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Learning, with an actuarial perspective

(lecture 3)
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Causal Claim

See Cramer (2019) and PMAP 8141

But in many applications, we can’t do that...
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Causal Perspective, Two Types of Data
• Causality is the relationship between cause and effect.
• In contrast to correlation, which measures the strength of a relationship between

two variables, causality seeks to understand whether one event causes another.
• Example:

If a drug treatment improves patient health, this is a causal relationship.
If there is a statistical association between ice cream sales and drowning
accidents, this is correlation (but not necessarily causation).

• Understanding causal relationships is essential in ML for model interpretability,
decision-making, and counterfactual reasoning.
• Prediction vs. Causal Inference:

Prediction: ML models typically focus on predicting outcomes based on
observed data.
Causal Inference: ML can go beyond prediction by identifying causal
relationships, which is crucial for intervention and decision-making.
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Causal Perspective, Two Types of Data
• Causal Models are necessary when we want to:

Understand the effect of interventions or changes (e.g., how a policy change
will affect an outcome).
Estimate counterfactuals, such as ”What would have happened if...?”

• In the context of personalized medicine, marketing, or economics, knowing the
causal effect of actions (e.g., a drug, a marketing campaign) is more valuable than
simple predictions.
• Correlation measures the strength and direction of a linear relationship between

two variables, but it does not imply causality.
• Causality goes beyond correlation to explain how one variable directly influences

another.
• Example:

Correlation: There is a strong correlation between the number of hours
studied and exam scores.
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Causal Perspective, Two Types of Data
Causality: We hypothesize that studying more causes better performance on
the exam.

• Spurious correlations can occur when a third variable is involved, which makes a
relationship appear causal when it is not.
• In ML, causal inference allows us to establish true cause-effect relationships, while

correlation alone can be misleading.
• A counterfactual is a hypothetical scenario describing what would have happened

if a different action or event had occurred.
• In causal inference, counterfactuals allow us to estimate the effect of an

intervention:
Ytreatment = Outcome if treatment applied

Ycontrol = Outcome if no treatment applied

• Example:

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 6 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Causal Perspective, Two Types of Data

A patient receives a new drug. The counterfactual asks, ”What would have
happened if the patient did not receive the drug?”
The difference between the actual outcome and the counterfactual outcome
represents the causal effect.

• Counterfactual reasoning helps answer ”what if” questions and is crucial for
understanding causal effects in ML.
• Causal Inference is the process of drawing conclusions about causal relationships

from data.
• Causal Models include:

Structural Causal Models (SCMs): Represent causal relationships using
directed acyclic graphs (DAGs).
Potential Outcomes Framework: Defines counterfactuals and causal effects
using treatment and control groups.
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Causal Perspective, Two Types of Data
• Example: In a healthcare study, a causal model can help estimate the effect of a

drug on patient outcomes while controlling for confounding variables.
• Interventions: Once we know the causal structure, we can simulate the effects of

interventions (e.g., changing a treatment or policy).
• Applications in ML:

Counterfactual Reasoning: Predicting the effect of actions or interventions on
the system.
Reinforcement Learning: Estimating the impact of actions taken by the agent
on future outcomes.

• Causality seeks to understand how one variable influences another, beyond mere
correlation.
• Counterfactuals allow us to reason about what would have happened under

different conditions, enabling causal effect estimation.
• Causal Inference in ML:
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Causal Perspective, Two Types of Data

Intervention: Estimating the effect of potential interventions (e.g., treatment,
marketing strategies).
Prediction: Making predictions that account for potential causal effects, not
just correlations.

• Importance in ML:
Many ML applications (e.g., personalized recommendations, policy decisions)
require understanding causal relationships.
Causal models provide a powerful framework to go beyond prediction and
allow for actionable insights.
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Two Types of Data

“It is often said, ‘You cannot prove causality with statistics.’
One of my professors, Frederick Mosteller, liked to counter,
‘You can only prove causality with statistics.’ (...) The title,
‘Observation and Experiment,’ marks the modern distinction
between randomized experiments and observational studies,”
Rosenbaum (2018)

Correlation, Randall Munroe, 2009 https://xkcd.com/552/
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Three Types of Reasoning

“Ladder of causation” from Pearl et al. (2009)

3. Counterfactuals
(Imagining, “what if I had done...”)

2. Intervention
(Doing, “what if I do...”)

1. Association
(Seeing, “what if I see...”)

Picture source: Pearl and Mackenzie (2018)

What would be the impact of a treatment T
on a variable of interest Y ?
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Case 1 - Intervention

“No causation without manipulation,” Holland (1986)
→ Randomized Control Trial (RCT)
• Check that key demographics and other confounders are

balanced
• Find difference in average outcome in treatment and con-

trol groups
• Use statistical significance to test for effects

RCT considered a Golden Standard
See Jonas Salk’s polio vaccine in the 50’s, Meldrum (1998)
But doesn’t fix attrition problem
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Case 1 - Intervention

If the study is too short, the effect might not be
detectable yet; if the study is too long, attrition be-
comes a problem
(people might drop out because of the treatment, or
because they got/didn’t get into the control group)

• Hawthorne effect, observing people makes them
behave differently
• John Henry effect, control group works hard to

prove they’re as good as the treatment group
• Spillover effect, control groups naturally pick up

what the treatment group is getting
see also Yeh et al. (2018)
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Case 2a - Double difference method (or difference of differences)
”Difference in differences” (DID), studying the dif-
ferential effect of a treatment on a ’treatment group’
versus a ’control group’ in a natural experiment, An-
grist and Pischke (2009)
Example minimum wages and employment, Card and
Krueger (1994) and Imai (2022)
What happens if you raise the minimum wage?
Economic theory says there should be fewer jobs
New Jersey in 1992 $4.25 → $5.05
Average number of jobs per fast food restaurant in
NJ {

before (NJ) : 20.44
after (NJ) : 21.03

∆ = 0.59: Is this the causal effect?
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Case 2a - Double difference method (or difference of differences)
pre post

control a (never treated) b (never treated)
treatment c (not yet treated) d (treated)

pre post ∆
Pennsylvania a = 23.33 b = 21.17 a− b
New Jersey c = 20.44 d = 21.03 c− d

Causal effect

∆ =
{

(d− c)− (b− a) = (0.59)− (−2.16) = 2.76
(d− b)− (c− a) = (−2.89)− (−0.14) = 2.76

pre post
control a a + β
treatment a + γ a + γ + β + ∆
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Cas 2b - Regression Discontinuity
“We find that additional health insurance coverage in-
duces substantial extensions in length of hospital stay
for mother and newborn. However, remaining in the
hospital longer has no effect on readmissions or mor-
tality, and the estimates are precise. Our results sug-
gest that for uncomplicated births, minimum insurance
mandates incur substantial costs without detectable
health benefits. ,” Almond and Doyle Jr (2011)
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Cas 2b - Regression Discontinuity

Does extra time in the hospital improve health outcomes?

See also Howe et al. (2016), that estimate the effect of
playing Pokémon GO on the number of steps taken daily
up to six weeks after installation of the game.

”Regression discontinuity design” (RDD), Thistlethwaite
and Campbell (1960) or Imbens and Lemieux (2008)

See also Imai (2022)
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Case 3 - Potential Outcomes and counterfactuals

Gender Name Treatment Outcome (Weight) Height · · ·
ti 0 1 yi y⋆

i (0) y⋆
i (1) TE xi · · ·

1 H Alex 0 □3□ 75 75 ? ? 172 · · ·
2 F Betty 1 □ □3 52 ? 52 ? 161 · · ·
3 F Beatrix 1 □ □3 57 ? 57 ? 163 · · ·
4 H Ahmad 0 □3□ 78 78 ? ? 183 · · ·

Treatment effect is

TEi = yi(1)− yi(0) but in real life TEi =
{

yi(1)− ???
???− yi(0)

Individual-level effects are impossible to observe! There are no individual
counterfactuals.
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Case 3 - Potential Outcomes and counterfactuals

Consider averages ?
TE = Y(1)− Y(0)

Comparing average outcomes only works if groups that received/didn’t receive
treatment look the same

See Causal model from Neyman-Rubin Neyman (1923), Rubin (1973, 1974), see also
Sekhon (2009) and textbooks Angrist and Pischke (2009, 2014).
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Case 3 - Potential Outcomes and Counterfactuals

Sewall Wright (see Wright (1921a,b, 1934))
introduced directed graphs to represent probabilistic
cause and effect relationships among a set of variables

ux
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y

ut uy

ux

t

x

y

uy

When you do(t), delete all arrows into t
confounders don’t influence treatment.
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Case 4 - “matching”

• Nearest neighbor matching (NN)
Nearest neighbor matching (1-1)
Find untreated observations that are very close/similar to treated observations based
on confounders
Lots of mathy ways to measure distance
Use Optimal Transport instead
• Inverse probability weighting (IPW)

Predict the probability of assignment to treatment using a model ( logistic regression,
probit regression, machine learning)
Then use propensity scores to weight observations by how ”weird” they are
Observations with high probability of treatment who don’t get it (and vice versa) have
higher weight
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Non-Independence and Causal Graphs

Definition 3.1: Directed acyclic graph, DAG (or causal graph)

A directed acyclic graph (DAG) G is a directed graph with no directed cycles.

Definition 3.2: Markov Property

Given a causal graph G with nodes x, the joint distribution of X satisfies the
(global) Markov property with respect to G if, for any disjoints x1, x2 and xc

x1 ⊥G x2 | xc ⇒ X1 ⊥⊥ X2 | Xc.
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Non-Independence and Causal Graphs
Proposition 3.1: Probabilistic graphical model

If X satisfies the (global) Markov property with respect to G

P[x1, · · · , xn] =
n∏

i=1
P[xi|parents(xi)]

where parents(xi) are nodes with edges directed towards xi

x1

x2 x3

Path from x1 to x3 is blocked by x2, i.e., x1 ⊥G x3 | x2,
or X1 ⊥⊥ X3 | X2. From the chain rule,

P[x1, x2, x3] = P[x1]× P[x2|x1]× P[x3|x2, x1]︸ ︷︷ ︸
P[x3|x2]
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Non-Independence and Causal Graphs

x1

x2 x3

x4 From the chain rule, for the causal graph on the left (top),

P[x1, x2, x3, x4] = P[x1]× P[x2|x1]× P[x3|x2]× P[x4|x3]

x1

x2 x3

x4 From the chain rule, for the causal graph on the left (middle),

P[x1, x2, x3, x4] = P[x1]× P[x2]× P[x3|x1, x2]× P[x4|x3]

x1

x2 x3

x4 From the chain rule, for the causal graph on the left (bottom),

P[x1, x2, x3, x4] = P[x1]× P[x2]× P[x3|x1, x2, x4]× P[x4]
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Non-Independence and Causal Graphs

P[Y ∈ A|X = x] : how Y ∈ A is likely to occur if X happened to be equal to x
Therefore, it is an observational statement.

P[Y ∈ A|do(X = x)] : how Y ∈ A is likely to occur if X is set to x
It is here an intervention statement.
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Non-Independence and Causal Graphs
Definition 3.3: Structural Causal Models (SCM)

In a simple causal graph, with two nodes C (the cause) and E (the effect), the
causal graph is C→ E, and the mathematical interpretation can be summarized
in two assignments {

C = hc(UC)
E = he(C,UE),

where UC and UE are two independent random variables, UC ⊥⊥ UE.

(a) observation (b) intervention

C E

uC uE {
C = hc(UC)
E = he(C,UE)

C E

uE {
C = c (or do(C = c))
E⋆

c = he(c,UE)
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Causal Inference & Observational Data
• Propensity score

The “propensity” describes how likely a unit is to have been treated, given its
covariate values. The stronger the confounding of treatment and covariates, and
hence the stronger the bias in the analysis of the naive treatment effect, the
better the covariates predict whether a unit is treated or not. By having units
with similar propensity scores in both treatment and control, such confounding
is reduced.

“The propensity score is the conditional probability of assignment to a particular
treatment given a vector of observed covariates,” Rosenbaum and Rubin (1983)

Suppose observed data are {
(
xi, ai, yi

)
}ni=1 drawn i.i.d (independent and identically

distributed) from unknown distribution P, where A ∈ {0, 1}, denotes either ”control”
(placebo) or ”treated” (medicine).

Let Y(a) (or Y(x, a)) denote ”potential outcomes” (under control and treatment),
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Causal Inference & Observational Data
In many application, the quantity of interest is TE (or TE(x)) the treatment effect,
TE = Y(1)− Y(0)

Gender Name Treatment Outcome (Weight) Height · · ·
ti 0 1 yi y⋆

i,T←0 y⋆
i,T←1 TE xi · · ·

1 H Alex 0 □3 □ 75 75 64 11 172 · · ·
2 F Betty 1 □ □3 52 67 52 15 161 · · ·
3 F Beatrix 1 □ □3 57 71 57 14 163 · · ·
4 H Ahmad 0 □3 □ 78 78 61 17 183 · · ·

Different notations are used y(1) and y(0) in Imbens and Rubin (2015), y1 and y0 in
Cunningham (2021), or yt=1 and yt=0 in Pearl and Mackenzie (2018).
When ai = 1 is observed, and xi,{

observation : yi(1)
counterfactual : yi(0)
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Causal Inference & Observational Data

Following Holland (1986), given a “treatment” T (here A), the average treatment
effect on outcome y is

τ = ATE = E
[
Y(1)− Y(0)

]
,

and following Wager and Athey (2018), given a treatment a, the conditional average
treatment effect on outcome y, given some covariates x ,is

τ(x) = CATE(x) = E
[
Y(1)− Y(0)

∣∣X = x
]
.
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Causal Inference & Observational Data

Given a dataset, (yi, ai, xi), the sample average treatment effect on outcome y is

τ̂ = SATE = 1
n

n∑
i=1

[
yi(1)− yi(0)

]
= 1

n

n∑
i=1

yi(1)− 1
n

n∑
i=1

yi(0),

difference in the average outcome between two scenarios: everyone is treated vs.
nobody is treated
the sample average treatment effect for the treated on outcome y is

SATT = 1
n1

n∑
i=1

ti
[
yi(1)− yi(0)

]
which is the sample version of E

[
Y(1)− Y(0)

∣∣T = 1
]
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Causal Inference & Randomized Experiments
Classical regression, E[Y|X = x] = µ(X) = x>β
Can we interpret coefficients as causal effects?
Suppose Yi(t) = α+ βt + εi, t ∈ {0, 1} and E[ε] = 0. Here

Yi(1)− Yi(0) = β, ∀i, i.e. constant additive unit causal effect

Suppose heterogeneous treatment effect, Yi(t) = α+ βit + εi,

Yi(t) = α+ βt +
(
βi − β

)
· t + εi

E
[
Yi(1)− Yi(0)

]
= E

[
βi
]

= β, ∀i,

Strict exogeneity assumption, E
[
εi
∣∣T1, · · ·Tn

]
= 0

The least squares estimate β̂ is unbiased for β
Randomization of treatment: (Yi(0),Yi(1)) ⊥⊥ T1 · · · ,Tn ∀i
Random sampling of units: (Yi(0),Yi(1)) i.i.d.
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Causal Inference & Randomized Experiments
Least squares estimators are

α̂ = 1
n0

n∑
i=1

(1− ti) · yi and β̂ = 1
n1

n∑
i=1

ti · yi −
1
n0

n∑
i=1

(1− ti) · yi

that are unbiased estimators of E[Y(0)] and E[Y(1)− Y(0)]
What about the variance ?
In the homoskedastic case, Var[ε|T1, · · · ,Tn] = σ2I then

Var[β̂|T1, · · · ,Tn] = n σ2

Var[T]

In the heteroskedastic case, Var[ε|T = t] = σ2
t then the estimated variance is biased,

bias = E
[
n σ̂2

Var[T]

]
−
(
σ2

1
n1

+ σ2
0

n0

)
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Causal Inference & Randomized Experiments

left = under complete randomization / right = true variance
bias is zero when homoskedasticity assumption holds, and design is balanced (n0 = n1
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Causal Inference & Observational Data
In observational data, there is no randomized treatment assignment,

(Y(0),Y(1)) 6⊥⊥ A, confounding

but the treatment assignment mechanism is often unknown
(probably observed and unobserved confounders)
• Identification: How much can you learn about the estimand if you had an infinite

amount of data?
• Statistical Inference: How much can you learn about the estimand from a finite

sample?
Classical assumptions for identification
• Identification: How much can you learn about the estimand if you had an infinite

amount of data?
• Statistical Inference: How much can you learn about the estimand from a finite

sample?
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Causal Inference & Observational Data

• Strongly ignorable treatment assignment
Treatment assignment is said to be strongly ignorable if the potential outcomes are
independent of treatment (A) conditional on background variables X

(Y(0),Y(1)) ⊥⊥ A | X

• Balancing score
Following Rubin (1973, 1974), a balancing score b(X) is a function of the observed
covariates X such that the conditional distribution of X given b(X) is the same for
treated (A = 1) and control (A = 0) units

A ⊥⊥ X | b(X)
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Causal Inference & Observational Data

• Propensity score

e(x) = P(A = 1|A = x)

As proved in Rosenbaum and Rubin (1983),
• the propensity score e(x) is a balancing score
• if treatment assignment is strongly ignorable given x then, it is also strongly

ignorable given any balancing function (specifically, given the propensity score)

(Y(0),Y(1)) ⊥⊥ A | e(X).
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Causal Inference & Observational Data

• Horvitz -Thompson theory

One very early weighted estimator is the Horvitz–Thompson estimator of the
mean. When the sampling probability is known, from which the sampling pop-
ulation is drawn from the target population, then the inverse of this probability
is used to weight the observations. This approach has been generalized to many
aspects of statistics under various frameworks. In particular, there are weighted
likelihoods, weighted estimating equations, and weighted probability densities
from which a majority of statistics are derived.

Suppose observed data are {
(
Xi,Ai,Yi

)
}ni=1 drawn i.i.d (independent and identically

distributed) from unknown distribution P, where A ∈ {0, 1}.
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Causal Inference & Observational Data

Suppose observed data are {
(
Xi,Ai,Yi

)
}ni=1 drawn i.i.d (independent and identically

distributed) from unknown distribution P, where A ∈ {0, 1}.
On can derive an Inverse Probability Weighted Estimator (IPWE)

• µa = E
[ 1A=aY

p(A = a|X)

]
where p(a|x) = P(A = a|X = x) = P(A = a,X = x)

P(X = x)
• estimate p(a|x) with p̂n(a|x), using any propensity model (e.g., logistic regression

model)

• µ̂IPWE
a,n = 1

n

n∑
i=1

yi1Ai=a
p̂n(ai|xi)
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Causal Inference & Observational Data

We make the following assumptions.
(A1) Consistency: Y = Y(A)
(A2) No un-measured confounders: {Y(0),Y(1)} ⊥⊥ A|X.

More formally, for each bounded and measurable functions f and g,

E(A,Y) [f(Y(X,A)) g(A) |X] = EY [f(Y(X,A)) |X] · EA [g(A) |X] .

This means that treatment assignment is based solely on covariate data and
independent of potential outcomes.

(A3) Positivity: P(A = a|X = x) = EA[1(A = a) |X = x] > 0 for all a and x.
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Causal Inference & Observational Data

E [Y∗(a)] = E(X,Y) [Y(X, a)] = E(X,A,Y)

[ Y1(A = a)
P(A = a|X)

]
E(X,Y) [Y(X, a)] = EX [EY [Y(X, a) |X]] .

from (A1)

then simply (by (A3) EA[1(A = a) |X] > 0)

EY [Y(X, a) |X] = EY [Y(X, a) |X] EA[1(A = a) |X]
EA[1(A = a) |X] =

E(A,Y) [Y(X, a)1(A = a) |X]
E[1(A = a) |X]

i.e.
EY [Y(X, a) |X] = E(A,Y)

[Y(X, a)1(A = a)
E[1(A = a) |X]

∣∣∣∣X]
The Inverse Probability Weighted Estimator (IPWE) is known to be unstable if some
estimated propensities are too close to 0 or 1 (see calibration issues).
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Causal Inference & Observational Data

Augmented Inverse Probability Weighted Estimator (AIPWE), Cao et al. (2009)

µ̂AIPWE
a,n = 1

n

n∑
i=1

(
Yi1Ai=a

p̂n(Ai|Xi)
− 1Ai=a − p̂n(Ai|Xi)

p̂n(Ai|Xi)
Q̂n(Xi, a)

)

= 1
n

n∑
i=1

(
1Ai=a

p̂n(Ai|Xi)
Yi + (1− 1Ai=a

p̂n(Ai|Xi)
)Q̂n(Xi, a)

)

= 1
n

n∑
i=1

(
Q̂n(Xi, a)

)
+ 1

n

n∑
i=1

1Ai=a
p̂n(Ai|Xi)

(
Yi − Q̂n(Xi, a)

)

here we need a regression estimator Q̂n(x, a) to predict outcome Y based on covariates
X and treatment A, for some subject i.
This approach is said to by ”doubly robust” (with a second order bias)
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Post Stratification and Weights
Inspired from techniques used in sampling theory, use post-stratification techniques,
which is standard when dealing with a ”biased sample”.
The regression function is defined a

µ(x) = EP[Y|X = x] = E
[
EP[Y|X = x,A]

]
=
∫
A
EP[Y|X = x,A = a]dP[A = a].

Following Moodie and Stephens (2022), the later can be written

µ(x) =
∫
A
EP[Y ·W|X = x,A = a]dP[A = a|X = x] = EP[Y ·W|X = x],

where W is a version of the Radon-Nikodym derivative

W = dP[A = a]
dP[A = a|X = x] ,

corresponding to the change of measure that will give independence between X and A.
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Post Stratification and Weights
• Properties of W

We have the following interesting property: let W be a version of the Radon-Nikodym
derivative

W = dP[A = a]
dP[A = a|X = x] ,

then EP[W] = 1, EP[A ·W] = EP[A] and EP[X ·W] = EP[X].
As proved in Fong et al. (2018),

EP[W] =
∫∫

wdP[A = a,X = x] =
∫∫

wdP[A = a|X = x]dP[X = x]

that can be written

EP[W] =
∫∫ dP[A = a]

dP[A = a|X = x]dP[A = a|X = x]dP[X = x],
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Post Stratification and Weights

and therefore
EP[W] =

∫∫
dP[A = a]dP[X = x] = 1.

Similarly

EP[A ·W] =
∫∫

swdP[A = a,X = x] =
∫∫

swdP[A = a|X = x]dP[X = x],

and
EP[A ·W] =

∫∫
sdP[A = a]dP[X = x] =

∫
EP[S]dP[X = x] = EP[S].

In statistics, this Radon-Nikodym derivative is related to the propensity score, as
discussed in Freedman and Berk (2008), Li and Li (2019) and Karimi et al. (2022).
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What is Interpretability in Machine Learning?
• Interpretability refers to the ability to understand the internal workings of a

machine learning model.
• A model is interpretable if a human can understand why it makes a certain

prediction or decision.
• Example: In a decision tree, we can trace the path from the root to a leaf node to

see how a prediction is made.
• Key Question: How do we interpret the model’s decision-making process?
• Interpretability is crucial for trust, debugging, and ensuring ethical use of ML

models.
• Explainability is the process of providing human-understandable explanations for a

model’s prediction.
• Unlike interpretability, explainability does not necessarily mean understanding the

inner workings of the model, but rather being able to explain its output in a way
that makes sense to users.

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 45 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


What is Interpretability in Machine Learning?
• Example: In deep learning, an explanation could be highlighting the most

important features for a given prediction, using techniques like LIME or SHAP.
• Key Question: How do we explain a model’s prediction to a non-expert user?
• Explainability is critical for building trust, accountability, and fairness in AI

systems.
• Trust: Users are more likely to trust models that provide clear, understandable

reasons for their decisions.
• Accountability: In high-stakes domains like healthcare, finance, or law,

understanding how a model arrived at a decision is crucial for accountability.
• Bias Detection: Transparent models help detect and correct biases in predictions.
• Regulation: Increasingly, governments and organizations are requiring explanations

for automated decisions (e.g., the -GDPR- ”right to explanation”).
• Model Debugging: Interpretability helps developers understand and fix issues with

models, especially when they make unexpected decisions.
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What is Interpretability in Machine Learning?
• Interpretability:
◦ Focuses on how easily we can understand the -internal mechanics- of a model.
◦ Example: Linear regression has high interpretability because we can easily

inspect the coefficients.
• Explainability:
◦ Focuses on -explaining the output- of a model in human-understandable

terms.
◦ Example: A neural network’s output can be explained using techniques like

-LIME- or -SHAP-, which provide local explanations.
• While these concepts overlap, interpretability is about the model itself, while

explainability is about making its outputs accessible to humans.
• Tradeoff-: Often, more complex models (e.g., deep neural networks) are less

interpretable but can be made more explainable through techniques.
• For Interpretable Models:
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What is Interpretability in Machine Learning?
◦ Simple models like -decision trees-, -linear regression-, and -logistic

regression- are inherently interpretable.
◦ Visual tools (e.g., -partial dependence plots-) help visualize how features

influence model predictions.
• For Explainable Models:
◦ LIME (Local Interpretable Model-agnostic Explanations): Explains individual

predictions by approximating the model locally with simpler, interpretable
models.
◦ SHAP (Shapley Additive Explanations): Provides a unified measure of feature

importance by distributing the ”credit” for a prediction across features.
◦ Feature Importance: Quantifies how much each feature contributes to the

model’s output.
• These methods make black-box models like deep learning more transparent

without sacrificing predictive performance.
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Interpretability

“On a collection of additional 60 im-
ages, the classifier predicts “Wolf” if
there is snow (or light background
at the bottom), and “Husky” oth-
erwise, regardless of animal color,
position, pose, etc.,” Ribeiro et al.
(2016)
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Interpretability

Esteva et al. (2017) and Winkler et al. (2019) for
skin cancer detection classifiers based on deep neu-
ral networks
“So in the set of biopsy images, if an image had a
ruler in it, the algorithm was more likely to call a
tumor malignant, because the presence of a ruler
correlated with an increased likelihood a lesion was
cancerous,” Daily Beast (2017)
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Interpretability

Using https://cloud.google.com/vision/, we have a “jaguar” (left) “lepoard” (right).

(see also Charpentier (2021))
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Interpretability

Taxonomy of explainability
• Global vs. local: Describe model as a whole or around an observation.
• Model-specific vs. model-agnostic: Some methods are tailored to specific model

classes (linear regression, tree-based), others work for all types of models.
• Intrinsic versus post-hoc: Simple models like a linear regression can be interpreted

intrinsically, while complex models require post-hoc analysis of fitted model.
• Model-agnostic methods are always post-hoc
• Model-agnostic methods can also be applied to intrinsically interpretable models
• We won’t make difference between “explainable”, “interpretable”, “intelligible”
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Interpretability
Definition 3.4: Ceteris paribus, Marshall (1890)

Ceteris paribus (or more precisely ceteris paribus sic stantibus) is a Latin phrase,
meaning “all other things being equal” or “other things held constant.”

The ceteris paribus approach is commonly used to consider the effects of a cause, in
isolation, by assuming that any other relevant conditions are absent.
The output of a model, ŷ can be influenced by x1 and x2, and in the ceteris paribus
analysis of the influence of x1 on ŷ, we isolate the effect of x1 on ŷ. In the mutatis
mutandis approach, if x1 and x2 are correlated, we add to the “direct effect” (from x1
to ŷ) a possible “indirect effect” (through x2).

(ceteris paribus) (mutatis mutandis)

x2 y

x1

×
×

x2 y

x1
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Interpretability
On the left, the ceteris paribus approach (only the direct relationship from x1 to y is
considered, and x2 is supposed to remain unchanged) and the mutatis mutandis
approach (a change in x1 will have a direct impact on y, and there could be an
additional effect via x2).

Definition 3.5: Mutatis mutandis

Mutatis mutandis is a Latin phrase meaning “with things changed that should be
changed” or “once the necessary changes have been made.”

In order to illustrate, let (X1,X2, ε)> denote some Gaussian random vector, where the
first two components are correlated, and ε is some unpredictable random noise,
independent of the pair (X1,X2)>X1

X2
ε

 ∼ N

µ1
µ2
0

 ,
 σ2

1 rσ1σ2 0
rσ1σ2 σ2

2 0
0 0 σ2


 .
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Interpretability
Suppose that Y = β0 + β1X1 + β2X2 + ε (as in a standard linear model), then for some
x∗ = (x∗1, x∗2),

EY|X[Y|x∗] = EX[Y|x∗1, x∗2] = β0 + β1x∗1 + β2x∗2,

while EY[Y] = β0 + β1µ1 + β2µ2. Then, on the one hand, if we compute the standard
conditional expected value of X2, conditional on X1, we have

EX2|X1 [X2|x∗1] = µ2 + rσ2
σ1

(x∗1 − µ1),

and therefore

EY|X1 [Y|x
∗
1] = β0 + β1x∗1 + β2

(
µ2 + rσ2

σ1
(x∗1 − µ1)

)
: mutatis mutandis.

On the other hand, in the ceteris paribus approach, “isolating” the effect of x1 to other
possible causes means that we pretend that X1 and X2 are now independent.
Therefore, formally, instead of (X1,X2), we consider (X⊥1 ,X⊥2 ) a “copy” with
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Interpretability
independent components and the same marginal distributions (in the sense that
X⊥2 =X2, almost surely, and X⊥1

L= X1, and X⊥1 ⊥⊥ X2), then EY|X⊥
2 |X⊥

1
[Y|x∗1] = µ2, and

EY|X⊥
1

[Y|x∗1] = β0 + β1x∗1 + β2µ2 : ceteris paribus

Therefore, we have clearly the direct effect (ceteris paribus), and the indirect effect,

EY|X1 [Y|x
∗
1]︸ ︷︷ ︸

mutatis mutandis

= EY|X⊥
1

[Y|x∗1]︸ ︷︷ ︸
ceteris paribus

+β2
rσ2
σ1

(x∗1 − µ1).

As expected, if variables x1 and x2 are independent, r = 0, and the mutatis mutandis
and the ceteris paribus approaches are identical. Later on, when presenting various
techniques in this chapter, we might use notation EX1 and EX⊥

1
, instead of EY|X1 or

EY|X⊥
1

, respectively, to avoid too heavy notations.
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Interpretability
And more generally, from a statistical perspective, if we consider a non-linear model
EY|X[Y|x∗] = EX[Y|x∗1, x∗2] = m(x∗1, x∗2), a natural ceteris paribus estimate of the effect
of x1 on the prediction is

EY|X⊥
1

[m(X⊥1 ,X⊥2 )|x∗1] ≈ 1
n

n∑
i=1

m(x∗1, xi,2),

(the average on the right being the empirical counterpart of the expected value on the
left) while to estimate mutatis mutandis, we need a local version, to take into account
a possible (local) correlation between x1 and x2, i.e.,

EY|X1 [m(X1,X2)|x∗1] ≈ 1
‖Vϵ(x∗1)‖

∑
i∈Vϵ(x∗

1 )
m(x∗1, xi,2),

where Vϵ(x∗1) =
{
i : |xi,1 − x∗1| ≤ ϵ

}
is a neighborhood of x∗1. It should be stressed that

notations “EY|X1 [m(X1,X2)|x∗1]” and “EY|X⊥
1

[m(X⊥1 ,X⊥2 )|x∗1]” do not not have
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Interpretability

measure-theoretic foundations, but they will be useful to highlight that in some cases,
metrics and mathematical objects “pretend” that explanatory variables are
independent.
When introducing random forests, Breiman (2001) suggested a simple technique to
rank the importance of variables, in a natural way. This technique has been improved,
in Helton and Davis (2002), Azen and Budescu (2003), Rifkin and Klautau (2004) and
Saltelli et al. (2008), in the context of classification and regression trees, and random
forests. The general definition, for other models, could be the following,
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Interpretability
Definition 3.6: VIj or “variable permutation VIj”, Fisher et al. (2019)

Given a loss function ℓ and a model m, the importance of the j-th variable is

VIj = E
[
ℓ(Y,m(X−j,Xj))

]
− E

[
ℓ(Y,m(X−j,X⊥j ))

]
,

and the empirical version is

V̂Ij = 1
n

n∑
i=1

ℓ(yi,m(xi,−j, xi,j))− ℓ(yi,m(xi,−j, x̃i,j)),

for some permutation x̃j or xj.

On the todydata2 dataset, with three explanatory variables (x1, x2 and x3) and a
sensisitive attribute (s), V̂Ij can be computed using the variable-importance function
variable_importance from the DALEX package (see Biecek and Burzykowski (2021) for
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Interpretability

more details). By default, the loss considered is the one associated with 1− AUC for
classification loss_one_minus_auc , as here), but cross entropy can be used for
multilabel classification, while RMSE is the default loss for regression.
We can visualize variable importance for the four models (including some confidence
band), respectively for model without and with the sensitive attribute s. This measure
can be quantified as some “drop-out loss of AUC”, and therefore, as a measure of
variable importance. One could also use FeatureImp from the iml R package, based
on Molnar (2023).
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Variable importance for different models trained on toydata2, without the sensitive
attribute s, with four variables, x1, x2, x3 and s.
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Interpretability

Variable importance for different models trained on toydata2, with the sensitive
attribute s, with four variables, x1, x2, x3 and s.
Instead of a global measure, some local metrics can be considered. Goldstein et al.
(2015) defined the “individual conditional expectation” directly derived from ceteris
paribus functions, coined “ceteris-paribus profile” in Biecek and Burzykowski (2021),

Definition 3.7: Ceteris Paribus profile z 7→ mx∗,j(z) Goldstein et al. (2015)

Given x∗ ∈ X , define on Xj

z 7→ mx∗,j(z) = m(x∗−j, z) = m(x∗1, · · · , x∗j−1, z, x∗j+1, · · · , x∗p).
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Here, it is a ceteris-paribus profile in the sense that x∗j changes (and takes variable
value z) while all other components remain unchanged. Define then the difference
when component j takes generic value z and x∗j ,

δmx∗,j(z) = mx∗,j(z)−mx∗,j(x∗j ).

Definition 3.8: dmcp
j (x∗)

The mean absolute deviation associated with the j-th variable, at x∗, is dmj(x∗),

dmcp
j (x∗) = E

[
|δmx∗,j(Xj)|

]
= E

[
|m(x∗−j,Xj)−m(x∗−j, x∗j )|

]
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Definition 3.9: d̂mcp

j (x∗)

The empirical mean absolute deviation associated with the j-th variable, at x∗, is

d̂mcp
j (x∗) = 1

n

n∑
i=1
|m(x∗−j, xi,j)−m(x∗−j, x∗j )|.

We can visualize “ceteris-paribus profiles” on our four models, on toyxdata2, with
j = 1 (variable x1) with the plain logistic regression, the GAM, the classification tree,
and the random forest, z 7→ mx∗,1(z).
z 7→ mx∗,1(z) associated with Andrew (when (x⋆, s⋆) = (−1, 8,−2, A)) and
z 7→ mx∗,1(z) associated with Barbara (when (x⋆, s⋆) = (1, 4, 2, B)). Bullet points
indicate the values mx∗,1(x∗1) for Andrew and Barbara. On top left, function is
monotonic, with a “logistic” shape. On the right, we see that a GLM will probably
miss a non linear effect, with a (caped) J shape.
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“ceteris-paribus profiles” for Andrew for different models trained on toydata2, for
variable x1, here z⋆ = (x⋆, s⋆) = (−1, 8,−2, A).
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“ceteris-paribus profiles” for Barbara for different models trained on toydata2, here
z⋆ = (x⋆, s⋆) = (1, 4, 2, B).
For a standard linear model, observe that we can write

m̂(x∗) = β̂0 + β̂
>x∗ = β̂0 +

k∑
j=1

β̂jx∗j = y +
k∑

j=1
β̂j
(
x∗j − xj

)︸ ︷︷ ︸
=vj(x∗)

,

where vj(x∗) is interpreted as the contribution of the j-th variable on the prediction for
individual with characteristics x∗. More generally, Robnik-Šikonja and Kononenko
(1997, 2003, 2008) defined the (additive) contribution of the j-th variable on the
prediction for individual with characteristics x∗

vj(x∗) = m(x∗1, · · · , , x∗j−1, x∗j , x∗j+1, · · · , x∗k)− EX⊥
j

[m(x∗1, · · · , x∗j−1,Xj, x∗j+1, · · · , x∗k)],
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so that

m(x∗) = E
[
m(X)

]
+

k∑
j=1

vj(x∗),

and for the linear model vj(x∗) = βj
(
x∗j − EX⊥

j |X−j [X
⊥
j |X−j = x∗−j]

)
, and

v̂j(x∗) = β̂j
(
x∗j − xj

)
.

More generally, vj(x∗) = m(x∗)− EX⊥
j |X−j [m(x∗−j,Xj))], where we can write m(x∗) as

E[m(x∗)], i.e.,

vj(x∗) =

E
[
m(X)

∣∣x∗1, · · · , x∗k]− EX⊥
j |X−j

[
m(X)

∣∣x∗1, · · · , x∗j−1, x∗j+1, · · · , x∗k
]

E
[
m(X)

∣∣x∗]− EX⊥
j |X−j

[
m(X)

∣∣x∗−j
]
.
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Definition 3.10: γbd

j (x∗), Biecek and Burzykowski (2021)

The breakdown contribution of the j-th variable, at x∗, is

γbd
j (x∗) = vj(x∗) = E

[
m(X)

∣∣x∗]− EX⊥
j |X−j

[
m(X)

∣∣x∗−j
]
.

“In other words, the contribution of the j-th variable is the difference between the
expected value of the model’s prediction conditional on setting the values of the
first j variables equal to their values in x∗ and the expected value conditional on
setting the values of the first j− 1 variables equal to their values in x∗,” Biecek and
Burzykowski (2021)
We can rewrite the contribution of the j-th variable, at x∗,

vj(x∗) =

E
[
m(X)

∣∣x∗1, · · · , x∗k]− EX⊥
j |X−j

[
m(X)

∣∣x∗1, · · · , x∗j−1, x∗j+1, · · · , x∗k
]

E
[
m(X)

∣∣x∗]− EX⊥
j |X−j

[
m(X)

∣∣x∗−j
]
.
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Definition 3.11: ∆j|S(x∗)

The contribution of the j-th variable, at x∗, conditional on a subset of variables,
S ⊂ {1, · · · , k}\{j}, is

∆j|S(x∗) = EX⊥
S∪{j}

[
m(X)

∣∣x∗S∪{j}]− EX⊥
S

[
m(X)

∣∣x∗S],
so that vj(x∗) = ∆j|{1,2,··· ,k}\{j} = ∆j|−j.

On the toydata2 dataset, we can compute contributions of x1, x2 and x3 for two
individuals, Andrew and Barbara, using type = "break_down" in the predict_parts
function of the DALEX R package. For Andrew the starting point is the average value
on the entire population (close to 40%). The large value of x2 (here 8) yield about
+0.18 on the prediction, while the negative value of x1 (here −1) yield about from
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−0.19 to −0.14 on the prediction. Here s has no impact, since we consider models
trained without the sensitive attribute.
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Breakdown decomposition γ̂bd
j (z∗A) for Andrew for different models trained on

toydata2, here z⋆
A = (x⋆

A, s⋆) = (−1, 8,−2, A).
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Interpretability
Breakdown decomposition γ̂bd

j (z∗B) for Barbara for different models trained on
toydata2 (here z⋆ = (x⋆, s⋆) = (1, 4, 2, B)).
In order to get a robust way to define contributions, in the context of predictive
modeling, Lipovetsky and Conklin (2001) suggested to use Shapley value in statistics,
to decompose the R2 of a linear regression into additive contributions of each single
covariate. Then Štrumbelj and Kononenko (2010, 2014) suggested to use Shapley
values to decompose predictions into feature contribution, and more recently, Lundberg
and Lee (2017) provided a unified version.
Recall that the “Shapley value,” as defined in Shapley (1953), is based on coalitional
game, with k players, and a “value function” (also named “characteristic function”) V
that can be defined on any coalition of players, S ⊂ {1, 2, · · · , k}. Given a coalition
S ⊂ {1, 2, · · · , k} of players, then V(S) corresponds to the “worth of coalition S,” that
should reflect payoffs the members of S would obtain from this cooperation. In the
context of games, assuming that all players collaborate, the Shapley value is one way
(among many others) to distribute the total gains among all players. In game theory
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literature (starting with Shapley and Shubik (1969) but then emphizised by Moulin
(1992) and Moulin (2004)), it can be referred as a “fair” mechanism, in the sense that
it is the only distribution with certain desirable properties. The Shapley value describes
contribution to the payout, weighted and summed over all possible feature value
combinations, as follows,

ϕj(V) = 1
k

∑
S⊆{1,...,k}\{j}

|S|! (k− |S| − 1)!
k! (V (S ∪ {j})− V(S)) ,

As explained in Ichiishi (2014), if we suppose that coalitions are being formed one
player at a time, at step j, it should be fair for player j to be given V (S ∪ {j})− V(S)
as a fair compensation for joining the coalition. And then for each actor, to take the
average of this contribution over all possible different permutations in which the
coalition can be formed. Which is exactly the expression above, that we can rewrite

ϕj(V) = 1
number of players

∑
coalitions including j

marginal contribution of j to coalition
number of coalitions excluding j .
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The goal, in Shapley (1953), was to find contributions ϕj(V), for some value function
V, that satisfies a series of desirable properties, namely

• “efficiency”:
k∑

j=1
ϕj(V) = V({1, . . . , k}),

• “symmetry”: if V (S ∪ {j}) = V (S ∪ {j′}) ∀S, then ϕj = ϕj′ ,
• “dummy” (or “null player”): if V (S ∪ {j}) = V (S) ∀S, then ϕj = 0,
• “additivity”: if V(1) and V(2) have decomposition ϕ(V(1)) and ϕ(V(2)), then
V(1) + V(2) has decomposition ϕ(V(1) + V(2)) = ϕ(V(1)) + ϕ(V(2))
• “Linearity” will be obtained if we add ϕ(λ · V) = λ · ϕ(V).
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Interpretability
In the context of predictive models, S denotes some subset of features used in the
model (S ⊂ {1, 2, · · · , k}), x is some vector of features. Here, it could be natural to
suppose that Vx denotes the prediction for feature values in set S that are
marginalized, over features that are not included in set S. Štrumbelj and Kononenko
(2014) suggested Monte Carlo sampling to compute contributions ϕj(Vx).
Here, we will use Vx∗(S) = EX⊥

S

[
m(X)

∣∣x∗S], as value function, for any set S of variables,
so that ∆j|S(x∗) = Vx∗(S ∪ {j})− Vx∗(S)

Definition 3.12: Shapley contributions γshap
j (x∗)

The Shapley contribution of the j-th variable, at x∗, is

γshap
j (x∗) = 1

k
∑

S⊆{1,...,k}\{j}

(
k− 1
|S|

)−1
∆j|S(x∗) = ϕj(Vx∗).
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Interestingly, for a linear regression with k uncorrelated features, and mean centered,

m(x∗) = β0︸︷︷︸
=E
[
m(X)

]+ β1x∗1︸ ︷︷ ︸
γshap

1 (x∗)

+ β2x∗2︸ ︷︷ ︸
γshap

2 (x∗)

+ · · ·+ βkx∗k︸︷︷︸
γshap

k (x∗)

,

as discussed in Aas et al. (2021).
More generally, these contributions satisfy the following properties

• “local accuracy”:
k∑

j=1
γshap

j (x∗) = m(x∗)− E
[
m(X)

]
• “symmetry”: if j and k are interchangeable, γshap

j (x∗) = γshap
k (x∗)

• “dummy”: if Xj does not contribute in the model, γshap
j (x∗) = 0.
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Interpretability
Here, the interpretation of the additivity principle is not easy to derive (and to
legitimate as a “desirable property,” in the context of models). Observe that if there
are two variables, k = 2, γshap

1 (x∗) = ∆1|2(x∗) = γbd
1 (x∗). And if p� 2, computations

can be heavy. Štrumbelj and Kononenko (2014) suggested an approach based on
simulations.
Given x∗ and some individual xi, define

x̃i,j′ =
{

x∗j′ with probability 1/2

xi,j′ with probability 1/2
and

{
x∗+i = (x̃i,1, · · · , x∗j , · · · , x̃i,k)
x∗−i = (x̃i,1, · · · , xi,j, · · · , x̃i,k).

Observe that γshap
j (x∗) ≈ m(x∗+i )−m(x∗−i ), and therefore

γ̂shap
j (x∗) = 1

s
∑

i∈{1,··· ,n}
m(x∗+i )−m(x∗−i ),
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(we pick at each step individual i in the training dataset, s times).
In the context of our toydata2 dataset, it is possible to compute Shapley values for
two individuals (Andrew and Barbara), obtained using option type = "shap" in
function predict_parts of package DALEX , as in Biecek and Burzykowski (2021).
Observe that, at least, signs of contributions are consistent among models: x∗1 has a
negative contribution while x∗2 has a positive one, for Andrew, while it is the opposite
for Barbara.
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Interpretability

Shapley contributions γ̂shap
j (z⋆

A) for Andrew for different models trained on toydata2,
here z⋆ = (x⋆, s⋆) = (−1, 8,−2, A)).
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Interpretability

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 87 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Interpretability
Shapley contributions γ̂shap

j (z⋆
B) for Barbara for different models trained on toydata2,

here z⋆ = (x⋆, s⋆) = (1, 4, 2, B)).
Štrumbelj and Kononenko (2014) and Lundberg and Lee (2017) suggested to use that
decomposition to get a global contribution of each variable, instead of a local version

Definition 3.13: Shapley contribution γshap
j

The contribution of the j-th variable is

γshap
j = 1

n

n∑
i=1

γshap
j (xi).

One interesting feature about Shapley value is that the contribution can be extended,
from a single player j to any coalition, for example two players {i, j}. This will yield the
concept of “Shapley interaction,”
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Interpretability
Definition 3.14: Shapley interaction γshap

i,j (x∗)

The interaction contribution between the i-th and the j-th variable, at x∗, is

γi,j(x∗) =
∑

S⊆{1,...,k}\{i,j}

|S|! (k− |S| − 2)!
2 k! ∆i,j|S(x∗)

where

∆i,j|S(x∗) = EX⊥
S∪{i,j}

[
m(X)

∣∣x∗S∪{i,j}] − EX⊥
S∪{j}

[
m(X)

∣∣x∗S∪{j}]
− EX⊥

S∪{i}

[
m(X)

∣∣x∗S∪{i}] + EX⊥
S

[
m(X)

∣∣x∗S].
The “partial dependence plot,” formally defined and coined in Friedman (2001), is
simply the average of “ceteris paribus profiles,”
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Interpretability
Definition 3.15: PDP pj(x∗j ) and p̂j(x∗j )

The Partial Dependence Plot associated with the j-th variable is the function
Xj → R defined as

pj(x∗j ) = EX⊥
j

[
m(X)|x∗j

]
,

and the empirical version is

p̂j(x∗j ) = 1
n

n∑
i=1

m(x∗j , xi,−j) = 1
n

n∑
i=1

mxi,j(x∗j )︸ ︷︷ ︸
ceteris paribus

.

See Greenwell (2017) for the implementation in R, with the pdp package. One can
also use type = "partial" in the predict_parts function of the DALEX package, as in
Biecek and Burzykowski (2021).
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Interpretability

We can visualize p̂1 (associated with variable x1) in dataset toydata2, the average of
m(x∗j , xi,−j) when i = 1, · · · , n, including all m(x∗j , xi,−j)’s.
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Interpretability
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Interpretability

Partial dependence profile p̂1 associated with variable x1, for four different models
trained on toydata2.
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Interpretability
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Interpretability

Partial dependence profile p̂1 associated with variable x1, seen as the average of ceteris
paribus profiles m(x∗j , xi,−j)’s (in gray) for different models trained on toydata2.
Interestingly, instead of the sum over the n predictions, subsums can be considered,
with respect to some criteria.
Sums over si = A or si = B are considered,

p̂A
j (x∗j ) = 1

nA

∑
i:si==A

m(x∗j , xi,−j) and p̂B
j (x∗j ) = 1

nB

∑
i:si==B

m(x∗j , xi,−j).

On the toydata2 data, the three variables j (namely x∗1, x∗2 and x∗3) are used.
If x∗3 has a very flat impact, and no influence on the outcome, one should observe that
p̂A

j (x∗3) and p̂B
j (x∗3) are significantly different.
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Interpretability
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Interpretability

Partial dependence profiles p̂A
1 and p̂B

1, for x1, when the sensitive attribute s is either A
or B, as the average of subgroups (si being either A or B) for different models trained
on toydata2.
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Interpretability
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Interpretability

Partial dependence profiles p̂A
2 and p̂B

2, for x2, when the sensitive attribute s is either A
or B, as the average of subgroups (si being either A or B) for different models trained
on toydata2.
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Interpretability
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Interpretability

Partial dependence profiles p̂A
3 and p̂B

3, for x3, when the sensitive attribute s is either A
or B, as the average of subgroups (si being either A or B) for different models trained
on toydata2.
But instead of those ceteris paribuss dependence plots, it could be interesting to
consider some local versions, or mutatis mutandis dependence plots. Apley and Zhu
(2020) introduced the “local dependence plot” and the “accumulated local plot,”
defined as follows,
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Interpretability

Definition 3.16: Local Dependence Plot ℓj(x∗j ) and ℓ̂j(x∗j )

The local dependence plot is defined as

ℓj(x∗j ) = EXj

[
m(X)|x∗j

]
ℓ̂j(x∗j ) = 1

card(V(x∗j ))
∑

i∈V(x∗
j )

m(x∗j , xi,−j) where V(x∗j ) =
{
i : d(xi,j, x∗j ) ≤ ϵ

}
,

or ℓ̃j(x∗j ) = 1∑
i ωi(x∗j )

n∑
i=1

ωi(x∗j )m(x∗j , xi,−j) where ωi(x∗j ) = Kh(x∗j − xi,j),

for a smooth version, for some kernel Kh.

Apley and Zhu (2020) suggested to use, instead,
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Interpretability
Definition 3.17: Accumulated Local aj(x∗j ), Apley and Zhu (2020)

aj(x∗j ) =
∫ x∗

j

−∞
EXj

[
∂m(xj,X−j)

∂xj

∣∣∣xj

]
dxj.

The following estimate was considered

Definition 3.18: Accumulated Local function âj(x∗j )

âj(x∗j ) = α+
k∗

j∑
u=1

1
nu

∑
u:xi,j∈(au−1,au]

[m(ak, xi,−j)−m(ak−1, xi,−j)] ,

(where α is some normalization constant, since E[âj(Xj)] = 0).

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 103 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Interpretability

The three dependence profiles for x1, for the random forest model, with respectively
the “partial dependence plot” on the left, the “local dependence plot” in the middle,
and the “accumulated local plot” on the right, on the toydata2 dataset, with options
type = "accumulated" in the predict_parts function, as in Biecek and Burzykowski
(2021). One could also use the FeatureEffect function in the iml R package, based
on Molnar (2023), respectively with method = "pdp" , "ale" and "ice" ,

See partial dependence plot p̂1 on the left, local dependence plot ℓ̂1 in the middle, and
accumulated local function â1 on the right, for x1, for the random forest model m,
trained on toydata2.
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Interpretability
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Simpson’s Paradox

Under-identification corresponds to the case where the true model would be
yi = b0 + x>1 x1 + x>2 x2 + εi, but the estimated model is yi = b0 + x>1 b1 + ηi (in other
words, the variables x2 are not used in the regression). The maximum likelihood
estimator of b1 is (with the classical matrix writing in econometrics, such as Davidson
et al. (2004) or Charpentier et al. (2018))

b̂1 = (X>1 X1)−1X>1 y
= (X>1 X1)−1X>1 [X1β1 + X2β2 + ε]
= (X>1 X1)−1X>1 X1β1 + (X>1 X1)−1X>1 X2β2 + (X>1 X1)−1X>1 ε

= β1 + (X′1X1)−1X>1 X2β2︸ ︷︷ ︸
β12

+ (X>1 X1)−1X>1 ε︸ ︷︷ ︸
νi

(see previously)
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Simpson’s Paradox

With a simple regression model

b̂1 = ĉov[x1, y]
V̂ar[x1]

= ĉov[x1, β0 + β1x1 + βx2 + ε]
V̂ar[x1]

and

b̂1 = β1 ·
ĉov[x1, x1]

V̂ar[x1]︸ ︷︷ ︸
=1

+β2 ·
ĉov[x1, x2]

V̂ar[x1]
+ ĉov[x1, ε]

V̂ar[x1]︸ ︷︷ ︸
=0

= β1 + β2 ·
ĉov[x1, x2]

V̂ar[x1]
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Simpson’s Paradox

A classical example if from Bickel et al. (1975), graduate admissions at U.C. Berkeley

Total Men Women Proportions
Total 5233/12763 ∼ 41% 3714/8442 ∼ 44% 1512/4321 ∼ 35% 66%-34%
Top 6 1745/4526 ∼ 39% 1198/2691 ∼ 45% 557/1835 ∼ 30% 59%-41%

A 597/933 ∼ 64% 512/825 ∼ 62% 89/108 ∼ 82% 88%-12%
B 369/585 ∼ 63% 353/560 ∼ 63% 17/ 25 ∼ 68% 96%- 4%
C 321/918 ∼ 35% 120/325 ∼ 37% 202/593 ∼ 34% 35%-65%
D 269/792 ∼ 34% 138/417 ∼ 33% 131/375 ∼ 35% 53%-47%
E 146/584 ∼ 25% 53/191 ∼ 28% 94/393 ∼ 24% 33%-67%
F 43/714 ∼ 6% 22/373 ∼ 6% 24/341 ∼ 7% 52%-48%
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Simpson’s Paradox

See also survivor’s on the Titanic

Total Femmes Hommes
third class passengers 181/709 ∼ 25.5% 106/216 ∼ 49.1% 75/493 ∼ 15.2%
crew member 211/890 ∼ 23.7% 20/ 23 ∼ 86.9% 191/867 ∼ 22.0%

Mathematically, there’s no real paradox, in the sense that

a1
c1
<

a2
c2

et b1
d1

<
b2
d2

⇎
a1 + b1
c1 + d1

<
a2 + b2
c2 + d2
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Simpson’s Paradox
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Transfer learning

• Transfer Learning is a machine learning technique where a model trained on one
task is reused or adapted to a different but related task.
• The key idea is to transfer knowledge gained from solving one problem to another,

which can significantly reduce the time and data required for training on a new
task.
• Transfer learning is especially useful in scenarios where:

- Labeled data is scarce for the target task.
- Training a model from scratch would be computationally expensive.

• E.g. a model trained to recognize cats in images can be adapted to recognize
dogs by fine-tuning the model on a smaller dataset of dog images.
• Transfer learning typically involves two stages:
◦ Pre-training: A model is trained on a large dataset for a source task (e.g.,

image classification using ImageNet).
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Transfer learning

◦ Fine-tuning: The pre-trained model is then adapted to the target task by
adjusting its weights based on a smaller dataset related to the new task.

• Example:
◦ Pre-train a deep neural network on ImageNet for general object recognition.
◦ Fine-tune the pre-trained model on a smaller dataset of medical images to

detect specific conditions (e.g., lung cancer).
• The success of transfer learning depends on the similarity between the source and

target tasks.
• Inductive Transfer Learning: The source and target tasks are different, but the

model is adapted to learn a new task using the knowledge from the source task.
• Transductive Transfer Learning: The source and target tasks are the same, but

the source and target datasets differ. The model is adapted to handle variations in
data distribution.
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Transfer learning
• Unsupervised Transfer Learning: The source task is learned with unlabelled

data, and knowledge is transferred to a supervised task.
• Domain Adaptation: A special case of transfer learning where the task remains

the same, but the source and target domains differ (e.g., different sensor types or
data distributions).
• Examples:
◦ Inductive: A model for detecting cars can be adapted to detect trucks.
◦ Transductive: A model trained on photos taken in sunny weather may need

to adapt to handle photos taken in cloudy weather.
• Computer Vision:
◦ Pre-trained models like ResNet or VGG are used to solve a wide range of tasks

such as facial recognition, object detection, and medical imaging.
• Natural Language Processing (NLP):
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Transfer learning

◦ Models like BERT, GPT, and T5 are pre-trained on large text corpora and
fine-tuned for tasks like sentiment analysis, text classification, and machine
translation.
• Healthcare:
◦ Transfer learning is used to train models for tasks like diagnosing diseases from

medical images when labeled data is scarce.
• Reinforcement Learning:
◦ Transfer learning is used to transfer knowledge across different environments or

tasks in reinforcement learning, enabling faster learning and generalization.
◦ Example: Fine-tuning a pre-trained image classification model on a smaller

dataset of rare diseases to improve diagnostic accuracy.
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Transfer learning in Machine Learning Literature

Transfer learning
Transfer learning (TL) is a technique in machine learning (ML) in which knowl-
edge learned from a task is re-used in order to boost performance on a related
task.
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Transfer learning in Machine Learning Literature

Source: Bozinovski and Fulgosi (1976), The influence of pattern similarity and transfer learning
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Transfer learning in Machine Learning Literature
• Framingham coronary heart disease (CHD) risk score,

Wilson et al. (1987, 1998); D’Agostino et al. (2001)
6 risk factors: age, BP, smoking, diabetes, total cholesterol
(TC), and high-density lipoprotein cholesterol (HDL-C)
Framingham (U.S.) participants are of European descent
what if we use it on Chinese people ?, Liu et al. (2004)
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Transfer learning in Machine Learning Literature

• Framingham coronary heart disease (CHD) risk score,
Liu et al. (2004)

Refitted on Chinese population,
Chinese Multi-provincial Cohort Study (CMCS)

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 118 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Climate, Finance and Insurance
As mentioned in Intergovernmental Panel on Climate Change, page 594

“What does the accuracy of a climate model’s simulation of past or contemporary
climate say about the accuracy of its projections of climate change? This question
is just beginning to be addressed, exploiting the newly available ensembles of
models...” Randall et al. (2007)

A standard financial disclaimer, see e.g.,

“Past performance is no guarantee of future returns,” Brain (2010)

or in insurance (about wildfire losses in California)

“Looking backward has become less effective in predicting the future,” Frazier
(2021)

“History Doesn’t Repeat Itself, but It Often Rhymes,” Mark Twain (1874)

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 119 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Motivation, statistics, rebus sic stantibus

Statistics : clausula rebus sic stantibus (”with things thus standing”)

Statistics commonly deals with random samples. A random sample can be
thought of as a set of objects that are chosen randomly. More formally, it is
”a sequence of independent, identically distributed random data points”. (...)
Independent and identically distributed random variables are often used as an
assumption, which tends to simplify the underlying mathematics. In practical
applications of statistical modeling, however, the assumption may or may not be
realistic

Let (Ω,F ,P) denote a probability space,

Let y1, y2, · · · , yn be n i.i.d. samples of a random variable Y distributed by P
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Motivation, statistics, rebus sic stantibus

An important concept in actuarial science is the return period.

“1.0.1. Conditions. The aim of a statistical theory of extreme values is to analyze
observed extremes and to forecast further extremes. (...) The essential condition in
the analysis is the clausula rebus sic stantibus,” Emil Gumbel (1958), Statistics of
Extremes, page 1.

• rebus sic stantibus is Latin for ”with things thus standing” (”in gelijkblijvende
omstandigheden” or ”les choses demeurant en l’état”)
• clausula rebus sic stantibus is the legal doctrine allowing for a contract or a treaty

to become inapplicable because of a fundamental change of circumstances,
• maxim omnis conventio intelligitur rebus sic stantibus for ”every convention is

understood with circumstances as they stand”, by the Italian jurist Scipione
Gentili (1563–1616).
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Motivation, statistics, rebus sic stantibus

“The distribution from which the extremes have been drawn and its parameters
must remain constant in time (or space), or the influence that time (or space)
exercises upon them must be taken into account or eliminated (...) This
assumption, made in most statistical work, is hardly ever realized.” Emil Gumbel
(1958), Statistics of Extremes, page 1.

“1.0.3. The Flood Problem. Similar stationary time series may easily be obtained
for annual droughts, largest precipitations, snowfalls, maxima and minima of
atmospheric pressures and temperatures, and other meteorological phenomena.”
Emil Gumbel (1958), Statistics of Extremes, page 4.

Gumbel (1941a,b) discussed ”the return period of flood flows”, term used in Fuller
(1914) Hazen (1930), on flood flows.
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Motivation, statistics, rebus sic stantibus
Definition 3.19: Geometric distribution

The probability that the first occurrence of success requires k independent trials,
each with success probability p, the probability that the k-th trial is the first
success is

P(X = k) = (1− p)k−1p

for k = 1, 2, 3, 4, · · ·. And then, EP[X] = p−1.
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Motivation, climate change

Climate, how to predict in ”uncharted territory”, Schmidt (2024)?
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Motivation, climate change
A wildfire (or forest fire, bushfire) is an unplanned, uncontrolled and unpredictable
fire in an area of combustible vegetation.

Climate risk in California (U.S.)

“Why is it illegal in California to consider climate-informed catastrophe models
when setting wildfire insurance premiums?” Frazier (2021)

Some general context:
California Code Of Regulations, title 10, Chapter 5 (Insurance Commissioner), § 2644
(”Determination of Reasonable Rates”)

Cal. Code Regs. tit. 10 § 2644.4 (Projected Losses)

”Projected losses” means the insurer’s historic losses per exposure, adjusted by
catastrophe adjustment, as prescribed in section 2644.5.
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Motivation, climate change

Cal. Code Regs. tit. 10 § 2644.5 (Catastrophe Adjustment)

In those insurance lines and coverages where catastrophes occur, the catastrophic
losses of any one accident year in the recorded period are replaced by a loading
based on a multi-year, long-term average of catastrophe claims. The number of
years over which the average shall be calculated shall be at least 20 years for
homeowners multiple peril fire, and at least 10 years for private passenger auto
physical damage. Where the insurer does not have enough years of data, the
insurer’s data shall be supplemented by appropriate data. The catastrophe
adjustment shall reflect any changes between the insurer’s historical and
prospective exposure to catastrophe due to a change in the mix of business. There
shall be no catastrophe adjustment for private passenger auto liability.
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Transfer learning and domain adaptation (Ps 6= Pt)

“Traditional machine learning is characterized by training data and testing data
having the same input feature space and the same data distribution. When there is
a difference in data distribution between the training data and test data, the
results of a predictive learner can be degraded,” Furht et al. (2016)

• notations

Consider some training (source) sample Ds = {(xs,i, ys,i)} and some test (target)
sample Dt = {(xt,i)}, both being i.i.d., with distributions Ps and Pt.
In a regression problem, y = m(x) + ε, i.e. m(x) = EP[Y|E = x]
Consider a parametric model, m(x|θ)), for some θ ∈ Θ.
Classical empirical risk minimization (ERM) leads to

θ̂ ∈ argmin
θ∈Θ

{
1
n

n∑
i=1

ℓ
(
ys,i,m(xs,i|θ)

)}
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Transfer learning and domain adaptation (Ps 6= Pt)
If Ps = Pt, θ̂ is said to be consistent Shimodaira (2000). Otherwise...
Importance weighted empirical risk minimization (IWERM) is

θ̃ ∈ argmin
θ∈Θ

{1
n

n∑
i=1

Ps(xs,i)
Pt(xs,i)

ℓ
(
ys,i,m(xs,i|θ)

)}
which is now consistent.
One can define adaptative importance weighted empirical risk minimization (AIWERM)

θ̃γ ∈ argmin
θ∈Θ

1
n

n∑
i=1

(
Ps(xs,i)
Pt(xs,i)

)γ

ℓ
(
ys,i,m(xs,i|θ)

) ,
γ ∈ [0, 1] is the flattening parameter,{

γ = 0, ordinary ERM
γ = 1, IWERM
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Transfer learning and domain adaptation (Ps 6= Pt)

One could consider regularlized importance weighted empirical risk minimization
(RIWERM)

θ̃λ ∈ argmin
θ∈Θ

{1
n

n∑
i=1

Ps(xs,i)
Pt(xs,i)

ℓ
(
ys,i,m(xs,i|θ)

)
+ λP(θ)

}
,

for some penalty function P(θ) (classically ‖θ‖ℓ1 (lasso) or ‖θ‖ℓ2 (ridge) types of
penalty), and λ ≥ 0.
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Transfer learning and domain adaptation (Ps 6= Pt)
• Application in a regression context

Polynomial regression model,

Px,θ ∼ N (Pβ(x), σ2) and θ = (β, σ2), for some polynomial Pβ

i.e., y = β0 + β1x + · · ·+ βkxk + ε where ε ∼ N (0, σ2).
Suppose that the ”true” distribution is

Qx ∼ N (Q(x), 1)

e.g., Q(x) = −(2x− 1/2) + (2x− 1/2)3

Suppose also that{
source : πs ∼ B(as, bs)
target : πt ∼ B(at, bt)
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Transfer learning and domain adaptation (Ps 6= Pt)
Linear model (mis-specified) and cubic model (well-specified)

max
θ

logL(θ|y, x) = max
θ

n∑
i=1

log p(y|x,θ) = min
θ

n∑
i=1

(yi − Pβ(xi))
2
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Transfer learning and domain adaptation (Ps 6= Pt)
Linear model (mis-specified) and cubic model (well-specified)

max
θ

logLω(θ|y, x) = max
θ

n∑
i=1

ω(xi) log p(y|x,θ) = min
θ

n∑
i=1

xat
i (1− xi)bt

xas
i (1− xi)st

(yi − Pβ(xi))
2

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 132 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Calibration and conformal prediction
• Calibration is the process of adjusting the probability estimates output by a

model to better reflect the true likelihood of an event.
• Many machine learning models, such as logistic regression or SVMs, output

predicted probabilities that may not correspond to actual frequencies.
• Well-calibrated models make reliable probability predictions: If a model predicts

”0.8” for class A, then in 80% of cases, class A should be the correct label.
• Example: If a model predicts a probability of 0.7 for an event, but the true event

occurs only 50% of the time when the model predicts 0.7, the model is not
well-calibrated.
• Platt Scaling:

A logistic regression model is fit on the model’s output probabilities to
transform the predictions into calibrated probabilities.
Commonly used for SVMs.

• Isotonic Regression:
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Calibration and conformal prediction
A non-parametric method that fits a step function to the predicted
probabilities and adjusts them accordingly.
Suitable when the number of training examples is large.

• Beta Calibration:
A generalization of Platt Scaling that uses the Beta distribution for
calibration, useful for both binary and multi-class classification.

These methods help correct overconfidence or underconfidence in probabilistic
predictions.
• Improved Decision-Making:

Well-calibrated probabilities lead to better decision-making, especially in
high-stakes domains like healthcare or finance.

Reliability of Predictions:
Calibration ensures that the predicted probabilities represent actual event
frequencies, helping in risk assessment and uncertainty quantification.
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Calibration and conformal prediction

• Example: In medical diagnosis, a model predicting a 90% probability of a disease
needs to be trusted to match actual outcomes with that 90% frequency.
• Application: In weather forecasting, better-calibrated probabilities can improve the

reliability of predictions like ”rain tomorrow” or ”storm risk.”
• Conformal Prediction (CP) is a framework for generating prediction sets (or

intervals) that provide a guarantee on the coverage probability.
• Given a new prediction, CP allows us to form a set of possible outcomes, along

with a confidence level (e.g., 95%).
• Unlike traditional models that output a single prediction, conformal prediction

outputs a set of predictions that likely contains the true outcome.
• Example: A regression model might output a prediction interval of [3.5, 4.2] with

95% confidence, meaning the true value will fall within that range 95% of the
time.
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Calibration and conformal prediction
• Key Idea: Conformal prediction provides a confidence guarantee that the true

label will lie within the prediction set with a specified probability.
• Non-Parametric:

CP can be applied to any machine learning algorithm, whether it’s linear
regression, neural networks, or random forests.

• Calibration of the Prediction Sets:
The prediction sets are constructed based on past data, using a
non-conformity measure to assess how well the model’s prediction fits the
existing data.
Example: If the model’s prediction is too different from past instances, the
set may be expanded to include more possibilities.

• Guarantees: If the model is properly calibrated, the prediction set will contain the
true label with the specified probability (e.g., 95%).
• Medical Applications:
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Calibration and conformal prediction
Conformal prediction can be used in medical diagnostics, providing a
confidence interval for disease probabilities, helping doctors make
better-informed decisions.

• Finance:
CP can be used in financial risk management to provide confidence intervals
for market predictions (e.g., stock prices).

• Machine Learning Applications:
Can be used with any machine learning model to create confidence intervals
for regression tasks or prediction sets for classification tasks.

• Example: In a self-driving car system, conformal prediction can provide a
confidence set for potential obstacles, increasing safety.
• Comparison to Traditional Methods: Conformal prediction provides reliable

uncertainty estimates, unlike traditional models which may only output point
estimates.
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Calibration (when ”probabilities” are badly assessed)

“Guo et al. (2017) have shown that modern neural networks are poorly calibrated
and over-confident despite having better performance,” Müller et al. (2019) or
“deep neural networks tend to be overconfident and poorly calibrated after
training,” Wang et al. (2021)
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Calibration (when ”probabilities” are badly assessed)
Global balance,

E
[
Y− ŝ(X)

]
= E

[
µ(x)− ŝ(X)

]
= 0.

Economically, if ŝ(x) is the price, the portfolio is self-financing (for random losses Y).
Empirical global balance (in-sample)

n∑
i=1

[
yi − ŝ(xi)

]
= 0.

Marginal balance, E
[
Y− ŝ(X) | Xj

]
= E

[
µ(x)− ŝ(X) | Xj

]
= 0

E
[
Y− ŝ(X) | X

]
= E

[
µ(x)− ŝ(X) | X

]
= 0

Economically, subgroups x are self-financing (for random losses Y).
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Calibration (when ”probabilities” are badly assessed)

Well-calibration (or “marginal balance”, w.r.t. ŝ(x))

E
[
Y− ŝ(X) | ŝ(X)

]
= E

[
µ(x)− ŝ(X) | ŝ(X)

]
= 0.

Economically, price-based subgroups ŝ(x) are self-financing (for random losses Y).

Proposition 3.2: Well-calibration

The true regression function η(x) = E[Y | X = x] is well-calibrated, and so is the
expected value, E[Y].
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Calibration (when ”probabilities” are badly assessed)

Definition 3.20: Recalibration

Given a model s : X → R, the following re-calibration step gives an auto-
calibrated regression function

srcb(x) = E[Y | s(X) = s(x)]
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Calibration (when ”probabilities” are badly assessed)
In many applications, we need to properly assess P(Y = 1| X = x)

model calibration can be also used to refer to Bayesian inference about the value
of a model’s parameters, given some data set, or more generally to any type
of fitting of a statistical model. As Philip Dawid puts it, ”a forecaster is well
calibrated if, for example, of those events to which he assigns a probability 30
percent, the long-run proportion that actually occurs turns out to be 30 percent.”

, see Dawid (1982).
Prediction Ŷ of Y is a well-calibrated prediction if EP[Y|Ŷ = p] = ŷ, for all p ∈ (0, 1).
“Out of all the times you said there was a 40 percent chance of rain, how often did
rain actually occur? If, over the long run, it really did rain about 40 percent of the
time, that means your forecasts were well calibrated,” Silver (2012)
“we desire that the estimated class probabilities are reflective of the true
underlying probability of the sample,” Kuhn and Johnson (2013)
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Calibration (when ”probabilities” are badly assessed)

“When we speak of the ‘probability of death’, the exact meaning of this expression
can be defined in the following way only. We must not think of an individual, but
of a certain class as a whole, e.g., ‘all insured men forty-one years old living in a
given country and not engaged in certain dangerous occupations’. A probability of
death is attached to the class of men or to another class that can be defined in a
similar way. We can say nothing about the probability of death of an individual
even if we know his condition of life and health in detail. The phrase ‘probability
of death’, when it refers to a single person, has no meaning for us at all,” von
Mises (1928, 1939).
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Calibration (when ”probabilities” are badly assessed)

As explained in Van Calster et al. (2019), “among patients
with an estimated risk of 20%, we expect 20 in 100 to have
or to develop the event”.
• If 40 out of 100 in this group are found to have the

disease, the risk is underestimated,
• If we observe that in this group, 10 out of 100 have the

disease, we have overestimated the risk.

Hosmer-Lemeshow test, from Hosmer Jr et al. (2013) (logis-
tic regression), and Bier score, from Brier et al. (1950) and
Murphy (1973).
Function plotted in psychological papers Keren (1991).
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Calibration (when ”probabilities” are badly assessed)

BS = 1
n

n∑
i=1

(
ŝ(xi)− yi

)2
Calibration curve is defined as

g :
{

[0, 1]→ [0, 1]
p 7→ g(p) := E[Y | ŝ(X) = p]

The g function for a well-calibrated model ŝ is the identity function g(p) = p.
• Quantile Bins

Set ŷi = ŝ(xi), sorted ŷ1 ≤ ŷ2 ≤ · · · ≤ ŷn, partition I1, · · · , I10 of {1, 2, · · · , n}.
As in Pakdaman Naeini et al. (2015), consider scatter plot

(u,vk), where uk = 1
nk

∑
i∈Ik

ŷi and vk = 1
nk

∑
i∈Ik

yi
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Calibration (when ”probabilities” are badly assessed)

Wilks (1990), Pakdaman Naeini et al. (2015)
and Kumar et al. (2019) considered quantile-
based bins : g is the continuous piecewise lin-
ear function, interpolating linearly between the
points

{(sk, yk)} where k = 1, · · · , 10,

sk = 10
n
∑
i∈Ik

ŝ(xi) and yk = 10
n
∑
i∈Ik

yi,

Ik =
{

i :
⌈k− 1

10 · n
⌉
≤ rank(̂s(xi)) ≤

⌊ k
10 · n

⌋}
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Calibration (when ”probabilities” are badly assessed)

• Local Regression
Given sample {(xi, yi)} and score ŝ, consider a local regression of y’s against ŝ(x)’s,
as in Loader (2006), see Austin and Steyerberg (2019); Denuit et al. (2021). E.g.

ĝ(p) :=

n∑
i=1

Kh(p− ŝ(xi)) · yi

n∑
i=1

Kh(p− ŝ(xi))
, ∀p ∈ [0, 1],

based on Nadaraya (1964); Watson (1964), for some kernel K and some bandwidth h.
One could also consider some kernel based local regression (of degree 1 or 2), as
suggested in Denuit et al. (2021).
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Calibration (when ”probabilities” are badly assessed)
• Isotonic Regression

Since g should be increasing, quite naturally, we could consider an isotonic regression
of y’s against ŝ(x)’s, as in Kruskal (1964), see Niculescu-Mizil and Caruana (2005), g̃
is the continuous piecewise linear function, interpolating linearly between the points
(̂s(xi), ŷi), where ŝ(xi)’s are sorted,

g̃(p) :=


ŷ1 if p ≤ ŝ(x1)

ŷi + p− ŝ(xi)
ŝ(xi+1)− ŝ(xi)

(ŷi+1 − ŷi) if ŝ(xi) ≤ x ≤ ŝ(xi+1)

ŷn if x ≥ ŝ(xn)

where
min

ŷ1,··· ,ŷn

n∑
i=1

(
ŷi − yi

)2 subject to ŷi ≤ ŷj for all (i, j) ∈ E,

E = {(i, j) : ŝ(xi) ≤ ŝ(xj)} specifies the partial ordering of the observed inputs ŝ(xi).
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Calibration (when ”probabilities” are badly assessed)

Calibration scatterplot per quantile bins

(see also Fernandes Machado et al. (2024a,b))
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Calibration (when ”probabilities” are badly assessed)

Local regression scatterplot per bins, [0; 0.1), [0.1; 0.2), [0.2; 0.3), [0.3; 0.4), etc
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Calibration (when ”probabilities” are badly assessed)

Calibration scatterplot per local regression (small bandwidth)
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Calibration (when ”probabilities” are badly assessed)

Local regression scatterplot per local regression (larger bandwidth)
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Calibration (when ”probabilities” are badly assessed)
A standard metric for assessing calibration is Brier score (see Gupta et al. (2021); Kull
et al. (2017); Platt et al. (1999); Rahimi et al. (2020)), from Brier (1950):

Brier score (MSE), BS = 1
n

n∑
i=1

(
ŝ(xi)− yi

)2
.

Austin and Steyerberg (2019) and Zhang et al. (2020) proposes the Integrated
Calibration Index (ICI) based on the calibration curve,

Integrated Calibration Index, ICI = 1
n

n∑
i=1
| ŝ(xi)− ĝ

(
ŝ(xi)

)
| .

Local Calibration Score, LCS = 1
n

n∑
i=1

(
ŝ(xi)− ĝ

(
ŝ(xi)

))2
.
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Application in Motor Insurance

Consider claims (annual) frequency, corrected from the exposure, freMTPL2freq from
CASDataset package, as in Denuit et al. (2021).

m̂glm m̂gam m̂bst

average m̂(x)’s 0.1087 0.1092 0.0820
10% quantile 0.0605 0.0598 0.0498
90% quantile 0.1682 0.1713 0.1244
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Application in Motor Insurance
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Application in Motor Insurance

Evolution of p 7→ E[Y|m̂(X) = p] and u 7→ E[Y|m̂(X) = F−1
m̂ (u)]
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Application in Motor Insurance

Recalibrated models
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Conformal Prediction

Conformal prediction
Conformal prediction (CP) is a machine learning framework for uncertainty quan-
tification that produces statistically valid prediction regions (prediction intervals)
for any underlying point predictor only assuming exchangeability of the data.

Need for probablistic predictions, see Vovk et al. (2005) or Da Veiga (2024)
Even if model predictions can be very close, the intervals may heavily vary depending
on the underlying assumptions used to build them
Somehow, classical problem, discussed with various underlying ideas.
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Conformal Prediction

• central limit theorems that are available for some models
(polynomial regression, local-averaging methods, ...)
see polynomial regression
theoretical guarantees (possibly only asymptotic)
model may be wrong
• Bayesian paradigm (Gaussian processes or Bayesian neu-

ral networks more
• see Gaussian process (and posterior distribution)

the influence of the prior is not negligible recently, ...)
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Conformal Prediction

• resampling methods (bootstrap, cross-validation, leave-
one-out, jackknife,
• see random forests, with bootstrap and out-of-bag re-

sampling method
• we may lack theoretical guarantees that they provide valid

intervals
• quantile regression, where the model is trained to specifi-

cally learn quantiles of the target conditional distribution
instead of the mean
• see smoothing splines,
• could be not very smooth
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Conformal Prediction

• heuristic approaches in the neural network community
(deep ensembles, drop-out, ...)
• see deep ensemble, and drop-out
• theoretical guarantees may be even more lacking
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Conformal Prediction
Definition 3.21: Prediction interval (or band)

Given {(yi, xi)}, a prediction interval Ĉn with error level α ∈ (0, 1) is a function

Ĉn : X → subsets of Y

built from an i.i.d. sample {(Yi,Xi)}, from P such that, for any new
(Yn+1,Xn+1) ∼ P, we have

P
[
Yn+1 ∈ Ĉn(Xn+1)

]
≥ 1− α.

coverage is guaranteed in average over all random draws of training data
It must be distribution-free, i.e. the coverage guarantee (1) must hold without
assumptions on the data generating process
It must be valid in a non-asymptotic framework (for any n)
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Conformal Prediction

Definition 3.22: Exchangeability

Random variables Z1, · · · ,Zn are exchangeable if for any permutation σ of
{1, 2, · · · , n} (

Z1,Z2, · · · ,Zn
) L= (

Zσ(1),Zσ(2), · · · ,Zσ(n)
)

• if Z1, · · · ,Zn are i.i.d., then Z1, · · · ,Zn are exchangeable,
• if Z1, · · · ,Zn|Ψ are i.i.d. conditional on Ψ (conditional independence), then

Z1, · · · ,Zn are exchangeable,
• if Z1, · · · ,Zn sampled uniformly from a finite set, then Z1, · · · ,Zn are

exchangeable,
• if X1, · · · ,Xn are exchangeable and if Zi = ψ(Xi), then Z1, · · · ,Zn are

exchangeable,
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Conformal Prediction
Definition 3.23: Exchangeability

Given z = (z1, · · · , zn), and τ ∈ (1/n, 1),

quantileτ (z) = inf
x∈R
{F̂n(x) ≥ τ} where F̂n(x) = 1

n

n∑
i=1

1(zi ≤ x),

corresponding to the dnτe smallest value of vector z.

Proposition 3.3: Exchangeability and quantiles

If Z1, · · · ,Zn are exchangeable random variables, then for any i and any τ ∈ [0, 1],

P
[
Zi ≤ quantileτ (Z)

]
≥ τ
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Conformal Prediction
Thus, if Z1, · · · ,Zn,

P
[
Zn+1 ≤ quantileτ (Z,Zn+1)

]
≥ τ

depends on Zn+1

To illustrate suppose that Y1, · · · ,Yn,Yn+1 are i.i.d. Gaussian variables. Since√ n
n + 1 ·

Yn+1 − Yn
ŝn

∼ T(n− 1) where Yn = 1
n

n∑
i=1

Yi and ŝ2
n = 1

n− 1

n∑
i=1

(Yi − Yn)2

so that P
[
Yn+1 ≤ q̂n

]
≥ 1− α where

q̂n = Yn + ŝn

√
n + 1

n · F−1
Std(n−1)(1− α).

Observe that

Zn+1 ≤ quantileτ (Z,Zn+1) ⇐⇒ Zn+1 ≤ quantileτ n+1
n

(Z)
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Conformal Prediction

Suppose that Ĉn(x) =
[
µ̂n(x)± q̂n

]
, then

P
[
Yn+1 ∈ Ĉn(Xn+1)

]
= P

[ ∣∣Yn+1 − µ̂n(Xn+1)
∣∣ ≤ q̂n

]
= P

[
Rn+1 ≤ q̂n

]
≥ 1− α,

where Ri denote absolute residuals, Ri =
∣∣Yi − µ̂n(Xi)

∣∣.
We cannot use q̂n = quantile(1−α) n+1

n
(R1, · · · ,Rn) because R1, · · · ,Rn,Rn+1 are not

exchangeable...
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Split Conformal Prediction
Classically, split the training data Dn into a proper training set Dt

n and a hold-out
calibration set Dc

n (disjoints), with nt and nc observations, respectively.
Define Ri denote absolute residuals, Ri =

∣∣Yi − µ̂nt(Xi)
∣∣ on the calibration dataset.

Conditional on the training dataset, Ri’s (in the calibration dataset) are independent,
therefore, they are exchangeable...
Thus, if Rc is the set of absolute residuals on the calibration dataset (compared with
prediction on the training dataset

∣∣Yi − µ̂nt(Xi)
∣∣),

P
[
Rn+1 ≤ quantile(1−α) nc+1

nc
(Rc)

∣∣∣Dt
n

]
≥ 1− α

i.e.
P
[
Yn+1 ∈ Ĉsplit

n (Xn+1)
∣∣∣Dt

n
]
≥ 1− α

Ĉsplit
n (x) = µ̂nt(x)± q̂nc

where q̂nc = quantile(1−α) nc+1
nc

(Rc)
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Split Conformal Prediction
Proposition 3.4: (Coverage for split conformal, Vovk et al. (2005)

If (Y1,X1), · · · , (Yn,Xn), (Yn+1,Xn+1) are exchangeable, the split conformal in-
terval satisfies

P
[
Yn+1 ∈ Ĉsplit

n (Xn+1)
∣∣∣Dt

n
]
≥ 1− α.

Ĉsplit
n (x) = µ̂nt(x)± quantile(1−α) nc+1

nc
(Rc)

The interval
Ĉsplit

n (x) = µ̂nt(x)± quantile(1−α) nc+1
nc

(Rc)

is natural, and can be compared to the “naive” interval

Ĉnaive
n (x) = µ̂n(x)± quantile(1−α) n+1

n
(R)
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Split Conformal Prediction

We can write

P
[
Yn+1 ∈ Ĉsplit

n (Xn+1)
]

= E
[
P
[
Yn+1 ∈ Ĉsplit

n (Xn+1)
∣∣∣Dt

n
]]
≥ 1− α.

This type of guarantee is called marginal coverage, in the sense that the probability
has been marginalized over all the randomness. Split conformal prediction thus
satisfies also a marginal coverage guarantee.
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Split Conformal Prediction

Split data to create a proper training set, a calibration set, and keep the test set (by
randomly splitting the data set)
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Split Conformal Prediction

On the proper training set, learn m̂
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Split Conformal Prediction

On the calibration set, predict with m̂, Ri = yi − m̂(xi) and consider |Ri| (”conformity
scores”)
Compute their (1α) empirical quantile, quantile(1−α) n+1

n
(R)
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Split Conformal Prediction

On the test set, predict with m̂ and add ±quantile(1−α)(R)
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Split Conformal Prediction

93.3% coverage 91.8% coverage 93.1% coverage
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Split Conformal Prediction

86.9% coverage 94.4% coverage 95.5% coverage
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Cross Validation and Conformal Prediction
Instead of

Ĉnaive
n (x) = µ̂n(x)± quantile(1−α) n+1

n
(R)

write, as in Barber (2024)

Ĉnaive
n (x) = µ̂n(x)± Q̂+

n,α(R)

(empirical n+1
n (1− α) quantile from sample R = {R1, · · · ,Rn}).

And instead of
Ĉnaive

n (x) = µ̂n(x)± Q̂+
n,α({|Yi − µ̂n(Xi))

why not consider a Jacknife (leave-one-out) version

Ĉjack
n (x) = µ̂n(x)± Q̂+

n,α({|Yi − µ̂−i(Xi)|})
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Cross Validation and Conformal Prediction

Ĉjack
n (x) =

[
µ̂n(x)− Q̂+

n,α({|Yi − µ̂−i(Xi)|}) ; µ̂n(x) + Q̂+
n,α({|Yi − µ̂−i(Xi)|})

]
or

Ĉjack
n (x) =

[
Q̂+

n,α({µ̂n(x)− |Yi − µ̂−i(Xi)|}) ; Q̂+
n,α({µ̂n(x) + |Yi − µ̂−i(Xi)|})

]
Unfortunarly, no theoretical coverage guarantee without additional assumptions.
Better idea

Ĉjack+
n (x) =

[
Q̂−n,1−α({µ̂−i(x)− |Yi − µ̂−i(Xi)|}) ; Q̂+

n,α({µ̂−i(x) + |Yi − µ̂−i(Xi)|})
]

where Q̂+
n,α is the d(1− α)(n + 1)e-th ordered observation, Q̂+

n,1−α is the bα(n + 1)c-th
one.
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Cross Validation and Conformal Prediction

Proposition 3.5: Coverage for jackknife+ conformal, Barber et al. (2021)

If (Y1,X1), · · · , (Yn,Xn), (Yn+1,Xn+1) are exchangeable, the jackknife+ confor-
mal interval satisfies

P
[
Yn+1 ∈ Ĉjack+

n (Xn+1)
]
≥ 1− 2α.[

Q̂−n,1−α({µ̂−i(Xn+1)− |Yi − µ̂−i(Xi)|}); Q̂+
n,α({µ̂−i(Xn+1) + |Yi − µ̂−i(Xi)|})

]
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Cross Validation and Conformal Prediction
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Cross Validation and Conformal Prediction
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Cross Validation and Conformal Prediction
Similarly, consider a K-fold cross-validation,

K⋃
k=1
Ik = {1, 2, · · · , n}, for i ∈ Ik,

Ĉcv-K+
n (x) =

[
Q̂−n,1−α({µ̂cv

−Ik(x)− |Yi − µ̂cv
−Ik(Xi)|}) ; Q̂+

n,α({µ̂cv
−Ik(x) + |Yi − µ̂cv

−Ik(Xi)|})
]
.

Proposition 3.6: Coverage for K-fold cross-validation+ conformal, Barber
et al. (2021)

If (Y1,X1), · · · , (Yn,Xn), (Yn+1,Xn+1) are exchangeable, the cv-K fold+ confor-
mal interval satisfies

P
[
Yn+1 ∈ Ĉcv-K+

n (Xn+1)
]
≥ 1−2α−min

{
2(1− K−1)
nK−1 + 1 ,

1− Kn−1

K + 1

}
≥ 1−2α−

√
2n−1.[

Q̂−n,1−α({µ̂cv
−Ik(x)− |Yi − µ̂cv

−Ik(Xi)|}); Q̂+
n,α({µ̂cv

−Ik(x) + |Yi − µ̂cv
−Ik(Xi)|})

]
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Conformal Prediction, Going Further

Definition 3.24: Stabilitiy

A predictive approach is (out-of-sample) stable if it satisfies

P
[∣∣∣µ̂n(Xn+1)− µ̂−i(Xn+1)

∣∣∣ ≤ ε] ≥ 1− α, ∀i = 1, · · · , n.

or if
E
[∣∣∣µ̂n(Xn+1)− µ̂−i(Xn+1)

∣∣∣] ≤ β, ∀i = 1, · · · , n.

Linear regression is stable (unless k ∼ n), as well as Ridge, Lasso, and Bagging.
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What is an “actuary”?

• “actuarial” ?

“To be an actuary is to be a specialist in generalization,
and actuaries engage in a form of decision making that
is sometimes called actuarial. Actuaries guide insurance
companies in making decisions about large categories
that have the effect of attributing to the entire cat-
egory certain characteristics that are probabilistically
indicated by membership in the category, but that still
may not be possessed by a particular member of the
category,” Schauer (2006).
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What is an “actuarial model” (as in most actuarial textbooks)?

• linear regression on categories - “segmentation”

ŷ(man) = β0 + β11urban + β21young + β3 1man = ŷ(woman) + β3

+β3 ceteris paribus

• Poisson regression (frequency) on categories, or not
ŷ(man) = exp

[
β0 + β11urban + β2 1young + β3 1man

]
= ŷ(woman) · exp[β3]

×eβ3 ceteris paribus

ŷ(man) = exp
[
β0 + β11urban + β2 age + β3 1man

]
= ŷ(woman) · exp[β3]

If β3 small, eβ3 ≈ 1 + β3, i.e. “β3 = 0.2” ←→ “+20% for men”
Thus “interpretation” is simple (if we do not discuss what “ceteris paribus” means).
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Why could there be a problem?

• Econometrics is dead, long live “artificial intelligence”
• “Machine learning” context, i.e. black boxes, with less intuitive interpretation
• “Big data” context, i.e. easy to get proxies for protected/sensitive variables

y urban age race
... ... ... ...
... ... ... ...

y urban age zip lastname model credit
... ... ... ... ... ... ...
... ... ... ... ... ... ...

It is possible to predict the “race” based on non-protected variables, e.g. names and
geolocation, see “Bayesian Improved Surname Geocoding (BISG)”, Elliott et al.
(2009), Imai and Khanna (2016)
“OK, let’s not use race, but should we use zip code, which of course is a proxy for
race in our segregated society?,” O’Neil (2016).
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Where could there be a problem?

Ratemaking is an issue, but also underwriting,
“Redlining”, for loans, but also insurance, Kerner (1968)
“use of a red line around the questionable areas on
territorial maps centrally located in the Underwriting
Division for ease of reference by all Underwriting per-
sonnel [...] mark off certain areas * * * to denote a
lack of interest in business arising in these areas In
New York these are called K.O. areas meaning knock-
out areas; in Boston they are called redline districts.
Same thing – don’t write the businesss.”
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What is a “actuarial fairness”?

• “Actuarial fairness” ?

... “on an actuarially fair basis; that is, if the costs
of medical care are a random variable with mean
m, the company will charge a premium m, and
agree to indemnify the individual for all medical
costs,” Arrow (1963).

“actuarially fair premiums” = “expected losses”

of the insured risk, see also Frezal and Barry (2020).

“governments must recognise that there is a difference between unfair
discrimination and insurers differentiating prices according to risk,”
Swiss Re (2015), cited in Meyers and Van Hoyweghen (2018)
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What is a “actuarial fairness”?

“Indeed, the rationale that proscribing the use of certain rating variables is in the
public interest because, under imperfect risk assessment systems, actuarial fairness
is not achieved for some – albeit unidentifiable - individuals is fundamentally
contradictory. It promotes a remedy for unfairness to some that increases the
unfairness overall (by the same actuarial yardstick) and redistributes it,” Casey
et al. (1976), cited in Walters (1981)
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So “actuarial fairness” has to do with “accuracy”?

Following Arrow (1963), “actuarially fair premiums” = “expected losses”
• but still, there is no “law of one price” in insurance, Froot et al. (1995)
→ with different models and different portfolio, we can have two different premiums
• estimating “expected losses” means maximizing “accuracy”

y = argmin
γ∈R

{ n∑
i=1

(
yi − γ

)2 } or E[Y] = argmin
γ∈R

{∑
y

(
y− γ

)2P[Y = y]
}

least squares

average losses / empirical losses

i.e. we want to minimize the error between observed loses y and predictions ŷ.
with binary observations y ∈ {0, 1}, hard to assess if ŷ = 12.2486% is accurate or not...
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Discrimination? Individual vs. Group Treatment

“Discrimination is the act, practice, or an instance of separating or distinguishing
categorically rather than individually,” Merriam-Webster (2022).

• “Ten Oever” judgement (Gerardus Cornelis Ten Oever v Stichting
Bedrijfspensioenfonds voor het Glazenwassers – en Schoonmaakbedrijf, in April
1993), the Advocate General Van Gerven (1993) argued that “the fact that
women generally live longer than men has no significance at all for the life
expectancy of a specific individual and it is not acceptable for an individual to
be penalized on account of assumptions which are not certain to be true in his
specific case,” as mentioned in De Baere and Goessens (2011).
• Schanze (2013) used the term “injustice by generalization,” from Britz (2008)

(”Generalisierungsunrecht”)
→ Actuarial pricing is essentially discriminatory... and unfair.
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“At the core of insurance business lies discrimination”.

• ”What is unique about insurance is that even statistical discrimination which
by definition is absent of any malicious intentions, poses significant moral
and legal challenges. Why? Because on the one hand, policy makers would
like insurers to treat their insureds equally, without discriminating based on
race, gender, age, or other characteristics, even if it makes statistical sense to
discriminate (...) On the other hand, at the core of insurance business lies
discrimination between risky and non-risky insureds. But riskiness often
statistically correlates with the same characteristics policy makers would like
to prohibit insurers from taking into account. ” Avraham (2017)

• “Technology is neither good nor bad; nor is it neutral,” Kranzberg (1986)

• “Machine learning won’t give you anything like gender neutrality ‘for free’
that you didn’t explicitly ask for,” Kearns and Roth (2019)
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Quantifying discrimination, isn’t it an old problem?

See Becker (1957) or Baldus and Cole (1980), among (many) others.

Several papers over the past 15 years revisited various notions and concepts.
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Is there a (simple) way to quantify unfairness ?

• classical fairness concept are related to so called “group fairness”, where we have
a statistical (overall perspective),
• in some problems, we focus on discrimination in “continuous outcomes”,
• m̂(xi, si) ∈ [0, 1] (score) that could also be denoted ŷi
• m̂(xi, si) ∈ R+ (premium) that could also be denoted ŷi
→ classical in insurance modeling

• in some problems, we focus on discrimination in binary decisions ŷi ∈ {0, 1},
usually obtained as
• ŷi = 1(m̂(xi, si) > threshold) ∈ {0, 1} (class) that could also be denoted
→ classical in computer science
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Several definitions of “fairness” or “non-discriminatory”

Definition 3.25: Fairness through unawareness, Dwork et al. (2012)

A model m satisfies the fairness through unawareness criteria, with respect to
sensitive attribute s ∈ S if m : X → Y.

“institutional messages of color blindness may therefore artificially depress formal
reporting of racial injustice. Color-blind messages may thus appear to function
effectively on the surface even as they allow explicit forms of bias to persist,”
Apfelbaum et al. (2010)
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Several definitions of “fairness” or “non-discriminatory”

Definition 3.26: Four definitions of cultural fairness, Darlington (1971)

A test (ŷ) is considered ”culturally fair” if it fits the appropriate equation
Cor[S, Ŷ] = Cor[S,Y]/Cor[Y, Ŷ]
Cor[S, Ŷ] = Cor[S,Y]
Cor[S, Ŷ] = Cor[S,Y] · Cor[Y, Ŷ]
Cor[S, Ŷ] = 0

See also Thorndike (1971), Linn and Werts (1971), following Cleary (1968).
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Several definitions of “fairness” or “non-discriminatory”

Definition 3.27: Independence, Barocas et al. (2017)

A model m satisfies the independence property if m(Z) ⊥⊥ S, with respect to the
distribution P of the triplet (X,S,Y).

For classifiers, one might ask for independence Ŷ ⊥⊥ S (where ŷ is a class), as
Darlington (1971).
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Several definitions of “fairness” or “non-discriminatory”

Definition 3.28: Demographic Parity, Calders and Verwer (2010), Corbett-
Davies et al. (2017)

A decision function ŷ – or a classifier mt, taking values in {0, 1} – satisfies
demographic parity, with respect to some sensitive attribute S if (equivalently)

P[Ŷ = 1|S = A] = P[Ŷ = 1|S = B] = P[Ŷ = 1]
E[Ŷ|S = A] = E[Ŷ|S = B] = E[Ŷ]
P[mt(Z) = 1|S = A] = P[mt(Z) = 1|S = B] = P[mt(Z) = 1].
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Several definitions of “fairness” or “non-discriminatory”

unaware (without s) aware (with s)
GLM GAM CART RF GLM GAM CART RF

n = 1000, various t, ratio P[Ŷ = 1|S = B]/P[Ŷ = 1|S = A]
t = 30% 1.652 1.519 1.235 1.559 1.918 1.714 1.235 1.798
t = 50% 1.877 2.451 2.918 2.404 2.944 3.457 2.918 2.180
t = 70% 6.033 8.711 26.000 4.621 7.917 19.333 26.000 4.578

( dem_parity from R package fairness )

On the left-hand side, evolution of the ratio ratio P[Ŷ = 1|S = B]/P[Ŷ = 1|S = A].
The horizontal line (at y = 1) corresponds to perfect demographic parity.
In the middle t 7→ P[mt(X) > t|S = B] and t 7→ P[mt(X) > t|S = A] on the model with
s, and on the right-hand side without s.
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Several definitions of “fairness” or “non-discriminatory”

On the left-hand side, evolution of the ratio ratio P[Ŷ = 1|S = B]/P[Ŷ = 1|S = A].
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Several definitions of “fairness” or “non-discriminatory”

On the left-hand side, evolution of the ratio ratio P[Ŷ = 0|S = A]/P[Ŷ = 0|S = B]
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Several definitions of “fairness” or “non-discriminatory”

Definition 3.29: Weak Demographic Parity

A decision function ŷ satisfies weak demographic parity if

E[Ŷ|S = A] = E[Ŷ|S = B].

Definition 3.30: Strong Demographic Parity

A decision function ŷ satisfies demographic parity if Ŷ ⊥⊥ S, i.e., for all A,

P[Ŷ ∈ A|S = A] = P[Ŷ ∈ A|S = B], ∀A ⊂ Y.
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Several definitions of “fairness” or “non-discriminatory”

Proposition 3.7

A model m satisfies the strong demographic parity property if and only if

dTV(Pm|A,Pm|B) = dTV(PA,PB) = 0.

dTV(Pm|A,Pm|B) could be seen as a measure of “unfairness”, but for a non-binary
sensitive attribute, a more general definition is necessary (see Denis et al. (2021)).

Proposition 3.8

A model m satisfies is strongly fair if and only if W2(PA,PB) = 0.
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Several definitions of “fairness” or “non-discriminatory”

1 > model_glm = glm(y~x1+
x2+x3, data=
toydata2 , family=
binomial)

2 > pred_y_glm = predict(
model_glm , type="
response")

3 > sA = pred_y_glm[
toydata2$sensitive
=="A"]

4 > library(transport)
5 > wasserstein1d(sA,sB)
6 [1] 0.3860795
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Several definitions of “fairness” or “non-discriminatory”
On the FrenchMotor dataset, consider GLM, GBM and RF for claim occurence

1 > wasserstein1d(lA,lB)
2 [1] 0.007220468

1 > wasserstein1d(bA,bB)
2 [1] 0.008895917

1 > wasserstein1d(fA,fB)
2 [1] 0.01001088
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Several definitions of “fairness” or “non-discriminatory”

1 > wasserstein1d(lA,lB)
2 [1] 0.007220468

1 > wasserstein1d(bA,bB)
2 [1] 0.008895917

1 > wasserstein1d(fA,fB)
2 [1] 0.01001088
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Several definitions of “fairness” or “non-discriminatory”
Definition 3.31: Unfairness, Denis et al. (2021); Chzhen and Schreuder

(2022)

Given a model m, let Pm denote the distribution of m(X,S) and Pm|s denote the
conditional distribution of m(X,S) given S = s, define

UTV(m) = max
s∈{A,B}

{
dTV(Pm,Pm|s) or

∑
s∈{A,B}

dTV(Pm,Pm|s)

UKS(m) = max
s∈{A,B}

{
dKS(Pm,Pm|s)

}
or

∑
s∈{A,B}

dKS(Pm,Pm|s)

UWk(m) = max
s∈{A,B}

{
Wk(Pm,Pm|s)

}
or

∑
s∈{A,B}

Wk(Pm,Pm|s)

In the original version, Chzhen and Schreuder (2022) suggested to use the one on the
right.
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Several definitions of “fairness” or “non-discriminatory”

Those measures characterize strong demographic parity,

Proposition 3.9: Strong Demographic Parity

A model m is strongly fair if and only if U(m) = 0.
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Separation and Equalized Odds

Definition 3.32: Separation, Barocas et al. (2017)

A model m : Z → Y satisfies the separation property if m(Z) ⊥⊥ S | Y, with
respect to the distribution P of the triplet (X,S,Y).
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Separation and Equalized Odds

Definition 3.33: True positive equality, (Weak) Equal Opportunity, Hardt
et al. (2016)

A decision function ŷ – or a classifier mt(·), taking values in {0, 1} – satisfies
equal opportunity, with respect to some sensitive attribute S if{
P[Ŷ = 1|S = A,Y = 1] = P[Ŷ = 1|S = B,Y = 1] = P[Ŷ = 1|Y = 1]
P[mt(Z) = 1|S = A,Y = 1] = P[mt(Z) = 1|S = B,Y = 1] = P[mt(Z) = 1|Y = 1],

which corresponds to parity of true positives, in the two groups, {A, B}.
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Separation and Equalized Odds

Definition 3.34: Strong Equal Opportunity

A classifier m(·), taking values in {0, 1}, satisfies equal opportunity, with respect
to some sensitive attribute S if

P[m(X,S) ∈ A|S = A,Y = 1] = P[m(X,S) ∈ A|S

for all A ⊂ [0, 1].
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Separation and Equalized Odds

Definition 3.35: False positive equality, Hardt et al. (2016)

A decision function ŷ – or a classifier mt(·), taking values in {0, 1} – satisfies
parity of false positives, with respect to some sensitive attribute s, if{
P[Ŷ = 1|S = A,Y = 0] = P[Ŷ = 1|S = B,Y = 0] = P[Ŷ = 1|Y = 0]
P[mt(Z) = 1|S = A,Y = 0] = P[mt(Z) = 1|S = B,Y = 0] = P[mt(Z) = 1|Y = 0].
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Separation and Equalized Odds

ROC curves (TPR against FPR) for the logistic regression on toydata2 .
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Separation and Equalized Odds

Evolution of the false positive rates, fpr_parity from fairness .
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Separation and Equalized Odds

Evolution of the false negative rates, fnr_parity from fairness .
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Separation and Equalized Odds

Definition 3.36: Equalized Odds, Hardt et al. (2016)

A decision function ŷ – or a classifier mt(·) taking values in {0, 1} – satisfies equal
odds constraint, with respect to some sensitive attribute S, if{
P[Ŷ = 1|S = A,Y = y] = P[Ŷ = 1|S = B,Y = y] = P[Ŷ = 1|Y = y], ∀y ∈ {0, 1}
P[mt(Z) = 1|S = A,Y = y] = P[mt(Z) = 1|S = B,Y = y], ∀y ∈ {0, 1},

,

which corresponds to parity of true positive and false positive, in the two groups.
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Separation and Equalized Odds

Evolution of the equalized odds metrics
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Separation and Equalized Odds
One can also consider any kind of standard metrics on confusion matrices, such as ϕ
(introduced in Yule (1912)), usually named ”Matthews correlation coefficient”

Definition 3.37: ϕ-fairness, Chicco and Jurman (2020)

We will have ϕ-fairness if ϕA = ϕB, where ϕs denotes Matthews correlation
coefficient for the s group,

ϕs = TPs · TNs − FPs · FNs√
(TPs + FPs)(TPs + FNs) · (TNs + FPs)(TNs + FNs)

, s ∈ {A, B}.

but one could consider the F1-score (as defined in Van Rijsbergen (1979)),
Fowlkes–Mallows or Jaccard indices (in Fowlkes and Mallows (1983) or Jaccard
(1901)).
... or AUC as we will considered later on.
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Separation and Equalized Odds

Evolution of the ϕ-fairness metric
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Separation and Equalized Odds

Definition 3.38: Class Balance, Kleinberg et al. (2016)

We will have class balance in the weak sense if

E[m(X)|Y = y,S = A] = E[m(X)|Y = y,S = B], ∀y ∈ {0, 1},

or in the strong sense if

P[m(X) ∈ A|Y = y,S = A] = P[m(X) ∈ A|Y = y,S = B], ∀A ⊂ [0, 1], ∀y ∈ {0, 1}.
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Separation and Equalized Odds

Definition 3.39: Similar Mistreatement, Zafar et al. (2019)

We will have similar mistreatment, or “lack of disparate mistreatment,” if{
P[Ŷ = Y|S = A] = P[Ŷ = Y|S = B] = P[Ŷ = Y]
P[mt(X) = Y|S = A] = P[mt(X) = Y|S = B] = P[mt(X) = Y].

Definition 3.40: Equality of ROC curves, Vogel et al. (2021)

Let FRPs(t) = P[m(X) > t|Y = 0,S = s] and TPRs(t) = P[m(X) > t|Y =
1,S = s], where s ∈ {A, B}. Set ∆TPR(t) = TPRB ◦ TPR−1

A (t)− t et ∆FRP(t) =
FPRB ◦ FPR−1

A (t) − t. We will have fairness with respect to ROC curves if
‖∆TPR‖∞ = ‖∆FPR‖∞ = 0.
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Separation and Equalized Odds

Definition 3.41: AUC Fairness, Borkan et al. (2019)

We will have AUC fairness if AUCA = AUCB, where AUCs is the AUC associated
with model m within the s group.

unaware (without s) aware (with s)
GLM GAM CART RF GLM GAM CART RF

ratio of AUC 0.837 0.839 0.913 0.768 0.857 0.860 0.913 0.763
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Sufficiency and Calibration

Inspired by Cleary (1968), define

Definition 3.42: Sufficiency, Barocas et al. (2017)

A model m : Z → Y satisfies the sufficiency property if Y ⊥⊥ S | m(Z), with
respect to the distribution P of the triplet (X,S,Y).

Definition 3.43: Calibration Parity, Accuracy Parity, Kleinberg et al.
(2016), Zafar et al. (2019)

Calibration parity is met if

P[Y = 1|m(X) = t,S = A] = P[Y = 1|m(X) = t,S = B], ∀t ∈ [0, 1].
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Sufficiency and Calibration

Evolution of accuracy, in groups A and B.
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Sufficiency and Calibration
Definition 3.44: Good Calibration, Kleinberg et al. (2017), Verma and Ru-

bin (2018)

Fairness of good calibration is met if

P[Y = 1|m(X) = t,S = A] = P[Y = 1|m(X) = t,S = B] = t, ∀t ∈ [0, 1].

Definition 3.45: Non-Reconstruction of Protected Attribute, Kim (2017)

If we cannot tell from the result (x, m(x), y and ŷ) whether the subject was a mem-
ber of a protected group or not, we will talk about fairness by non-reconstruction
of the protected attribute

P[S = A|X,m(X), Ŷ,Y] = P[S = B|X,m(X), Ŷ,Y].
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Relaxation and Approximate Fairness

Definition 3.46: Disparate Impact, Feldman et al. (2015)

A decision function Ŷ has a disparate impact, for a given threshold τ , if,

min
{
P[Ŷ = 1|S = A]
P[Ŷ = 1|S = B]

,
P[Ŷ = 1|S = B]
P[Ŷ = 1|S = A]

}
< τ (usually 80%).

The 80% rule was suggested by the ”Technical Advisory Committee on Testing”,
from the State of California Fair Employment Practice Commission (FEPC) in 1971, or
the 1978 ”Uniform Guidelines on Employee Selection Procedures”, a document used by
the U.S. Equal Employment Opportunity Commission (EEOC), see Biddle (2017).
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Relaxation and Approximate Fairness

We have defined (Definition 3.31) unfairness as

Uk(m) = max
s∈{A,B}

{
Wk(Pm,Pm|s)

}
,

so that m is (strongly) fair if and only if Uk(m) = 0.

Chzhen and Schreuder (2022) introduced the notion of Relative Improvement

Definition 3.47: ε-Approximate Fairness

Model m is ε-approximately fair if Uk(m) ≤ ε · Uk(m⋆), where m⋆ is Bayes regres-
sor, for some ϵ ≥ 0.
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Three different concepts ?


Independence (Definition 3.27) : m(Z) ⊥⊥ S
Separation (Definition 3.32) : m(Z) ⊥⊥ S | Y
Sufficiency (Definition 3.42) : Y ⊥⊥ S | m(Z)

• Independence assumes no differences among groups, regardless of accuracy
• Separation minimizes differences among groups by not trying to maximize

accuracy
• Sufficiency maximizes accuracy by not trying to minimize differences among

groups
See Kleinberg et al. (2016) or Chouldechova (2017).
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Impossibility theorems
Unless very specific properties are assumed on P, there is no prediction function m(·)
that can satisfy at the same time two fairness criteria.

Independence (Definition 3.27) : m(Z) ⊥⊥ S
Separation (Definition 3.32) : m(Z) ⊥⊥ S | Y
Sufficiency (Definition 3.42) : Y ⊥⊥ S | m(Z)

Proposition 3.10

Suppose that a model m satisfies the independence condition (3.27) and the
sufficiency property (3.42), with respect to a sensitive attribute s, then necessarily,
Y ⊥⊥ S.

Therefore, unless the sensitive attribute s has no impact on the outcome y, there is no
model m which satisfies independence and sufficiency simultaneously.
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Impossibility theorems

From the sufficiency property , S ⊥⊥ Y | m(Z), then, for s ∈ S and A ⊂ Y,

P[S = s,Y ∈ A] = E
[
P[S = s,Y ∈ A|m(Z)]

]
,

can be written

P[S = s,Y ∈ A] = E
[
P[S = s|m(Z)] · P[Y ∈ A|m(Z)]

]
.

And from the independence property (3.42), m(Z) ⊥⊥ S, we can write the first
component P[S = s|m(Z)] = P[S = s], almost surely, and therefore

P[S = s,Y ∈ A] = E
[
P[S = s] · P[Y ∈ A|m(Z)]

]
= P[S = s] · P[Y ∈ A

]
,

for all s ∈ S and A ⊂ Y, corresponding to the independence between S and Y.
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Impossibility theorems
Proposition 3.11

Consider a classifier mt taking values in Y = {0, 1}. Suppose that mt satisfies the
independence condition (3.27) and the separation property (3.32), with respect
to a sensitive attribute s, then necessarily either mt(Z) ⊥⊥ Y or Y ⊥⊥ S (possibly
both).

Because mt satisfies the independence condition (3.27), mt(Z) ⊥⊥ S, and the
separation property (3.32), mt(Z) ⊥⊥ S | Y, them, for ŷ ∈ Y and for s ∈ S,

P[mt(Z) = ŷ] = P[mt(Z) = ŷ|S = s] = E
[
P[mt(Z) = ŷ|Y,S = s]

]
,

that we can write

P[mt(Z) = ŷ] =
∑

y
P
[
mt(Z) = ŷ|Y = y,S = s

]
· P
[
Y = y

∣∣S = s
]
,
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Impossibility theorems
or

P[mt(Z) = ŷ] =
∑

y
P
[
mt(Z) = ŷ|Y = y

]
· P
[
Y = y

∣∣S = s
]
,

almost surely. Furthermore, we can also write

P[mt(Z) = ŷ] =
∑

y
P
[
mt(Z) = ŷ|Y = y

]
· P
[
Y = y

]
,

so that, if we combine the two expressions, we get∑
y

P
[
mt(Z) = ŷ|Y = y

]
·
(
P
[
Y = y

∣∣S = s
]
− P

[
Y = y

])
= 0,

almost surely. And since we assumed that y was a binary variable,
P[Y = 0] = 1− P[Y = 1], as well as P[Y = 0|S = s] = 1− P[Y = 1|S = s], and
therefore

P
[
mt(Z) = ŷ|Y = 1

]
·
(
P
[
Y = 1

∣∣S = s
]
− P

[
Y = 1

])
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Impossibility theorems

or
−P
[
mt(Z) = ŷ|Y = 0

]
·
(
P
[
Y = 0

∣∣S = s
]
− P

[
Y = 0

])
can be written

P
[
mt(Z) = ŷ|Y = 0

]
·
(
P
[
Y = 1

∣∣S = s
]
− P

[
Y = 1

])
.

Thus, either P
[
Y = 1

∣∣S = s
]
− P

[
Y = 1

]
almost surely, or

P
[
mt(Z) = ŷ|Y = 0

]
= P

[
mt(Z) = ŷ|Y = 1

]
(or both).

Of course, the previous proposition holds only when y is a binary variable.
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Impossibility theorems

Proposition 3.12

Consider a classifier mt taking values in Y = {0, 1}. Suppose that mt satisfies
the sufficiency condition (3.42) and the separation property (3.32), with respect
to a sensitive attribute s, then necessarily either P[mt(Z) = 1|Y = 1] = 0 or
Y ⊥⊥ S or mt(Z) ⊥⊥ Y.

Suppose that mt satisfies the sufficiency condition (3.42) and the separation property
(3.32), respectively Y ⊥⊥ S | mt(Z) and mt(Z) ⊥⊥ S | Y. For all s ∈ S, we can write,
using Bayes formula

P[Y = 1|S = s,mt(Z) = 1] = P[mt(Z) = 1|Y = 1,S = s] · P[Y = 1|S = s]
P[mt(Z) = 1|S = s] ,
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Impossibility theorems

i.e.,

P[Y = 1|S = s,mt(Z) = 1] = P[mt(Z) = 1|Y = 1] · P[Y = 1|S = s]∑
y∈{0,1}

P[mt(Z) = 1|Y = y] · P[Y = 1|S = s]
,

that should not depend on s (from the sufficiency property). So a similar property
holds if S = s′. Observe further that P[mt(Z) = 1|Y = 1] is the true positive rate
(TPR) while P[mt(Z) = 1|Y = 0] is the false positive rate (TPR). Let
ps = P[Y = 1|S = s], so that

P[Y = 1|S = s,mt(Z) = 1] = TPR
ps · TPR + (1− ps) · FPR .
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Impossibility theorems

Suppose that Y and S are not independent (otherwise Y ⊥⊥ S as stated in the
proposition), i.e., there are s and s′ such that
ps = P[Y = 1|S = s] 6= P[Y = 1|S = s′] = ps′ . Hence, ps 6= ps′ , but at the same time

TPR
ps · TPR + (1− ps) · FPR = TPR

ps′ · TPR + (1− ps′) · FPR .

Supposes that TPR 6= 0 (otherwise TPR = P[mt(Z) = 1|Y = 1] = 0 as stated in the
proposition), then

(ps − ps′) · TPR = (ps − ps′) · FPR 6= 0,

and therefore mt(Z) ⊥⊥ Y.
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Numerical examples

Conditional distributions of scores on GermanCredit , logistic regression.
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Numerical examples

Conditional distributions of scores on GermanCredit , boosting model.
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Numerical examples

with sensitive without sensitive
GLM tree boosting bagging GLM tree boosting bagging

P[m(X) > t] 51.7% 28.0% 54.7% 61.7% 50.7% 28.0% 56.0% 60.7%
Predictive Rate Parity 0.992 1.190 0.992 1.050 0.957 1.190 1.041 1.037
Demographic Parity 0.998 1.091 1.159 1.027 1.213 1.091 1.112 1.208
FNR Parity 1.398 0.740 1.078 1.124 1.075 0.740 1.064 0.970
Proportional Parity 0.922 1.008 1.071 0.949 1.121 1.008 1.027 1.116
Equalized odds 0.816 1.069 0.947 0.888 0.956 1.069 0.953 1.031
Accuracy Parity 0.843 1.181 0.912 0.904 0.896 1.181 0.943 0.966
FPR Parity 1.247 0.683 1.470 0.855 2.004 0.683 0.962 1.069
NPV Parity 0.676 1.141 0.763 0.772 0.735 1.141 0.799 0.823
Specificity Parity 0.941 1.439 0.930 1.028 0.851 1.439 1.007 0.990
ROC AUC Parity 0.928 1.162 0.997 1.108 0.926 1.162 1.004 1.090
MCC Parity 0.604 2.013 0.744 0.851 0.639 2.013 0.884 0.930

Fairness metrics on GermanCredit , with threshold at 20%.
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Numerical examples

with sensitive without sensitive
GLM tree boosting bagging GLM tree boosting bagging

P[m(X) > t] 30.3% 26.0% 27.7% 25.7% 30.7% 26.0% 28.0% 27.0%
Predictive Rate Parity 1.030 1.179 1.110 1.182 1.034 1.179 1.111 1.200
Demographic Parity 1.090 1.062 1.074 1.069 1.108 1.062 1.044 1.019
FNR Parity 1.533 0.851 1.110 0.781 1.342 0.851 1.322 0.962
Proportional Parity 1.007 0.981 0.992 0.987 1.024 0.981 0.964 0.942
Equalized odds 0.925 1.032 0.982 1.041 0.944 1.032 0.955 1.008
Accuracy Parity 0.949 1.154 1.054 1.164 0.963 1.154 1.038 1.159
FPR Parity 1.118 0.703 0.820 0.653 1.118 0.703 0.784 0.641
NPV Parity 0.738 1.080 0.890 1.108 0.766 1.080 0.848 1.082
Specificity Parity 0.935 1.470 1.169 1.480 0.935 1.470 1.203 1.652
ROC AUC Parity 0.928 1.162 0.997 1.108 0.926 1.162 1.004 1.090
MCC Parity 0.745 1.817 1.105 1.754 0.779 1.817 1.056 2.055

Fairness metrics on GermanCredit , with threshold at 40%.
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Numerical examples

Conditional distributions of scores on FrenchMotor , from the logistic regression.
@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 240 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Numerical examples

Conditional distributions of scores on FrenchMotor , from a boosting classification.
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Several definitions of “fairness” or “non-discriminatory”

demographic parity → E[ Ŷ | S = A ] ?= E[ Ŷ | S = B ]
score ŷ

sensitive sensitive

equalized odds → E[ Ŷ | Y = y , S = A ] ?= E[ Ŷ | Y = y , S = B ], ∀y
score ŷ

outcome y

calibration → E[ Y | Ŷ = u , S = A ] ?= E[ Y | Ŷ = u , S = B ], ∀u
score ŷ

outcome y
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Isn’t it a problem to have several definitions?

From Feller et al. (2016),
• for White people , among those who did

not re-offend (y), 22% were wrongly
classified (ŷ),

• for Black people , among those who
did not re-offend , 42% were wrongly
classified ,

• Problem, since 42%� 22%

P[ Ŷ = high | Y = no , S = black ] = 42% ?= P[ Ŷ = high | Y = no , S = white ] = 22%,
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Isn’t it a problem to have several definitions?

From Dieterich et al. (2016),
• for White people , among those who were

classified as high risk (ŷ), 40% did not
re-offend (y),

• for Black people , among those who were
classified as high risk (ŷ), 35% did not
re-offend (y),

• No problem, since 35 ≈ 40%

P[ Y = no | Ŷ = high , S = black ] = 35% ?= P[ Y = no | Ŷ = high , S = white ] = 40%.
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Is it always possible to have a sensitive-free model (with respect to ...)?
For decisions (ŷ ∈ {0, 1}, e.g., “obtain a loan”),

demographic parity → P[ Ŷ = 1 | S = A ] ?= P[ Ŷ = 1 | S = B ]

decision ŷ

those decisions are usually based on scores, and thresholds

demographic parity → E[ m̂(X,S) > t | S = A ] ?= E[ m̂(X,S) > t | S = B ]
score m̂

One can achieve demographic parity, simply selecting different thresholds

demographic parity → E[ m̂(X,S) > tA | S = A ] ?= E[ m̂(X,S) > tB | S = B ]

(with that strategy, usually impossible to achieve equalized odds)
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Is it always possible to have a sensitive-free model (with respect to ...)?
For decisions (ŷ ∈ {0, 1}, e.g., “obtain a loan”), we considered

demographic parity → E[ Ŷ | S = A ] ?= E[ Ŷ | S = B ]

and we can consider the analogous for scores (possibly used to assess premiums),

demographic parity → E[ m̂(X,S) | S = A ] ?= E[ m̂(X,S) | S = B ]
score ŷ

• individual in group A
with a score ŷ(A) = 60%
corresponding to quantile α
(here 0.5)
• in group B , the same quan-

tile α
corresponds to ŷ(B) = 40%
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Is it always possible to have a sensitive-free model (with respect to ...)?
• To get a fair model (neutral with respect to s), consider an average between

the two models,

ŷ⋆ = P[S = A] · ŷ(A) + P[S = B] · ŷ(B)

score in group B with quantile αscore in group A with quantile α
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“In order to treat some persons equally, we must treat them differently”

• Supreme Court Justice Harry Blackmun stated, in 1978,
“In order to get beyond racism, we must first take account of race. There is no
other way. And in order to treat some persons equally, we must treat them
differently,” Knowlton (1978), cited in Lippert-Rasmussen (2020)
• In 2007, John G. Roberts of the U.S. Supreme Court submits
“The way to stop discrimination on the basis of race is to stop
discriminating on the basis of race,” Sabbagh (2007) and Turner (2015)

See philosophical discussions about affirmative action, e.g., Rubenfeld (1997);
Pojman (1998); Anderson (2004)
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“Neutral with respect to some sensitive attribute?”

What does “neutral with respect to s” really means ?

We have seen that accuracy was assessed with respect to data in the portfolio,

y = argmin
γ∈R

{ n∑
i=1

(
yi − γ

)2 } or E[Y] = argmin
γ∈R

{∑
y

(
y− γ

)2P[Y = y]
}

based on observations from the insurer’s portfolio. Technically, should we consider
• expected values / probabilities / independence properties based on P (portfolio)
• expected values / probabilities / independence properties based on Q (market)

(ongoing work Why portfolio-specific fairness should fail to extend market-wide:
Selection bias in insurance with M.P. Côté & O. Côté)

Should we ask for neutrality “in the portfolio” or for some “targeted population” ?
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Discrimination in the data, or in the model?
On a French motor dataset, average claim frequencies are
8.94% (men) and 8.20% (women).
Consider some logistic regression to estimate annual claim
frequency, on k explanatory variables excluding gender.

men women
k = 0 8.68% 8.68%
k = 2 8.85% 8.37%
k = 8 8.87% 8.33%
k = 15 8.94% 8.20%
empirical 8.94% 8.20%

Models simply tend to reproduce what was observed in
the data (see “is-ought” problem, in Hume (1739)).
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Discrimination in the data, or in the model?
David Hume’s “is-ought” problem, in Hume (1739)

what is observed, what is statistically normal

π(x) = EP[Y|X = x] where P is the historical probability

6= what should be, what we expect from an ethical norm

π(x) = EP⋆ [Y|X = x] where P⋆ is some “fair” probability
“keep in mind that machine learning can only be used to memorize patterns that
are present in your training data. You can only recognize what you’ve seen before.
Using machine learning trained on past data to predict the future is making the
assumption that the future will behave like the past,” Chollet (2021)

Classical clausula rebus sic stantibus (”with things thus standing”) in predictive
modeling (statistics and machine learning)
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Discrimination in the data, or in the model?
• change the training data to de-bias (through weights) : pre-processing

if we can draw i.i.d. copies of a random variable Xi’s, under probability P, then

1
n

n∑
i=1

h(xi)→ EP[h(X)], as n→∞ “law of large numbers”

but if we want to reach EQ[h(X)], consider

1
n

n∑
i=1

dQ(xi)
dP(xi)︸ ︷︷ ︸
weight ωi

h(xi)→ EQ[h(X)], as n→∞.

• keep the biases data, but distort the outcome : post-processing
• add a fairness constraint (penalty) in the optimization problem : in-processing

as classical adversarial techniques, Grari et al. (2021)
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Discrimination, with different perspectives

• Regulatory perspective, “group fairness” (discussed previously)
• Policyholders perspective, “individual fairness”

A decision satisfies individual fairness if “had the protected attributes (e.g., race) of
the individual been different, other things being equal, the decision would have
remained the same.”
• also named “counterfactual fairness” in Kusner et al. (2017), and should be

related to classical causal inference problem, (conditional) average treatment
effect (the “treatement” being the sensitive attribute),
“other things being equal” ?ceteris paribus ? See “revolving variable” in
Kilbertus et al. (2017). Consider a men (s = A) with height x = 6′3 (or 190 cm).
If that person had been a women (s = B) would she have height x = 6′3 ?
(hint: no, consider similar quantiles, as discussed previously, see Charpentier et al.
(2023a))
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What if we neither observe nor collect sensitive personal information (s) ?
September 27, 2023, the Colorado Division of Insurance exposed a new proposed
regulation entitled Concerning Quantitative Testing of External Consumer Data and
Information Sources, Algorithms, and Predictive Models Used for Life Insurance
Underwriting for Unfairly Discriminatory Outcomes. Use of BIFSG (Bayesian
Improved First Name Surname and Geocoding), from Elliott et al. (2009).
Consider 12 people living near Atlanta, GA (Fulton & Gwinnett counties),

1 last first county city zipcode whi bla his asi
2 2 RADLEY OLIVIA Fulton Fairburn 30213 14 83 1 0
3 3 BOORSE KEISHA Fulton Atlanta 30331 97 0 3 0
4 4 MAZ SAVANNAH Gwinnett Norcross 30093 5 6 76 13
5 5 GAULE NATASHIA Gwinnett Snellville 30078 67 19 14 0
6 6 MCMELLEN ISMAEL Gwinnett Lilburn 30047 73 15 6 3
7 7 WASHINGTON BRYN Gwinnett Norcross 30093 0 95 3 0

(ongoing Predicting Unobserved Multi-Class sensitive Attributes : Enhancing
Calibration with Nested Dichotomies for Fairness with A.M. Patrón Piñerez, A.
Fernandes Machado, & E. Gallic)
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Can we use aggregate data related to sensitive information (s) ?

from Bickel et al. (1975), discussed as an illustration of ”Simpson’s paradox”
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Can we use aggregate data related to sensitive information (s) ?

Total Men Women Proportions
Total 5233/12763 ∼ 41% 3714/8442 ∼ 44% 1512/4321 ∼ 35% 66%-34%
Top 6 1745/4526 ∼ 39% 1198/2691 ∼ 45% 557/1835 ∼ 30% 59%-41%

A 597/933 ∼ 64% 512/825 ∼ 62% 89/108 ∼ 82% 88%-12%
B 369/585 ∼ 63% 353/560 ∼ 63% 17/ 25 ∼ 68% 96%- 4%
C 321/918 ∼ 35% 120/325 ∼ 37% 202/593 ∼ 34% 35%-65%
D 269/792 ∼ 34% 138/417 ∼ 33% 131/375 ∼ 35% 53%-47%
E 146/584 ∼ 25% 53/191 ∼ 28% 94/393 ∼ 24% 33%-67%
F 43/714 ∼ 6% 22/373 ∼ 6% 24/341 ∼ 7% 52%-48%

Data from Bickel et al. (1975). Formalized as follows: S is the (binary) genre, Ŷ the
admission decision, and X the program (category),
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Can we use aggregate data related to sensitive information (s) ?

P[ Ŷ = yes | S = men ] ≥ P[ Ŷ = yes | S = women ]

overall admission

sensitivesensitive

P[ Ŷ = yes | X = x , S = men ] ≤ P[ Ŷ = yes | X = x , S = women ], ∀x.
conditional on program

“the bias in the aggregated data stems not from any pattern of discrimination on
the part of admissions committees, which seems quite fair on the whole, but
apparently from prior screening at earlier levels of the educational system. Women
are shunted by their socialization and education toward fields of graduate study
that are generally more crowded, less productive of completed degrees, and less
well funded, and that frequently offer poorer professional employment prospects,”
Bickel et al. (1975)
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Disentangling correlations

See some diverse areas of England face car insurance ’eth-
nicity penalty’ (remove from the BBC website since)

y, x and s can easily be correlated variables
spurious correlations problem ?
Need to use causal models to avoid indirect discrimination
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Multiple sensitive attributes, “robbing Peter to pay Paul”?

E[ m̂(X,S1,S2) | S1 = A ] 6= E[ m̂(X,S1,S2) | S1 = B ]
sensitive attribute 1

E[ m̂(X,S1,S2) | S2 = C ] ≈ E[ m̂(X,S1,S2) | S2 = D ]
sensitive attribute 2

Distort model m̂ to achieve fairness with respect to S1 −→ model m̃

E[ m̃(X,S1,S2) | S1 = A ] = E[ m̃(X,S1,S2) | S1 = B ]
sensitive attribute 1

E[ m̃(X,S1,S2) | S2 = C ] 6= E[ m̃(X,S1,S2) | S2 = D ]
sensitive attribute 2
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Mitigation, In-Processing

In a linear regression problem, y = Xβ + ε. Zafar et al. (2017) suggested

β⋆ = min
β

{
E
[
‖y− Xβ‖2

]}
s.t.

∣∣Cov[Xβ,S]
∣∣ ≤ c (∈ R+).

m̂(x, s), aware m̂(x), unaware
← less fair more fair → ← less fair more fair →

β̂0 (Intercept) -2.55 -2.29 -1.97 -1.51 -1.03 -2.14 -1.98 -1.78 -1.63
β̂1 (x1) 0.88 0.88 0.85 0.77 0.62 1.01 0.84 0.57 0.26
β̂2 (x2) 0.37 0.37 0.35 0.32 0.25 0.37 0.35 0.31 0.24
β̂3 (x3) 0.02 0.02 0.02 0.02 0.03 0.15 0.02 -0.15 -0.29
β̂B (1B) 0.82 0.44 -0.03 -0.70 -1.31 - - - -
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Mitigation, In-Processing

m̂(x, s), aware m̂(x), unaware
← less fair more fair → ← less fair more fair →

Betty 0.27 0.25 0.22 0.17 0.14 0.20 0.22 0.24 0.24
Brienne 0.74 0.71 0.66 0.54 0.40 0.70 0.66 0.55 0.38
Beatrix 0.95 0.95 0.93 0.87 0.73 0.96 0.93 0.82 0.55
Alex 0.14 0.17 0.22 0.29 0.37 0.20 0.22 0.24 0.24
Ahmad 0.55 0.61 0.66 0.70 0.71 0.70 0.66 0.55 0.38
Anthony 0.90 0.92 0.93 0.93 0.91 0.96 0.93 0.82 0.55
E[m̂(xi, si)|S = A] 0.23 0.26 0.31 0.36 0.42 0.25 0.30 0.37 0.41
E[m̂(xi, si)|S = B] 0.67 0.65 0.61 0.53 0.42 0.64 0.61 0.54 0.41
(ratio) ×2.97 ×2.49 ×2.01 ×1.46 ×1.00 ×2.53 ×2.02 ×1.48 ×1.00
AUC 0.86 0.86 0.85 0.82 0.74 0.86 0.85 0.82 0.70
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Mitigation, In-Processing

AUC of m̂
β̂λ

and evolution of m̂
β̂λ

(xi, si) (with a logistic regression)
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Mitigation, In-Processing

AUC of m̂
β̂λ

and evolution of m̂
β̂λ

(xi) (with a logistic regression)

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 263 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Mitigation, In-Processing

Optimal transport between distributions of m̂
β̂λ

(xi, si)’s from individuals in group A and
in B, for different values of λ (low value on the left-hand side and high value on the
right-hand side), associated with a demographic parity penalty criteria.
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Mitigation, Post-Processing

Definition 3.48: Wasserstein W2 Barycenter, Agueh and Carlier (2011)

Q = argmin
Q

{ k∑
i=1

ωiW2
(
Q,Pi

)2}
,

For univariate distributions, the optimal transport T ⋆ is the monotone transformation.

T ⋆ : x0 7→ x1 = F−1
1 ◦ F0(x0).

Given a reference measure, say P1, it is possible to write the barycenter as the
”average push-forward” transformation of P1: if Pi = T 1→i

# P1 (with the convention
that T 1→1

# is the identity),
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Mitigation, Post-Processing

Proposition 3.13: Wasserstein W2 Barycenter,

Q =
( k∑

i=1
ωiT 1→i

)
#
P1.

Computation of barycenters can be computationnaly difficult, Altschuler and
Boix-Adsera (2021)

For univariate distributions, there is a simple expression, T 1→i is simply a
rearrangement, defined as T 1→i = F−1

i ◦ F1, where Fi(t) = Pi((−∞, t]) and F−1
i is its

generalized inverse
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Mitigation, Post-Processing
Proposition 3.14: Wasserstein W2 Barycenter, univariate distributions

T 1→i is simply a rearrangement, defined as T 1→i = F−1
i ◦ F1, where Fi(t) =

Pi((−∞, t]), and

Q =
( n∑

i=1
kωiT 1→i

)
#
P1.

Proposition 3.15: Wasserstein W2 Barycenter, univariate distributions

Given two scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is{
m⋆(x, s = A) = P[S = A] ·m(x, s = A) + P[S = B] · F−1

B ◦ FA
(
m(x, s = A)

)
m⋆(x, s = B) = P[S = A] · F−1

A ◦ FB
(
m(x, s = B)

)
+ P[S = B] ·m(x, s = B).
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Application to FrenchMotor
If the two models are balanced, m⋆ is also balanced.
Annual claim occurrence (motor insurance, Charpentier et al. (2023b))
Three models (plain GLM, GBM, Random Forest)
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Application to FrenchMotor

Predictions are different for men (= A) and women (S = B)

since W2 6= 0 consider post processing mitigation
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Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

m⋆(x, s = A) = P[S = A] ·m(x, s = A) + P[S = B] · F−1
B ◦ FA

(
m(x, s = A)

)
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Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

m⋆(x, s = B) = P[S = A] · F−1
A ◦ FB

(
m(x, s = B)

)
+ P[S = B] ·m(x, s = B)
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Application to FrenchMotor

We can plot
{
(m(xi, A),m⋆(xi, A)

}
and

{
(m(xi, B),m⋆(xi, B)

}
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Application to FrenchMotor

Numerical values, for initial occurence probability of 5%, 10% and 20%, we have

A (men) B (women)
×0.94 GLM GBM RF ×1.11 GLM GBM RF

m(x) = 5% 4.73% 4.94% 4.80% 4.42% 5.56% 5.16% 5.25% 6.15%
m(x) = 10% 9.46% 9.83% 9.66% 8.92% 11.12% 10.38% 10.49% 12.80%
m(x) = 20% 18.91% 19.50% 18.68% 18.26% 22.25% 20.77% 21.63% 21.12%
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Application to FrenchMotor

We can do the same for discrimination against ”old” drivers.

A (younger < 65) B (old > 65)
×1.01 GLM GBM RF ×0.94 GLM GBM RF

m(x) = 5% 5.05% 5.17% 5.10% 5.27% 4.71% 3.84% 3.84% 3.96%
m(x) = 10% 10.09% 10.37% 10.16% 11.00% 9.42% 7.81% 9.10% 6.88%
m(x) = 20% 20.19% 19.98% 19.65% 21.26% 18.85% 19.78% 23.79% 12.54%
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Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

m⋆(x, s = A) = P[S = A] ·m(x, s = A) + P[S = B] · F−1
B ◦ FA

(
m(x, s = A)

)

@freakonometrics freakonometrics  freakonometrics.hypotheses.org – Arthur Charpentier, April 2025 (Bermuda Monetary Authority) BY-NC 4.0 275 / 277

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/
https://www.creativecommons.org/licenses/by-nc/4.0/deed.en


Application to FrenchMotor

Given scores m(x, s = A) and m(x, s = B), the “fair barycenter score” is

m⋆(x, s = B) = P[S = A] · F−1
A ◦ FB

(
m(x, s = B)

)
+ P[S = B] ·m(x, s = B)
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Application to FrenchMotor

We can plot
{
(m(xi, A),m⋆(xi, A)

}
and

{
(m(xi, B),m⋆(xi, B)

}
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