with

s1(x) = 1
n

n∑
i=1

kh(x−xi)
x− xi
h

and s2(x) = 1
n

n∑
i=1

kh(x−xi)
(
x− xi
h

)(
x− xi
h

)

Note that Nadaraya-Watson estimator was simply the solution of

min
β0

{
n∑
i=1

ω
(x)
i (yi − β0)2

}
where ω(x)

i = kh(x− xi)

E[m̂(x)] ∼ m(x) + h2

2 m
′′(x)µ2 where µ2 =

∫
k(u)u2du.

Var[m̂(x)] ∼ 1
nh

νσ2
x

f(x)
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where ν =
∫
k(u)2du

Thus, kernel regression MSE is

h2

4

(
g′′(x) + 2g′(x)f

′(x)
f(x)

)2
µ2

2 + 1
nh

νσ2
x

f(x)
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1 > loess (dist ~ speed , cars ,span =0.75 , degree =1)

2 > predict (REG , data. frame ( speed = seq (5, 25, 0.25) ), se = TRUE)
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Local polynomials

One might assume that, locally, m(x) ∼ µx(u) as u ∼ 0, with

µx(u) = β
(x)
0 + β

(x)
1 + [u− x] + β

(x)
2 + [u− x]2

2 + β
(x)
3 + [u− x]3

2 + · · ·

and we estimate β(x) by minimizing
n∑
i=1

ω
(x)
i

[
yi − µx(xi)

]2.
If Xx is the design matrix

[
1 xi − x

[xi − x]2

2
[xi − x]3

3 · · ·
]
, then

β̂
(x)

=
(
XT
xW xXx

)−1
XT
xW xy

(weighted least squares estimators).

1 > library ( locfit )

2 > locfit (dist~speed ,data=cars)
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Series Regression
Recall that E[Y |X = x] = m(x).
Why not approximatem by a linear combination of approx-
imating functions h1(x), · · · , hk(x).
Set h(x) = (h1(x), · · · , hk(x)), and consider the regression
of yi’s on h(xi)’s,

yi = h(xi)Tβ + εi

Then β̂ = (HTH)−1HTy
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Series Regression : polynomials

Even if m(x) = E(Y |X = x) is not a polynomial function,
a polynomial can still be a good approximation.

From Stone-Weierstrass theorem, if m(·) is continuous on
some interval, then there is a uniform approximation of
m(·) by polynomial functions.

1 > reg <- lm(y~x,data=db)
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Series Regression : polynomials

Assume that m(x) = E(Y |X = x) =
k∑
i=0

αix
i, where pa-

rameters α0, · · · , αk will be estimated (but not k).

1 > reg <- lm(y~poly(x ,5) ,data=db)

2 > reg <- lm(y~poly(x ,25) ,data=db)
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Series Regression : (Linear) Splines

Consider m+ 1 knots on X , min{xi} ≤ t0 ≤ t1 ≤ · · · ≤ tm ≤ max{xn}, then
define linear (degree = 1) splines positive function,

bj,1(x) = (x− tj)+ =

 x− tj if x > tj

0 otherwise

for linear splines, consider

Yi = β0 + β1Xi + β2(Xi − s)+ + εi

1 > positive _part <- function (x) ifelse (x>0,x ,0)

2 > reg <- lm(Y~X+ positive _part(X-s), data=db)
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Series Regression : (Linear) Splines

for linear splines, consider

Yi = β0 + β1Xi + β2(Xi − s1)+ + β3(Xi − s2)+ + εi

1 > reg <- lm(Y~X+ positive _part(X-s1)+

2 positive _part(X-s2), data=db)

3 > library ( bsplines )

A spline is a function defined by piecewise polynomials.
b-splines are defined recursively
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b-Splines (in Practice)

1 > reg1 <- lm(dist~ speed + positive _part(speed -15) ,

data=cars)

2 > reg2 <- lm(dist~bs(speed ,df=2, degree =1) , data=

cars)

Considerm+1 knots on [0, 1], 0 ≤ t0 ≤ t1 ≤ · · · ≤ tm ≤ 1,
then define recursively b-splines as

bj,0(t) =

 1 if tj ≤ t < tj+1

0 otherwise, and

bj,n(t) = t− tj
tj+n − tj

bj,n−1(t)

+ tj+n+1 − t
tj+n+1 − tj+1

bj+1,n−1(t)
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b-Splines (in Practice)

1 > summary (reg1)

2

3 Coefficients :

4 Estimate Std Error t value Pr(>|t|)

5 ( Intercept ) -7.6519 10.6254 -0.720 0.475

6 speed 3.0186 0.8627 3.499 0.001 **

7 (speed -15) 1.7562 1.4551 1.207 0.233

8

9 > summary (reg2)

10

11 Coefficients :

12 Estimate Std Error t value Pr(>|t|)

13 ( Intercept ) 4.423 7.343 0.602 0.5493

14 bs( speed )1 33.205 9.489 3.499 0.0012 **

15 bs( speed )2 80.954 8.788 9.211 4.2e -12 ***
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b and p-Splines
Note that those spline function define an orthonormal ba-
sis.

O’Sullivan (1986) A statistical perspective on ill-posed in-
verse problems suggested a penalty on the second deriva-
tive of the fitted curve (see #3).

m(x) = argmin
{ n∑
i=1

(
yi − b(xi)Tβ

)2 + λ

∫
R
b′′(xi)Tβ

}

@freakonometrics 51

http://www.stat.washington.edu/courses/stat527/s13/readings/osullivan86.pdf
http://www.stat.washington.edu/courses/stat527/s13/readings/osullivan86.pdf


Arthur CHARPENTIER, Advanced Econometrics Graduate Course, Winter 2017, Université de Rennes 1

Adding Constraints: Convex Regression

Assume that yi = m(xi) + εi where m : Rd →∞R is some convex function.

m is convex if and only if ∀x1,x2 ∈ Rd, ∀t ∈ [0, 1],

m(tx1 + [1− t]x2) ≤ tm(x1) + [1− t]m(x2)

Proposition (Hidreth (1954) Point Estimates of Ordinates of Concave Functions)

m? = argmin
m convex

{
n∑
i=1

(
yi −m(xi)

)2
}

Then θ? = (m?(x1), · · · ,m?(xn)) is unique.

Let y = θ + ε, then

θ? = argmin
θ∈K

{
n∑
i=1

(
yi − θi)

)2
}

where K = {θ ∈ Rn : ∃m convex ,m(xi) = θi}. I.e. θ? is the projection of y onto
the (closed) convex cone K. The projection theorem gives existence and unicity.
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Adding Constraints: Convex Regression

In dimension 1: yi = m(xi) + εi. Assume that observations are ordered
x1 < x2 < · · · < xn.

Here
K =

{
θ ∈ Rn : θ2 − θ1

x2 − x1
≤ θ3 − θ2

x3 − x2
≤ · · · ≤ θn − θn−1

xn − xn−1

}

Hence, quadratic program with n − 2 linear con-
straints.
m? is a piecewise linear function (interpolation of
consecutive pairs (xi, θ?i )).
If m is differentiable, m is convex if

m(x) +∇m(x) · [y − x] ≤ m(y)
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Adding Constraints: Convex Regression

More generally: if m is convex, then there exists ξx ∈ Rn such that

m(x) + ξx · [y − x] ≤ m(y)

ξx is a subgradient of m at x. And then

∂m(x) =
{
m(x) + ξ · [y − x] ≤ m(y),∀y ∈ Rn

}

Hence, θ? is solution of

argmin
{
‖y − θ‖2}

subject to θi + ξi[xj − xi] ≤ θj , ∀i, j

and ξ1, · · · , ξn ∈ Rn.
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Testing (Non-)Linearities

In the linear model,
ŷ = Xβ̂ = X[XTX]−1XT︸ ︷︷ ︸

H

y

Hi,i is the leverage of the ith element of this hat matrix.

Write

ŷi =
n∑
j=1

[XT
i [XTX]−1XT]jyj =

n∑
j=1

[H(Xi)]jyj

where
H(x) = xT[XTX]−1XT

The prediction is

m(x) = E(Y |X = x) =
n∑
j=1

[H(x)]jyj
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Testing (Non-)Linearities

More generally, a predictor m is said to be linear if for all x if there is
S(·) : Rn → Rn such that

m(x) =
n∑
j=1
S(x)jyj

Conversely, given ŷ1, · · · , ŷn, there is a matrix S n× n such that

ŷ = Sy

For the linear model, S = H.

trace(H) = dim(β): degrees of freedom
Hi,i

1−Hi,i
is related to Cook’s distance, from Cook (1977), Detection of Influential

Observations in Linear Regression.
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Testing (Non-)Linearities

For a kernel regression model, with kernel k and bandwidth h

S
(k,h)
i,j = kh(xi − xj)

n∑
k=1

kh(xk − xj)

where kh(·) = k(·/h), while S(k,h)(x)j = Kh(x− xj)
n∑
k=1

kh(x− xk)

For a k-nearest neighbor, S(k)
i,j = 1

k
1(j ∈ Ixi) where Ixi are the k nearest

observations to xi, while S(k)(x)j = 1
k

1(j ∈ Ix).
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Testing (Non-)Linearities

Observe that trace(S) is usually seen as a degree of smoothness.

Do we have to smooth? Isn’t linear model sufficent?

Define
T = ‖Sy −Hy‖

trace([S −H]T[S −H])
If the model is linear, then T has a Fisher distribution.

Remark: In the case of a linear predictor, with smoothing matrix Sh

R̂(h) = 1
n

n∑
i=1

(yi − m̂(−i)
h (xi))2 = 1

n

n∑
i=1

(
Yi − m̂h(xi)
1− [Sh]i,i

)2

We do not need to estimate n models. One can also minimize

GCV (h) = n2

n2 − trace(S)2 ·
1
n

n∑
i=1

(Yi − m̂h(xi))2 ∼ Mallow’s Cp
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Confidence Intervals

If ŷ = m̂h(x) = Sh(x)y, let σ̂2 = 1
n

n∑
i=1

(yi − m̂h(xi))2 and a confidence interval

is, at x
[
m̂h(y)± t1−α/2σ̂

√
Sh(x)Sh(x)T

]
.
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Confidence Bands
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Confidence Bands

Also called variability bands for functions in Härdle (1990) Applied Nonparametric
Regresion.

From Collomb (1979) Condition nécessaires et suffisantes de convergence uniforme
d’un estimateur de la rǵression, with Kernel regression (Nadarayah-Watson)

sup
{
|m(x)− m̂h(x)|

}
∼ C1h

2 + C2

√
logn
nh

sup
{
|m(x)− m̂h(x)|

}
∼ C1h

2 + C2

√
logn

nhdim(x)
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Confidence Bands

So far, we have mainly discussed pointwise convergence with
√
nh (m̂h(x)−m(x)) L→ N (µx, σ2

x).

This asymptotic normality can be used to derive (pointwise) confidence intervals

P(IC−(x) ≤ m(x) ≤ IC+(x)) = 1− α ∀x ∈ X .

But we can also seek uniform convergence properties. We want to derive
functions IC± such that

P(IC−(x) ≤ m(x) ≤ IC+(x) ∀x ∈ X ) = 1− α.
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Confidence Bands

• Bonferroni’s correction

Use a standard Gaussian (pointwise) confidence interval

IC±? (x) = m̂(x)±
√
nhσ̂t1−α/2.

and take also into accound the regularity of m. Set

V (η) = 1
2

(
2η + 1
n

+ 1
n

)
‖m′‖∞,x, for some 0 < η < 1

where ‖ϕ′‖∞,x is on a neighborhood of x. Then consider

IC±(x) = IC±? (x)± V (η).
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Confidence Bands

• Use of Gaussian processes

Observe that
√
nh (m̂h(x)−m(x)) D→ Gx for some Gaussian process (Gx).

Confidence bands are derived from quantiles of sup{Gx, x ∈ X}.

If we use kernel k for smoothing, Johnston (1982) Probabilities of Maximal
Deviations for Nonparametric Regression Function Estimates proved that

Gx =
∫
k(x− t)dWt, for some standard (Wt) Wiener process

is then a Gaussian process with variance
∫
k(x)k(t− x)dt. And

IC±(x) = ϕ̂(x)±
(

qα√
2 log(1/h)

+ dn

)
5
7
σ̂2
√
nh

with dn =
√

2 log h−1 + 1√
2 log h−1

log
√

3
4π2 , where exp(−2 exp(−qα)) = 1− α.
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Confidence Bands

• Bootstrap (see #2)

Finally, McDonald (1986) Smoothing with Split Linear Fits suggested a bootstrap
algorithm to approximate the distribution of Zn = sup{|ϕ̂(x)− ϕ(x)|, x ∈ X}.
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Confidence Bands

Depending on the smoothing parameter h, we get different corrections
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Confidence Bands

Depending on the smoothing parameter h, we get different corrections
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Boosting to Capture NonLinear Effects

We want to solve
m? = argmin

{
E
[
(Y −m(X))2]}

The heuristics is simple: we consider an iterative process where we keep modeling
the errors.

Fit model for y, h1(·) from y and X, and compute the error, ε1 = y − h1(X).

Fit model for ε1, h2(·) from ε1 and X, and compute the error, ε2 = ε1 − h2(X),
etc. Then set

mk(·) = h1(·)︸ ︷︷ ︸
∼y

+h2(·)︸ ︷︷ ︸
∼ε1

+h3(·)︸ ︷︷ ︸
∼ε2

+ · · ·+ hk(·)︸ ︷︷ ︸
∼εk−1

Hence, we consider an iterative procedure, mk(·) = mk−1(·) + hk(·).
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Boosting

h(x) = y−mk(x), which can be interpreted as a residual. Note that this residual

is the gradient of 1
2 [y −mk(x)]2

A gradient descent is based on Taylor expansion

f(xk)︸ ︷︷ ︸
〈f,xk〉

∼ f(xk−1)︸ ︷︷ ︸
〈f,xk−1〉

+ (xk − xk−1)︸ ︷︷ ︸
α

∇f(xk−1)︸ ︷︷ ︸
〈∇f,xk−1〉

But here, it is different. We claim we can write

fk(x)︸ ︷︷ ︸
〈fk,x〉

∼ fk−1(x)︸ ︷︷ ︸
〈fk−1,x〉

+ (fk − fk−1)︸ ︷︷ ︸
β

?︸︷︷︸
〈fk−1,∇x〉

where ? is interpreted as a ‘gradient’.
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Boosting

Here, fk is a Rd → R function, so the gradient should be in such a (big)
functional space → want to approximate that function.

mk(x) = mk−1(x) + argmin
f∈F

{
n∑
i=1

(yi − [mk−1(x) + f(x)])2

}

where f ∈ F means that we seek in a class of weak learner functions.

If learner are two strong, the first loop leads to some fixed point, and there is no
learning procedure, see linear regression y = xTβ + ε. Since ε ⊥ x we cannot
learn from the residuals.

In order to make sure that we learn weakly, we can use some shrinkage
parameter ν (or collection of parameters νj).
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Boosting with Piecewise Linear Spline & Stump Functions

Instead of εk = εk−1 − hk(x), set εk = εk−1 − ν·hk(x)

Remark : bumps are related to regression trees (see 2015 course).

@freakonometrics 71



Arthur CHARPENTIER, Advanced Econometrics Graduate Course, Winter 2017, Université de Rennes 1

Ruptures

One can use Chow test to test for a rupture. Note that it is simply Fisher test,
with two parts,

β =

 β1 for i = 1, · · · , i0
β2 for i = i0 + 1, · · · , n

and test

 H0 : β1 = β2

H1 : β1 6= β2

i0 is a point between k and n− k (we need enough observations). Chow (1960)
Tests of Equality Between Sets of Coefficients in Two Linear Regressions suggested

Fi0 = η̂Tη̂ − ε̂Tε̂

ε̂Tε̂/(n− 2k)

where ε̂i = yi − xT
i β̂, and η̂i =

 Yi − xT
i β̂1 for i = k, · · · , i0

Yi − xT
i β̂2 for i = i0 + 1, · · · , n− k
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Ruptures
1 > Fstats (dist ~ speed ,data=cars ,from =7/50)
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Tester la présence d’une rupture, le test de Chow
1 > Fstats (dist ~ speed ,data=cars ,from =2/50)
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Ruptures

If i0 is unknown, use CUSUM types of tests, see Ploberger & Krämer (1992) The
Cusum Test with OLS Residuals. For all t ∈ [0, 1], set

Wt = 1
σ̂
√
n

bntc∑
i=1

ε̂i.

If α is the confidence level, bounds are generally ±α, even if theoretical bounds
should be ±α

√
t(1− t).

1 > cusum <- efp(dist ~ speed , type = "OLS - CUSUM ",data=cars)

2 > plot(cusum ,ylim=c( -2 ,2))

3 > plot(cusum , alpha = 0.05 , alt. boundary = TRUE ,ylim=c( -2 ,2))
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Ruptures

OLS−based CUSUM test
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OLS−based CUSUM test with alternative boundaries
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Ruptures and Nonlinear Models

See Imbens & Lemieux (2008) Regression Discontinuity Designs.
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Generalized Additive Models

Linear regression model E[Y |X = x] = β0 + xTβ = β0 +
p∑
j=1

βjxj

Additive model E[Y |X = x] = β0 +
p∑
j=1

hj(xj) where hj(·) can be any nonlinear

function.

1 > library (mgcv)

2 > gam(dist~s( speed ),

data=cars)
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