An introduction to Bayesian (thinking and) modeling

Arthur Charpentier ${ }^{1}$

${ }^{1}$ Université du Québec à Montréal
November 2022

Agenda

Uncertainty, insurance and economics
Probabilities and random variables
Motivation with an historical perspective
Beliefs, subjective probabilities and predictive markets
Bayesianism, statistics and calculus (1)
Bayesianism, statistics and calculus (2)
Bayes and Markov property
Bayesianism and statistical learning
Bayesianism, learning and neuroscience

Preliminaries

Keynote in 2014 at the Cass Business School (now Bayes Business School)...

Getting into Bayesian Wizardry... (with the eyes of a muggle actuary) Arthur Charpentier charpentier.arthur@uqam.ca http://freakonometrics.hypotheses.org/ \mathbf{R} in Insurance, London, July 2014

(5) freakonometrics

O freakonometrics.hypotheses.org

A little bit of history

arthur bailey

After the Second World War the first public challenge to the anti-Bayesia tatus quo came not foom the military or university matrematicians and stal

 ending large sums of money to local poditicians. So ostracized was the famil. hat even Ardhur's schoolmates stopped inviting him and his sister to prr
ees Turring his back on the New England establishment, Bailey enrolled he University of Michigan in Ann Artoor, There be studiced statistics in the mathemaths departmen's acctuarial program, earned a bacheloror of science egree in 192 s , and met his wif, Helen, who becarne an actuary for John wock Mutual Life before their children were born.'
Bailey's frrst job was, he liked to sy. "in banannss," than is, in the statisicics epartment of the United Fruit Company beadquarters in Boson. When the department was eliminated during the Depression, Railey woond up driving a fruit truck and chasing escaped tarastulas down Boston streets. He was
 New York City. There be was in charge of setting premium rates to core isks inmoking atuonnobiles, aircraff, manufacturing, burglary, and theff for he American Mutual Alliance, a consortium of mutual insurance comppanies
Preferring church and communtry coonections to the fair-weathet Preferring church and community coonections to the fair-weather
friends of his yourh, Balley hid his growing professional success by living puiety in unpretentious New York suburts: He relaxed by grrdening, hiking

92 The Clorotous Revival
with his fuur children, and annolating a copy of Gry's Batany wìh the loci tions of his fivarite wild orthids His motto was "Sorne people live in the past, some people live in the fuurure, bur the wissst ones live in the present" Setuing into his new job, Bailey was horrified to see "hard shelled underwriters" using the semi-empirial. "sledge hammer" Bayesian tech-
niques developedi in 1988 for workers' ompenarion insurance ${ }^{\text {L }}$ Untwestity niques developed in 1998 for workers compensation insurance Unlversty.
saasticlians had long since virtually outawed tlose methods, bui as pactical business people, actuaries refised to disard their pricx knowledge and continued to modify beir old data with new. Thus they based next year's premiums on this y yar's suteses a refined and modififd with new claims information. They did not 2 zk what the new rates should be. Instead, they asked,
"How much stould the present rates be changedp" A Baycsian estimating how much ice cream somecone would eat in the coming year, for example. Would cormbine data ahout the individual's recent ice cos
As a modern statistial sophisticate, Bailey was sandalized. His profese sors, influenced by Ronalk Fisher and Jerry Nefruan, had tuyght him that polite actuary" Statisticians should have no prict opinions about their next experiments or observacions and shoold employ only directly rekvant observalons whike relecting peripheral, nonstatastscal information. No standard previcus races. for example) of for correlating It with additional staistical information.
Bailey spent his frst year in New York trying to prove to himself that ail of the fancy actuarblal [Byyesian] procedures of bec casuatry yusiness were mathematically unsound After 2year or intense menul srugge, how dow Even preferred it to thic elegance of frequentism. He positively libed formulae hat described "actual data ... I reallzed that the hard shelled underwitiers were recognizing cerain facts ofl life neggected by the statistical thearisss. He wanted to give more weight to a large volume of data than to the fre He condududed that only a "suicidal"- artuary would use Fister's method of maximum likelihood, which assigned a zero probability to nonevents." Since many businesses fle no insurance claims arall, Fisher's method would produce premiums coo low to cover fuurure loses.

Ahandoning his initial suspricions of Bayes' rule, Buley spent the Seoond

McGrayne (2011), that mentioned Bailey (1950) (but not Whitney (1918))

Uncertainty, insurance and economics III

for the policyholder, $\pi \preceq X$ (reservation price $\geq \pi$)
formally, \preceq is characterized by some utility function u and belifs \mathbb{Q}_{p}
for the insurer, $X+\sum_{i=1}^{n} X_{i} \leq \pi+\sum_{i=1}^{n} \pi_{i}$
formally, that inequality holds on average, or on probability
based on some beliefs \mathbb{Q}_{i}, e.g. $\mathbb{Q}_{i}\left(X+\sum_{i=1}^{n} X_{i} \leq \pi+\sum_{i=1}^{n} \pi_{i}\right)=90 \%$

Probabilities and random variables I

"Probability is the most important concept in modern science, especially as nobody has the slightest notion what it means ", Russell (1929), quoted in Bell (1945)
Probabily and statistics rely on the concept of probability spaces, $(\Omega, \mathcal{F}, \mathbb{P})$,

- Ω (or S in some textbooks) is the sample space, the set of all possible outcomes
- \mathcal{F} a set of events on $\Omega, A \in \mathcal{F}$ is an "event"
- \mathbb{P} is a function $\mathcal{F} \rightarrow[0,1]$ satisfying some properties
e.g. $\mathbb{P}(\Omega)=1$; for disjoint events, an additiviy property: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$; aa subset property, if $A \subset B, \mathbb{P}(A) \leq \mathbb{P}(B)$, as inCardano (1564) or Bernoulli (1713), or for multiple disjoint events as in Kolmogorov (1933), $A_{1}, \cdots, A_{n}, \cdots$,

$$
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{n} \cup \cdots\right)=\mathbb{P}\left(A_{1}\right)+\cdots+\mathbb{P}\left(A_{n}\right)+\cdots
$$

inspired by Lebesgue (1918), etc. In this (mathematical) framework, we can finally define random variables

- X is a function $\Omega \rightarrow \mathbb{R}$ or more generally $\Omega \rightarrow \mathcal{X}$.

Probabilities and random variables II

We have formal objects, mathematically well defined, but in a context of modeling does one have a univocal sense of interpretation of the result of the calculation? cf "Is the probability inherent to the event, or to our judgment? " Martin (2009)

There are many philosophical paradoxes when we talk about probability (and chance), e.g. I throw a coin, which falls back, out of my sight

- $\mathbb{P}(X=$ heads $)=\mathbb{P}(X=$ tails $)=1 / 2$?
- $\mathbb{P}(X=$ heads $)=1$ or $\mathbb{P}(X=$ tails $)=1$?

Or in a legal context, Look, the guy either did it or he didn't do it. If he did then he is 100% guilty and if he didn't then he is 0% guilty; so giving the chances of guilt as a probability somewhere in between makes no sense and has no place in the law, quoted in Fenton and Neil (2018).

See also Hájek (2002) on the philosophical approach of "probability".

Probabilities and random variables III

As said by Martin (2009),

- "To attribute an objective meaning to the probability that an event will occur is to admit that this event is not necessary, in other words, that it is not completely determined,"
- "If we suppose an integral and universal determinism, the probability can only receive a subjective meaning, and the probability depends on our knowledge and our ignorance"
Too much importance is attributed to this supposedly objective probability \mathbb{P}.
The (mathematical) probability was not born as a well defined concept within the framework of a mathematical formalism mathematical formalism, but as a tool to quantify and control situations of uncertainty, applied to the measurement of the probability of life mortality tables (for the calculation of life annuities), the calculation of the risks of error (in of error (in measurement operations), the study of the probability of testimonies and judgments, etc.

Probabilities and random variables IV

"The theory of probabilities is basically only common sense reduced to calculation: it makes appreciate with exactitude, what the just minds feel by a kind of instinct, without them often being able to realize it", Laplace (1774)
Cournot (1843) thus distinguished a objective meaning of the probability (as measure of the physical possibility of realization of a random event) and a subjective meaning (the probability being a judgement made on an event, this judgement being linked to the ignorance of judgment being linked to the ignorance of the conditions of the realization of the event).

Note: a probability not defined in terms of frequency can receive an objective meaning: :
There is no need to repeat throws of dice to affirm that (with a perfectly balanced die) the probability of obtaining 6 at the time of a throw is equal to $1 / 6$ (by symmetry of the cube)

Probabilities and random variables V

But very often, the "physical" probabilities receive an objective value only posterior on the basis of the law of large numbers, the empirical frequency converge towards the probability (frequentist theory of probabilities)

(in some textbooks, there is a confusion between "probability" and "frequency")

$$
\text { Law of large numbers }: \frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{\text { a.s. }} \mathbb{E}(X) \text { as } n \rightarrow \infty \text { or } \frac{1}{n} \sum_{i=1}^{n} X_{i} \approx \mathbb{E}(X)
$$

Probabilities and random variables VI

But this approach is unable to make sense of the probability of a "(single singular event", as noted by von Mises $(1928,1939)$.
"When we speak of the 'probability of death', the exact meaning of this expression can be defined in the following way only. We must not think of an individual, but of a certain class as a whole, e.g., 'all insured men forty-one years old living in a given country and not engaged in certain dangerous occupations'. A probability of death is attached to the class of men or to another class that can be defined in a similar way. We can say nothing about the probability of death of an individual even if we know his condition of life and health in detail. The phrase 'probability of death', when it refers to a single person, has no meaning for us at all."

Probabilities and random variables VII

For Popper (1959), probabilities correspond to physical dispositions ("propensions") inherent to the system. This propensity has a physical existence, but it is not directly observable.

The frequencies of occurrence are manifestations of these propensities. In the contrary case, it is nevertheless possible to estimate the probability of realization of the singular event, by considering this one as measured not by an "actual" frequency, but by a "potential" (or "virtual") frequency.

Finally, when an individual makes a judgment, the degree of credibility or belief that he or she gives it depends on the knowledge that the individual has (Pettigrew (2016)). depends on the knowledge that this individual has (Pettigrew (2016)). This degree of belief will be associated with a probability, which will then only have a subjective meaning. "The probability of a diagnosis, a testimony, etc., does not measure the conformity of this judgment to reality, but the degree to which one can hypothesize this conformity. This conformity can be hypothesized", Martin (2009).

Probabilities and random variables VIII

This subjectivity raises concerns about their use, especially in criminal matters, "Sometimes the 'balance of probability' standard is expressed mathematically as ' $50+\%$ probability', but this can carry with it a danger of pseudo-mathematics, as the argument in this case demonstrated. When judging whether a case for believing that an event was caused in a particular way is stronger than the case for not so believing, the process is not scientific (although it may obviously include evaluation of scientific evidence) and to express the probability of some event having happened in percentage terms is illusory, Nulty \& Ors v Milton Keynes Borough Council cited in Hunt and Mostyn (2020).

See also Jonakait (1983), Saini (2011) or Fenton et al. (2016).

Probability ？Probability to win an election ？

＠PedderSophie（The Economist），vs＠HuffPost or＠tsrandall（Bloomberg）

How to interpret this＂probability of winning＂？
How to interpret a＂confidence interval＂ on that probability？（＠AdamSinger）


```
Huffington Post
\(98.1 \%\) chance of winning the presidency elections．huffingtonpost．com／2016／forecast／．．．
\(\checkmark\) Obersatury anzalyen
\(2.655 \quad 2.120\)
```

Tom Randall © ©tsrandall－ 16 oct． 2016 In＠FiveThirtyEIght＇s model，＠HHIlaryClinton now has as good a chance of winning Texas as errealDonaldTrump has of winning the presidency．

> (8) 86.6%
> 13.4 霫相

Adam Singer ©
Adam Singer
En réponse à＠BagholderQuotes
no \％margin of error eh？
Trodulte le Tweet
3：O1 PM－ 9 nov． 2018 depuis Milan，Lombardie ．Twitter for Android

Probability ？Probability of precipitation ？I

How to interpret the＇P．o．P．＇（＂Probability of Precipitation＂）on weather websites ？

		$\underset{150107}{\text { ven．}}$ Ensoleille	sam． 16／07 Ensoleillé	$\underset{\substack{17 / 107 \\ \text { Enspolif avec } \\ \text { Bnasgeg } \\ \text { nuageux }}}{\cos }$	lun． 18／07 Ensolenlli		mer． 2007 Risque diaverse
	近	家	保	得	OY	该	健
	31°	27°	28°	30°	35°	38°	28°
memem	30	26	27	28	32	35	28
netr	16°	15°	15°	18°	22°	21°	19°
FDr	20：	0 ＊	0＊	20 ＊	0 ＊	10：	40＊
vems	19 м．a	13 NeE	$15 \mathrm{ne}$. ．	17 NeE	15e	20 E	19 s．a．
fatem	28	19	22	25	23	30	29
Ened．（H）	11n	15n	14n	12n	15 ${ }^{\text {n }}$	12n	12n
Pume	－	－	－	－	－	$\sim 1 \mathrm{~mm}$	$\sim 1 \mathrm{~mm}$

	$\underset{\text { 14/07 }}{\text { jeu. }}$	ven． 15／07	sam． 16／07	dim． 17／07	$\underset{\substack{\text { li/i/7 }}}{ }$	mar． 19／07	mer． 2007
	Nuageux avec dispersés	Genéralement ensoleillé	Ciel varable	Possibilite dorages	$\begin{aligned} & \text { Risque } \\ & \text { daverses } \end{aligned}$	$\begin{gathered} \text { Risque } \\ \text { d'averses } \end{gathered}$	Nuageux avec éclaircies
	3	車	宅	嵐	䢒。	速	耍
	24°	26°	27°	28°	28°	28°	29°
ntio	27	29	31	33	35	34	35
not	15°	16°	19°	20°	20°	22°	21°
por	40＊	10 \％	20 \％	40 \％	40\％	40＊	30%
vemats	15 n ．	15a	$19 \mathrm{s.o}$ ．	20 s －a．	60.	28 s －o．	26 s .0.
Retase	23	23	29	30	9	42	39
Enas（（n）	3 n	13n	9 h	4 h	4h	6 h	3 n
$\underbrace{\substack{\text { ath }}}_{\text {mum }}$	$<1 \mathrm{~mm}$	－	－	$\sim 1 \mathrm{~mm}$	$<1 \mathrm{~mm}$	$\sim 5 \mathrm{~mm}$	$\sim 5 \mathrm{~mm}$

	$\begin{gathered} \text { jeu. } \\ \substack{14 / 47 \\ \text { Pluie }} \end{gathered}$		$\begin{gathered} \text { sam. } \\ \begin{array}{c} \text { siflor } \\ \text { ciel varoble } \end{array} \end{gathered}$	dim． $17 / 07$ Nuggeux	$\underset{\substack{\text { Ensolelle wece } \\ \text { passoges } \\ \text { nusgelix }}}{\text { Iun. }}$	$\begin{gathered} \text { mar. } \\ \text { Bnsor } \\ \text { Ensolele } \end{gathered}$	mer． 2007 Ensolelille
	$\begin{array}{r} 8 \\ 8^{\circ} \end{array}$	6°		9°		17°	$\begin{aligned} & 17^{\circ} \\ & 1 \end{aligned}$
mesate ${ }^{\text {¢ }}$	8	6	9	9	11	17	17
mint	3°	$1{ }^{\circ}$	4°	4°	6°	10°	$7{ }^{\circ}$
P．0．	$100=$	90 ＊	$20=$	30 ：	10：	0＊	0\％
（ mmom	11 n	6 n－e．	5 E．	$5 \mathrm{s.e}$ ．	3 s	5 s－E．	6 E
（matem）	17	8	7	8	4	7	9
Enolol．an）	1h	0n	5 h	On	6 h	10h	10h
${ }_{\text {Puen }}^{\text {2un }}$	$\begin{array}{r} 25- \\ 35 \mathrm{~mm} \end{array}$	5－10 mm	－	~ 15 mm	－	－	－

＂Out of all the times you said there was a 40 percent chance of rain，how often did rain actually occur？If，over the long run，it really did rain about 40 percent of the time，that means your forecasts were well calibrated，Silver（2012）
Murphy and Epstein（1967），Roberts（1968）
Gneiting and Raftery（2005）on ensemble methods for weather forecasting．

Probability ? Probability of precipitation ? II

More generally, we can think of the "probabilities" mentioned by the IPCC, Mastrandrea et al. (2010) discussed in Stoerk et al. (2020) or Kause et al. (2022)
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { High agreement } \\ \text { Limited evidence }\end{array} & \begin{array}{c}\text { High agreement } \\ \text { Medium evidence }\end{array} & \begin{array}{c}\text { High agreement } \\ \text { Robust evidence }\end{array} \\ \hline & \begin{array}{c}\text { Medium agreement } \\ \text { Limited evidence }\end{array} & \begin{array}{c}\text { Medium agreement } \\ \text { Medium evidence }\end{array}\end{array} \begin{array}{c}\text { Medium agreement } \\ \text { Robust evidence }\end{array}\right]$

(source Vogel et al. (2022))

Probability ? Probability of precipitation ? III

Note: "Cromwell's rule": one should not give a probability of 1 to an event that cannot logically be shown to be true, and one should never give a probability of 0 to an event unless it can logically be shown to be false,

Lindley (2013), Barclay et al. (1977) et Pherson and Pherson (2012).

Probability ? Probability of precipitation ? IV

See also @zonination on "probability perceptions"

Perceptions of Probability

Bayesian statistics ?

- Bayes formula (the "inverse problem"),
Bayes (1763), Laplace (1774)

Given two events A and B such that $\mathbb{P}(B) \neq 0$,

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
$$

"If a person has an expectation depending on the happening of an event, the probability of the event is [in the ratio] to the probability of its failure as his loss if it fails [is in the ratio] to his gain if it happens ", Proposition 2, Bayes (1763)
"The probability of any event is the ratio between the value at which an expectation depending on the happening of the event ought to be computed, and the chance of the thing expected upon its happening ", Bayes (1763)

Bayesian statistics ?

- Bayes formula (the "inverse problem"),
Bayes (1763), Laplace (1774)

Given two events A and B such that $\mathbb{P}(B) \neq 0$,

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
$$

- subjective probabilities,

De Finetti (1937), Anscombe et al. (1963), Kahneman and Tversky (1972) Savage (1972), Jeffrey (2004)

- Non-frequentist approach of probablities, Neyman (1977), Bayarri and Berger (2004)
- Credibility and "experience rating" Whitney (1918), Longley-Cook (1962), Bühlmann (1967), Klugman (1991)

Bayesian statistics ?

- Bayes formula (the "inverse problem"), Bayes (1763), Laplace (1774)
Given two events A and B such that $\mathbb{P}(B) \neq 0$,

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
$$

- An inverse problem (we try to determine the causes of a phenomenon of a phenomenon from the experimental observation of its effects)
- An update of beliefs (from a prior distribution $\mathbb{P}(A)$ to a posterior distribution $\mathbb{P}(A \mid B)$)

Bayesian statistics ?

A person coughs (event B). Which hypothesis is the most credible? (from Dehaene (2012))

$$
\left\{\begin{array}{l}
A_{1}: \text { she has lung cancer } \\
A_{2}: \text { she has gastroenteritis } \\
A_{3}: \text { she has the flu }
\end{array}\right.
$$

With Bayes' rule $\mathbb{P}[$ disease \mid symptom $] \propto \mathbb{P}[$ symptom \mid disease $] \cdot \mathbb{P}[$ disease $]$

$$
\left\{\begin{array}{l}
\left.A_{1}: \mathbb{P}[\text { disease }] \approx 0 \text { (even if } \mathbb{P}[\text { symptom } \mid \text { disease }] \approx 1\right) \\
\left.A_{2}: \mathbb{P}[\text { symptom } \mid \text { disease }] \approx 0 \text { (even if } \mathbb{P}[\text { symptom } \mid \text { disease }] \text { high }\right) \\
A_{3}: \text { two reasonable probabilities }
\end{array}\right.
$$

The practice of conditional probabilities

"Monty Hall" problem

(from Let's make a deal)

$$
\begin{aligned}
& \mathbb{P}(\text { treasure behind the door }) \\
= & \frac{1}{3}
\end{aligned}
$$

The practice of conditional probabilities

"Monty Hall" problem

(from Let's make a deal)

$$
\begin{aligned}
& \mathbb{P}(\text { treasure behind the door }) \\
= & \frac{1}{3}
\end{aligned}
$$

The practice of conditional probabilities

"Monty Hall" problem (from Let's make a deal)

- strategy 1: always switch the door
- strategy 2 : never switch the door

$$
\begin{aligned}
& \mathbb{P}(\text { strategy } 2 \text { winning }) \\
&= \mathbb{P}(\text { treasure behind the door choisie initialement }) \\
&= \frac{1}{3} \\
& \text { (making the goat appear behind the third door does not bring } \\
& \text { no information on what's behind the first door) }
\end{aligned}
$$

The practice of conditional probabilities

"Monty Hall" problem (from Let's make a deal)

- strategy 1: always switch the door
- strategy 2 : never switch the door

$$
\begin{aligned}
& \mathbb{P}(\text { strategy } 1 \text { winning }) \\
= & \mathbb{P}(\text { treasure behind the other door }) \\
= & \mathbb{P}(\text { treasure behind the other door } \mid \text { correct }) \cdot \mathbb{P}(\text { correct }) \\
+ & \mathbb{P}(\text { treasure behind the other door } \mid \text { false }) \cdot \mathbb{P}(\text { false }) \\
= & 0 \cdot \frac{1}{3}+1 \cdot \frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

Practice of Bayesian Statistics

"Do doctors understand test results? ", Kremer (2014):
1 percent of adults have cancer. The vast majority of these cancers (90 percent) can be detected by a test. There is a 9 percent chance that the test will be positive in a person who does not have cancer. If the test is positive, what is the likelihood that the person actually has cancer?
A) 9 out of 10
B) 8 out of 10
C) 1 out of 2
D) 1 out of 10
E) 1 out of 100

Practice of Bayesian Statistics

"Do doctors understand test results? ", Kremer (2014):
1 percent of adults have cancer. The vast majority of these cancers (90 percent) can be detected by a test. There is a 9 percent chance that the test will be positive in a person who does not have cancer. If the test is positive, what is the likelihood that the person actually has cancer?
A) 9 out of 10 (chosen by 50% gynecologists)
B) out of 10
C) 1 out of 2
D) 1 out of 10
E) 1 out of 100

Practice of Bayesian Statistics

1 percent of adults have cancer. The vast majority of these cancers (90 percent) can be detected by a test. There is a 9 percent chance that the test will be positive in a person who does not have cancer. If the test is positive, what is the likelihood that the person actually has cancer?

Answer: when formalizing

$$
\left\{\begin{array}{l}
\mathbb{P}[\text { cancer }]=1 \% \\
\mathbb{P}[\text { test positive } \mid \text { cancer }]=90 \% \\
\mathbb{P}[\text { test positive } \mid \text { no cancer }]=9 \%
\end{array}\right.
$$

then, using Bayes' rule
$\mathbb{P}[$ cancer \mid test positive $]=\frac{\mathbb{P}[\text { test positive } \mid \text { cancer }] \cdot \mathbb{P}[\text { cancer }]}{\mathbb{P}[\text { test positive }]}=\frac{90 \% \times 1 \%}{9 \% \times 99 \%+}=\frac{9}{9+89} \simeq \frac{1}{10}$
valid answer is D, " 1 out of 10 ".
@freakonometrics freakonometrics \mathcal{E} freakonometrics.hypotheses.org

Practice of Bayesian Statistics

For Gigerenzer and Hoffrage (1995), the Bayesian formulation is (too) complex.
Another presentation of the problem:
Out of 10,000 people, 100 have cancer. Of these $100,90 \%$, or 90 , will test positive. Of the remaining 9,900, 9 percent, or 899 , will test positive. Of a sample of people who test positive, what fraction actually have cancer?
Answer: 90 among ($90+899$), i.e. about " 1 out of 10 ".

Axiomatic of beliefs I

Axioms of Bayesian approach, Titelbaum (2022a), (2022b), are

- step 1: beliefs

Beliefs are quantified on a scale from 0 to 1
The "rationality of beliefs" means that beliefs are measures of probabilities (and verify the associated axioms), Buehler (1976).
Note: a weaker version of coherence can be defined using capacities (in the sense of Choquet (1954)), based on the axiom : if $A \subset B$, then $\mathbb{Q}[A] \leq \mathbb{Q}[B]$ (and no longer the additivity of disjoint events)

Axiomatic of beliefs II

- step 2 : updating beliefs

For Popper (1955), an agent who believes A to the degree $Q[A]$, if he learns B, he then believes A to the degree $Q[A \mid B]$

$$
\mathbb{Q}[A] \mapsto \mathbb{Q}[A \mid B] \cdot \underbrace{\mathbb{Q}[B]}_{=1}+\mathbb{Q}[A \mid \neg B] \cdot \underbrace{\mathbb{Q}[\neg B]}_{=0}=\mathbb{Q}[A \mid B]=\mathbb{Q}_{B}[A]
$$

Jeffrey (1965) proposed a generalization if B is associated with a belief $Q^{\prime}[B]$,

$$
\mathbb{Q}[A] \mapsto \mathbb{Q}^{\prime}[A]=\mathbb{Q}[A \mid B] \cdot \mathbb{Q}^{\prime}[B]+\mathbb{Q}[A \mid \neg B] \cdot \mathbb{Q}^{\prime}[\neg B]
$$

In other words, "reasoning consists of graduating one's beliefs and revising one's degrees of belief by Bayesian conditionalization as new information becomes available", Drouet (2016).

Axiomatic of beliefs III

"La differenza essenziale da rilevare è nell'attribuzione del 'perchè': non cerco perchè IL FATTO che io prevedo accadrà, ma perchè IO prevedo che il fatto accadrà. Non sono più i fatti che hanno bisogno di una causa per prodursi : è il nostro pensiero che trova comodo di immaginare dei rapporti di causalità per spiegarli, coordinarli, e renderne possibile la previsione", De Finetti (1931)

"I do not seek to know why the fact that I foresee will come true, but why I foresee that the fact will come true. It is no longer the facts that need a cause to happen: it is our mind that finds it convenient to imagine causal relationships in order to explain them, to coordinate them and to make the prediction possible"

The Dutch book I

Ramsey (1926) and De Finetti (1937) suggested to understand the rationality of beliefs with the help of bets (formalized by Lehman (1955) Kemeny (1955), Teller (1973), Lindley et al. (1979) and Skyrms (1987)) and "arbitrage" (we speak of Subjective Bayesianism).
We assign the belief q to a bet (lottery) associated to A, yielding a if A occurs and 0 otherwise if and only if the value of the lottery is qa, Hájek (2009)

The dutch book argument is that if an individual has beliefs that violate the probabilities and if he bets based on those beliefs, then he is willing to accept a set of bets that he is certain to lose, Pettigrew (2020).

Note: Lehman (1955) used the term "dutch book", but it corresponds to the notion of "arbitrage" in financial mathematics.

The Dutch book II

Lehman (1955) "if a set of betting prices violate the probability calculus, then there is a Dutch Book consisting of bets at those prices."

Kemeny (1955), " if a set of betting prices obey the probability calculus, then there does not exist a Dutch Book consisting of bets at those prices"

This characterization is also called Cox-Jaynes theorem, Cox (1946) taken up by Jaynes (1988) and Jaynes (2003) : probabilities (characterized by Kolmogorov axioms) are the only normative mechanism for plausibility induction

See also Good (1966)
or Eisenberg and Gale (1959) and Baron and Lange (2006), Chen and Pennock (2010) on parimutuel, and predictive markets

Suppose that I payers bet on J horses. Each player bets b_{i}, and normalize $\left(b_{1}+\cdots+b_{I}=1\right)$.
Player i bets $\beta_{i, j}$ on horse $j\left(b_{i}=\beta_{i, 1}+\cdots+\beta_{i, J}\right)$.

The Dutch book III

We note π_{j} the amount bet on the horse $j\left(\pi_{j}=\beta_{1, j}+\cdots+\beta_{I, j}\right)$.
Since $\pi_{j} \in(0,1)$ and $\pi_{1}+\cdots+\pi_{J}=1$ is interpreted as a probability, describing a "collective belief".

We can also add empirical constraints, and associate the beliefs to known frequencies) (this is called Empirical Bayesianism)

Williamson (2004) introduced an objective Bayesianism, inspired by Jaynes (1957), based on entropy maximization (maxmin approach), associated with a precautionary principle.

Non-boolean logic I

Note We can also find links with logic.
Classically, if we have the proposition "If A is true, then B is true"

$$
\left\{\begin{array}{l}
\text { If I observe that } A \text { is true, I conclude that } B \text { is true } \\
\text { If I observe that } B \text { is false, I conclude that } A \text { is false. }
\end{array}\right.
$$

With boolean logic, these are the only equivalent assertions

$$
(A \Longrightarrow B \text { and } \neg B \Longrightarrow \neg A)
$$

But there may be some plausible reasoning, Pólya (1958)
$\left\{\begin{array}{l}\text { If I observe that } A \text { is false, it seems to me that } B \text { becomes less plausible } \\ \text { If I observe that } B \text { is true, it seems to me that } A \text { becomes more plausible. }\end{array}\right.$
What means "plausible" here ?

Bayesianism, statistics and calculus I

$$
\begin{aligned}
& \text { posterior }=\pi(\theta \mid \boldsymbol{y})=\frac{\pi(\theta) \cdot \mathbb{P}(\boldsymbol{y} \mid \theta)}{\mathbb{P}(\boldsymbol{y})}=\frac{\text { prior } \cdot \text { likelihood }}{\text { evidence }} \\
& \text { posterior }=\pi(\theta \mid \boldsymbol{y}) \propto \frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a, b)} \cdot\binom{s}{n} \theta^{s}(1-\theta)^{n-s}
\end{aligned}
$$

- Conjugate distributions: Binomial - Beta

The likelihood for binomial (Bernoulli) variables

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\boldsymbol{x} \mapsto f(\boldsymbol{x} ; p)=p^{s}(1-p)^{n-s} \text { where } s=\boldsymbol{x}^{\top} \mathbf{1}=x_{1}+\cdots+x_{n} \\
p \mapsto p^{s}(1-p)^{n-s} \text { on }[0,1] \text { is a Beta distribution }
\end{array}\right. \\
& \text { If }\left\{\begin{array}{l}
x_{i} \mid \theta \sim \mathcal{B}(\theta) \\
\theta \sim \mathcal{B e t a}(a, b) \text { prior then } \theta \mid \boldsymbol{x} \sim \mathcal{B e t a}(a+s, b+n-s) \text { posterior }
\end{array}\right.
\end{aligned}
$$

(that can be extended to Multinomial - Dirichlet)

Bayesianism, statistics and calculus II

- Conjugate distributions: Poisson - Gamma

The likelihood for Poisson variables is

$$
\left\{\begin{array}{l}
\boldsymbol{x} \mapsto f(\boldsymbol{x} ; \lambda)=\frac{e^{n \lambda} \lambda^{s}}{x_{1}!\cdots x_{n}!} \text { where } s=\boldsymbol{x}^{\top} \mathbf{1}=x_{1}+\cdots+x_{n} \\
\lambda \mapsto e^{n \lambda} \lambda^{s} \text { on } \mathbb{R}_{+} \text {is a Gamma distribution }
\end{array}\right.
$$

If

$$
\left\{\begin{array}{l}
x_{i} \mid \lambda \sim \mathcal{P}(\lambda) \\
\theta \sim \mathcal{G a m m a}(a, b) \text { a priori }
\end{array}\right.
$$

$$
\text { then } \lambda \mid \boldsymbol{x} \sim \mathcal{G} \text { amma }(a+s, b+n) \text { a posteriori }
$$

Hence
a priori $\mathbb{E}(\lambda)=\frac{a}{b}$ and a posteriori $\mathbb{E}(\lambda \mid \boldsymbol{x})=\frac{a+s}{b+n}$
intensively used in credibility theory Bühlmann (1967).

Bayesianism, statistics and calculus III

- Conjugate distributions: Normal - Normal

If variance $\boldsymbol{\Sigma}$ is known

$$
\begin{gathered}
\qquad\left\{\begin{array}{l}
\boldsymbol{x}_{i} \mid \boldsymbol{\mu} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\boldsymbol{\mu} \sim \mathcal{N}\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right)
\end{array} \quad \text { then } \boldsymbol{\mu} \mid \boldsymbol{x} \sim \mathcal{N}\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}_{x}\right)\right. \\
\text { where }\left\{\begin{array}{l}
\boldsymbol{\mu}_{x}=\left(\boldsymbol{\Sigma}_{0}^{-1}+n \boldsymbol{\Sigma}^{-1}\right)^{-1}\left(\boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0}+n \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{x}}\right) \\
\boldsymbol{\Sigma}_{x}=\left(\boldsymbol{\Sigma}_{0}^{-1}+n \boldsymbol{\Sigma}^{-1}\right)^{-1}
\end{array}\right.
\end{gathered}
$$

used classically in Bayesian econometrics.

Bayesianism, statistics and calculus IV

- Conjugate distributions: Normal - Inverse Wishart

If mean $\boldsymbol{\mu}$ is known

$$
\begin{gathered}
\left\{\begin{array}{l}
\boldsymbol{x}_{i} \mid \boldsymbol{\Sigma} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\boldsymbol{\Sigma} \sim \operatorname{IW}\left(\nu_{0}, \mathbf{\Psi}_{0}\right)
\end{array} \text { then } \boldsymbol{\Sigma} \mid \boldsymbol{x} \sim \operatorname{IW}\left(\nu_{x}, \mathbf{\Psi}_{x}\right)\right. \\
\text { where }\left\{\begin{array}{l}
\nu_{x}=n+\nu \\
\boldsymbol{\Psi}_{x}=\boldsymbol{\Psi}+\sum_{i=1}^{n}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}\right)^{\top}
\end{array}\right.
\end{gathered}
$$

Classically used in Bayesian econometrics, for VAR models, Adjemian and Pelgrin (2008), or in portfolio management, Black and Litterman (1990, 1992) (see also Satchell and Scowcroft (2000) for a perspective).

Bayesianism, statistics and calculus V

Bayesian methods can be very powerful for estimating panel, hierarchical, or multilevel models, Gelman and Hill (2006).

- Hierarchical model

When the individual i belongs to the group j,

$$
y_{i, j}=\alpha_{j}+\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}_{j}+\varepsilon_{i, j}, \text { where }\left\{\begin{array}{l}
\alpha_{j}=a_{0}+z_{j}^{\top} \boldsymbol{\beta}_{1}+u_{j} \\
\boldsymbol{\beta}_{j}=\boldsymbol{b}_{0}+\boldsymbol{Z}_{j}^{\top} \boldsymbol{B}_{1}+\boldsymbol{u}_{j}
\end{array}\right.
$$

with constants and slopes depending on the groups.
(usually in a GLM model).

Bayesianism, statistics and calculus VI

Otherwise, either simulations are used (see MCMC) or simplifying assumptions are made.

Consider symptoms s_{1}, \cdots, s_{k} and diseases m_{1}, \cdots, m_{j} (in $\{0,1\}$)

$$
\mathbb{P}[\boldsymbol{M}=\boldsymbol{m} \mid \boldsymbol{S}=\boldsymbol{s}]=\frac{\mathbb{P}[\boldsymbol{M}=\boldsymbol{m}] \cdot \mathbb{P}[\boldsymbol{S}=\boldsymbol{s} \mid \boldsymbol{M}=\boldsymbol{m}]}{\sum_{\boldsymbol{x}} \mathbb{P}[\boldsymbol{M}=\boldsymbol{x}] \cdot \mathbb{P}[\boldsymbol{S}=\boldsymbol{s} \mid \boldsymbol{M}=\boldsymbol{x}]}
$$

"Naïve Bayes" relies on assumptions (Spiegelhalter et al. (1993))

- diseases are mutually exclusive $\mathbb{P}[\boldsymbol{M}=\boldsymbol{m} \mid \boldsymbol{S}=\boldsymbol{s}]=0$ si $\boldsymbol{m}^{\top} \mathbf{1}>1$,
- the symptoms are conditionally independent

$$
\mathbb{P}\left[\boldsymbol{S}=\boldsymbol{s} \mid M_{i}=m_{i}\right]=\prod_{j=1}^{k} \mathbb{P}\left[S_{j}=s_{j} \mid M_{i}=m_{i}\right]
$$

Bayesianism, statistics and calculus VII

In that case

$$
\mathbb{P}\left[M_{i}=m_{i} \mid \boldsymbol{S}=\boldsymbol{s}\right]=\frac{\mathbb{P}\left[M_{i}=m_{i}\right] \cdot \prod_{j=1}^{k} \mathbb{P}\left[S_{j}=s_{j} \mid M_{i}=m_{i}\right]}{\underline{k}}
$$

We can improve the model by using a Bayesian network (we will talk about it later).

Bayesianism, statistics and calculus VIII

To determine $\mathbb{P}\left[M_{i}=m_{i} \mid \boldsymbol{S}=\boldsymbol{s}\right]$, we need to know

- prevalence of disease $\mathbb{P}\left[M_{i}=1\right]$
- sensitivity $\mathbb{P}\left[S_{j}=1 \mid M_{i}=1\right]$
- specificity $\mathbb{P}\left[S_{j}=0 \mid M_{i}=0\right]$
for all symptoms S_{j} and all disease M_{i}.
Note that $\mathbb{P}\left[S_{j}=s_{j} \mid M_{i}=m_{i}\right]$ have a causal interpretation: it is the diseases that cause the symptoms.

See Sadegh-Zadeh (1980) on Bayesian diagnostics, or Donnat et al. (2020).

Bayesianism, statistics and calculus I

- Posterior distribution

Suppose $\boldsymbol{x}=\{0,0,0,1,0,1,1,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0\}, \mathcal{B}(\theta)$
Frequentist approach, $\widehat{\theta} \approx \mathcal{N}\left(\theta, \frac{\theta(1-\theta)}{n}\right), \mathbb{P}\left(\theta \in\left[\bar{x} \pm 1.64 \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}\right]\right) \approx 90 \%$

Bayesianism, statistics and calculus XVIII

- Posterior distribution
and finally $\boldsymbol{x}=\{0,0,0,1,0,1,1,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0\}, \mathcal{B}(\theta)$
Bayesian approach, $\widehat{\theta} \mid \boldsymbol{x} \sim \mathcal{B e t a}\left(\alpha_{0}+s, \beta_{0}+n-s\right), s=\sum_{i=1}^{n} x_{i}$

Bayesianism, statistics and calculus XIX

- Posterior distribution

What if $\boldsymbol{x}=\{0,0\}, \mathcal{B}(\theta)$?
Bayesian approach, $\widehat{\theta} \mid \boldsymbol{x} \sim \mathcal{B e t a}\left(\alpha_{0}, \beta_{0}+n\right)$, since $\sum_{i=1}^{n} x_{i}=0$

Bayesianism, statistics and calculus XX

- Posterior distribution

Ministère de l'intérieur (2019) "A single threshold for qualifying a geotechnical drought as abnormal: a return period greater than or equal to 25 years " (probabilité 1/25) (probability $1 / 25$) No drought has been observed over 2 years ($\{0,0\}$), what happens to our belief about the return period?

Bayesianism, statistics and calculus XXI

- Posterior distribution

As a comparison, if we have observed two major droughts ($\{1,1\}$), our beliefs a posteriori are very influenced by these unexpected events

Bayesianism, statistics and calculus XXII

- From the distribution to the estimator

$$
\begin{cases}\text { posterior average } & \widehat{\theta}=\mathbb{E}[\theta \mid \mathcal{D}] \\ \text { maximum a posteriori }(\mathrm{MAP}) & \widehat{\theta}=\max \{\pi(\theta \mid \mathcal{D})\} \text { i.e. the mode }\end{cases}
$$

The average posterior is also the solution of the problem

$$
\widehat{\theta}=\underset{\tau}{\operatorname{argmin}}\left\{\mathbb{E}\left[(\theta-\tau)^{2} \mid \mathcal{D}\right]\right\}=\underset{\tau}{\operatorname{argmin}}\left\{\int(\theta-\tau)^{2} \pi(\theta \mid \mathcal{D}) d \theta\right\}
$$

- "confidence interval" or "credibility interval"

For the confidence interval, we look for $\left[\hat{a}_{\mathcal{D}}, \widehat{b}_{\mathcal{D}}\right]$ such that $P\left[\theta \in\left[\hat{a}_{\mathcal{D}}, \widehat{b}_{\mathcal{D}}\right]\right] \geq 95 \%$.
For the credibility interval, we look for $[a, b]$ such that $\mathbb{P}[\theta \in[a, b] \mid \mathcal{D}] \geq 95 \%$.

Bayesianism, statistics and calculus XXIII

- "confidence interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$ (here $\theta=0$)

Bayesianism, statistics and calculus XXIV

- "confidence interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$ (here $\theta=0$)
Consider $[a, b]=\left[\bar{x} \pm q_{\alpha} \frac{\widehat{\sigma}}{\sqrt{n}}\right]$

Bayesianism, statistics and calculus XXV

- "confidence interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$
(here $\theta=0$)
Consider $[a, b]=\left[\bar{x} \pm q_{\alpha} \frac{\widehat{\sigma}}{\sqrt{n}}\right]$
Generate $\mathcal{D}^{\prime}=\left\{x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right\}$ from $\mathcal{N}\left(\theta, \sigma^{2}\right)$, we want

$$
\mathbb{P}\left[\theta \notin\left[\bar{x}^{\prime} \pm q_{\alpha} \frac{\widehat{\sigma}}{\frac{}{\prime}} \sqrt{n}\right]\right] \approx \alpha
$$

interpreted as a frequency, and repeating the experience. Here, $\alpha=5 \%$: in 5% of the simulations, 0 is not in $[a, b]$.

Bayesianism, statistics and calculus XXVI

- "credibility interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$
Consider some prior distribution $\pi(\cdot)$ for θ

Bayesianism, statistics and calculus XXVII

- "credibility interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$
Consider some prior distribution $\pi(\cdot)$ for θ and $\pi(\cdot \mid \mathcal{D})$ is the posterior distribution (potentially complicated)

Bayesianism, statistics and calculus XXVIII

- "credibility interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$
Consider some prior distribution $\pi(\cdot)$ for θ and $\pi(\cdot \mid \mathcal{D})$ is the posterior distribution (potentially complicated)
Suppose we generate $\tilde{\theta}_{1}, \cdots, \tilde{\theta}_{k}$ given $\pi(\cdot \mid \mathcal{D})$.

Bayesianism, statistics and calculus XXIX

- "credibility interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$
Consider some prior distribution $\pi(\cdot)$ for θ and $\pi(\cdot \mid \mathcal{D})$ is the posterior distribution (potentially complicated)
Suppose we generate $\tilde{\theta}_{1}, \cdots, \tilde{\theta}_{k}$ given $\pi(\cdot \mid \mathcal{D})$.
Consider

$$
\left\{\begin{array}{l}
a=\widehat{\Pi}^{-1}(\alpha / 2 \mid \mathcal{D}) \text { quantile with level } \alpha / 2 \\
b=\widehat{\Pi}^{-1}(1-\alpha / 2 \mid \mathcal{D}) \text { quantile with level } 1-\alpha / 2
\end{array}\right.
$$

Bayesianism, statistics and calculus XXX

- "credibility interval"

Suppose $\mathcal{D}=\left\{x_{1}, \cdots, x_{n}\right\}, X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$
Consider some prior distribution $\pi(\cdot)$ for θ
and $\pi(\cdot \mid \mathcal{D})$ is the posterior distribution (potentially complicated)
Suppose we generate $\tilde{\theta}_{1}, \cdots, \tilde{\theta}_{k}$ given $\pi(\cdot \mid \mathcal{D})$.
Consider

$$
\left\{\begin{array}{l}
a=\widehat{\Pi}^{-1}(\alpha / 2 \mid \mathcal{D}) \text { quantile with level } \alpha / 2 \\
b=\widehat{\Pi}^{-1}(1-\alpha / 2 \mid \mathcal{D}) \text { quantile with level } 1-\alpha / 2
\end{array}\right.
$$

then

$$
\mathbb{P}\left[\theta \notin\left[\widehat{\Pi}^{-1}(\alpha / 2 \mid \mathcal{D}) ; \widehat{\Pi}^{-1}(1-\alpha / 2 \mid \mathcal{D})\right]\right] \approx \alpha
$$

Bayesianism, statistics and calculus XXXI

We can also evoke the nonparametric Bayesian modeling, Ferguson (1973). Instead of assuming $X_{i} \sim f \in \mathcal{F}_{\Theta}$ where $\mathcal{F}_{\Theta}=\left\{f_{\theta}: \theta \in \Theta\right\}$, we consider a more general family,

$$
X_{i} \sim f \in \mathcal{F}=\left\{f: \int_{\mathbb{R}}\left[f^{\prime \prime}(y)\right]^{2} d y<\infty\right\}
$$

We can always compute a posterior law,

$$
\pi(f \in A \mid \mathcal{D})=\mathbb{P}(X \in A \mid \mathcal{D})=\frac{\int_{A} \mathcal{L}_{n}(f) d \pi(f)}{\int_{\mathcal{F}} \mathcal{L}_{n}(f) d \pi(f)}, \text { where } \mathcal{L}_{n}(f)=\prod_{i=1}^{n} f\left(x_{i}\right)
$$

where π is an a prior distribution on \mathcal{F}. Very close to the Pólya urn problems (infinite), to the Chinese restaurant process and to the Dirichlet processes, Blackwell and MacQueen (1973), Ghosh and Ramamoorthi (2003), Orbanz and Teh (2010).

Bayesianism, statistics and calculus XXXII

For example, if X_{1}, \cdots, X_{n} i.i.d. of distribution F. The a priori law π is a Dirichlet process, $D\left(\alpha, F_{0}\right)$, where $F_{0} \in \mathcal{F}$ is a prior distribution for X, while α indicates the dispersion around F_{0}.
To draw according to $D\left(\alpha, F_{0}\right)$,

- we draw z_{1}, z_{2}, \cdots according to F_{0},
- we draw v_{1}, v_{2}, \cdots according to a Beta law $\mathcal{B}(1, \alpha)$,
- we define iteratively weights, $\omega_{1}=v_{1}$ and $\omega_{j}=v_{j}\left(1-v_{j-1}\right) \cdots\left(1-v_{1}\right)$
- $F(x)=\sum_{j \geq 1} \omega_{j} \mathbf{1}\left(x \leq z_{j}\right)$

If prior $\pi \sim D\left(\alpha, F_{0}\right)$, then the posterior is, $\pi \mid \mathcal{D} \sim D\left(\alpha+n, F_{n}\right)$ where

$$
F_{n}=\frac{n}{n+\alpha} \widehat{F}_{n}+\frac{\alpha}{n+\alpha} F_{0}, \text { where } \widehat{F}_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}\left(x \leq x_{j}\right)
$$

Bayes and Markov property I

- Markov property

This property allows to simplify the writing (and the calculation) of the posterior distribution

$$
\mathbb{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, X_{t-1}=x_{t-1}, \cdots\right]=\mathbb{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right]
$$

As a reminder, under some technical assumptions, the transition kernel $p\left(x_{t+1} \mid x_{t}\right)$ converges $(t \rightarrow \infty)$ to a stationary measure $p^{*}(x)$.
If $x_{t} \in \mathcal{X}$ of finite cardinal, $p(\cdot \mid \cdot)$ reads in a (stochastic) matrix P.

$$
\mathbb{P}\left[X_{t+k}=j \mid X_{t}=i\right]=\left[P^{k}\right]_{i j}(\text { Chapman Kolmogorov })
$$

Bayes and Markov property II

Example bonus-malus schemes Lemaire (1995),
HONG KONG
Table B-9. Hong Kong System

Class	Premium	0	Class After 1 Claims	≥ 2
6	100	5	6	6
5	80	4	6	6
4	70	3	6	6
3	60	2	6	6
2	50	1	4	6
1	40	1	3	6

Starting class: 6.

Sting
\bullet
If claims frequency is $N \sim \mathcal{P}(0.225)$,
$\mathbb{P}(N=0)=20 \%$.

Bayes and Markov property XI

Example bonus malus schemes Lemaire (1995),
HONG KONG
Table B-9. Hong Kong System

Class	Premium	0	Class After 1 Claims	≥ 2
6	100	5	6	6
5	80	4	6	6
4	70	3	6	6
3	60	2	6	6
2	50	1	4	6
1	40	1	3	6

Starting class: 6.

If claims frequency is $N \sim \mathcal{P}(0.225)$,
$\mathbb{P}(N=0)=20 \%$.

Bayes and Markov property XII

- Expected values and MCMC

Law of large numbers

$$
\text { if } X_{1}, \cdots, X_{n}, \cdots \text { i.i.d. with law } p^{*}, \frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{\text { a.s. }} \mathbb{E}_{p^{*}}(X)=\int x d p^{*}(x)
$$

Ergodic theorem (if $p(\cdot \mid \cdot)$ has invariant distribution p^{*})
if $X_{1}, \cdots, X_{t}, X_{t+1}, \cdots$ is generated from $p(\cdot \mid \cdot), \frac{1}{n} \sum_{t=t_{0}+1}^{t_{0}+n} X_{t} \xrightarrow{\text { a.s. }} \mathbb{E}_{p^{*}}(X)=\int x d p^{*}(x)$
where $\left(X_{t}\right)$ is generated from $p(\cdot \mid \cdot)$ using either d'Hasting-Metropolis or Gibbs sampler, Andrieu et al. (2003) or Kruschke (2014).

Bayes and Markov property XIII

Using Markov property

$$
\mathbb{P}(\boldsymbol{x})=\prod_{i=2}^{p} \mathbb{P}\left(x_{i} \mid x_{i-1}\right) \cdot \mathbb{P}\left(x_{1}\right)
$$

That can be extended on a DAG for the p variables.

- Directed acyclic graph (DAG)

Bayes and Markov property XIV

- Bayesian Network

A couple $\{G, \mathbb{P}\}$ is a Bayesian network, if $G=\{V, E\}$ is a DAG and if it satisfies the Markov property : each variable X in V is independent from its non-descendants, in G, conditional on its parents,

$$
\begin{gathered}
\mathbb{P}(\boldsymbol{x})=\prod_{i=1}^{p} \mathbb{P}\left(x_{i} \mid \boldsymbol{x}_{\text {parents }}\right) \\
\left\{\begin{array}{l}
X_{2} \Perp\left\{X_{3}, X_{4}\right\} \mid X_{1} \\
X_{3} \Perp X_{2} \mid X_{1} \\
X_{4} \Perp\left\{X_{1}, X_{5}\right\} \mid\left\{X_{2}, X_{3}\right\} \\
X_{5} \Perp\left\{X_{1}, X_{2}, X_{4}\right\} \mid X_{3}
\end{array}\right. \\
\mathbb{P}(\boldsymbol{x})=\mathbb{P}\left(x_{5} \mid x_{3}\right) \mathbb{P}\left(x_{4} \mid x_{2}, x_{3}\right) \mathbb{P}\left(x_{3} \mid x_{1}\right) \mathbb{P}\left(x_{2} \mid x_{1}\right) \mathbb{P}\left(x_{1}\right)
\end{gathered}
$$

Bayes and Markov property XV

- Bayesian Network and Medical Diagnostics
via Lauritzen and Spiegelhalter (1988) and Højsgaard et al. (2012)

Bayesianism and statistical learning I

Econometrics is based on a probabilistic model, unlike most machine learning approaches, see Charpentier et al. (2018)

- in SVMs, the distance to the separation line is used as a score which can then be interpreted as a probability - Platt scaling, Platt et al. (1999) or isotonic regression Zadrozny and Elkan $(2001,2002)$ (see also Niculescu-Mizil and Caruana (2005) "good probabilities")
- GLM models (under additional conditions) satisfy the autocalibration property, Denuit et al. (2021), not machine learning models, i.e.

$$
\mathbb{E}[Y \mid \widehat{Y}=y]=y, \forall y
$$

Lichtenstein et al. (1977), Dawid (1982) or Oakes (1985), Gneiting et al. (2007)

Bayesianism and statistical learning II

As mentioned on Scikit-learn's methodological page, "Well calibrated classifiers are probabilistic classifiers for which the output can be directly interpreted as a confidence level. For instance, a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a [predicted probability] value close to 0.8 , approximately 80% actually belong to the positive class."

Very close to what exists to quantify uncertainty in weather models,
"Suppose that a forecaster sequentially assigns probabilities to events. He is well calibrated if, for example, of those events to which he assigns a probability 30 percent, the long-run proportion that actually occurs turns out to be 30 percent", Dawid (1982) ou "we desire that the estimated class probabilities are reflective of the true underlying probability of the sample, Kuhn et al. (2013)

Bayesianism and statistical learning III

As explained in Van Calster et al. (2019), "among patients with an estimated risk of 20%, we expect 20 in 100 to have or to develop the event",

- if 40 out of 100 in this group are found to have the disease, the risk is underestimated
- If we observe that in this group, 10 out of 100 have the disease, we have overestimated the risk.

Hosmer-Lemeshow test (Hosmer Jr et al. (2013)) for the logistic model.

Bayesianism and statistical learning IV

- Ridge estimate, Hoerl and Kennard (1970) (linear model)

We look for $\widehat{\beta}_{\lambda}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{2}^{2}\right\}$, "equivalent" to the constrained optimization problem $\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}:\|\boldsymbol{\beta}\|_{2} \leq c}{\operatorname{argmin}}\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right\}$.
Consider

$$
\left\{\begin{array}{l}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \text { or } \boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta} \sim \mathcal{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right) \\
\boldsymbol{\beta} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} \mathbb{I}\right) \text { posterior }
\end{array}\right.
$$

Maximum a posteriori (MAP) satisfies

$$
\widehat{\beta}_{M A P}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\frac{\sigma^{2}}{\tau^{2}}\|\boldsymbol{\beta}\|_{2}^{2}\right\}
$$

Bayesianism and statistical learning V

- LASSO estimate, Tibshirani (1996) (linear regression)

We look for $\widehat{\beta}_{\lambda}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{1}\right\}$, "equivalent" (Gill et al.
(2019)) to the constrained optimization problem $\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}:\|\boldsymbol{\beta}\|_{1} \leq c}{\operatorname{argmin}}\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right\}$.

Consider (Tibshirani (1996) and Park and Casella (2008))

$$
\left\{\begin{array}{l}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \text { ou } \boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta} \sim \mathcal{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{I}\right) \\
\boldsymbol{\beta} \sim \mathcal{L}(\tau) \text { posterior, i.e. } \pi(\boldsymbol{\beta})=(\tau / 2)^{p} \exp \left[-\tau\|\boldsymbol{\beta}\|_{1}\right]
\end{array}\right.
$$

Maximum a posteriori (MAP) satisfies

$$
\widehat{\beta}_{M A P}=\underset{\boldsymbol{\beta} \in \mathbb{R}^{P}}{\operatorname{argmin}}\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\sigma^{2} \tau\|\boldsymbol{\beta}\|_{1}\right\}
$$

Bayesianism and statistical learning VI

Tibshirani (1996) suggested that Lasso estimates can be interpreted as posterior mode estimates when the regression parameters have independent and identical Laplace (i.e., double-exponential) priors

- Neural nets

Rumelhart et al. (1985), Rumelhart et al. (1986) Hertz et al. (1991) and Buntine and Weigend (1991) proposed to formalize back-propagation in a Bayesian context, taken up by MacKay (1992) and Neal (1992).
State of the art in Neal (2012), more than 25 years ago (or more recently Neal (2012) Theodoridis (2015), Gal and Ghahramani (2016) and Goulet et al. (2021))

Bayesianism as a learning process I

Old topic, see

Shepard (1987) or Tenenbaum (1998).
"How does abstract knowledge guide learning and reasoning from sparse data? How does the mind get so much from so little?, Tenenbaum et al. (2011)

Discussed in Dehaene (2012),
www.youtube.com > watch
la révolution Bayésienne... (1) - Stanislas Dehaene (2011-2012)

Enseignement 2011-2012 : Le cerveau statisticien : la révolution Bayésienne en sciences cognitives Cours du ma...

YouTube - Sciences de la vie - Collège de France • ll y a 1 semaine

Le cerveau statisticien :la révolution Bayésienne en sciences cognitives

Présentation

10 janvier 2012 ~ 09:30 ~
Cours
Introduction au raisonnement Bayésien et à ses applications Stanislas Dehaene

17 janvier 2012 ~ 09:30 ~
Cours
Les mécanismes Bayésiens de l'induction chez l'enfant Stanislas Dehaene

24 janvier 2012 ~ 09:30 ~
Cours
Les illusions visuelles : des inférences optimales ? Stanislas Dehaene

31 janvier 2012 ~ 09:30 ~
Cours
Combinaison de contraintes et sélection d'un percept unique Stanislas Dehaene

07 février 2012 ~ 09:30 ~
Cours
La prise de décision Bayésienne Stanislas Dehaene

14 février 2012 ~ 09:30 ~
Cours
Limplémentation neuronale des mécanismes Bayésiens Stanislas Dehaene

21 février 2012 ~ 09:30 ~
Cours
Le cerveau vu comme un système prédictif
Stanislas Dehaene

Bayesianism as a learning process II

The simplifications managed by the brain are known since a long time, Goodman (1955).

We have an urn containing 100 balls, a person draws a blue ball, what can we say ? A priori not much... except if in the past, we observed that all the urns always contained balls of the same color. A single observation can then be very informative Allows to learn how to learn, Kemp and Tenenbaum (2008), Kemp et al. (2010), Tenenbaum et al. (2011)
Language learning, Stolcke (1994), Watanabe and Chien (2015), Duh (2018) or Murawaki (2019).

Since Shepard (1992), many experiences on vision

Bayesianism as a learning process III

Von Helmholtz (1867) defined "unbewusste Schluss", or unconscious inference.
The view is constructed (more or less) as a projection, but (see linear algebra course) projections are not invertible: several images could have the same projection. Our brain looks for the most likely image

Sensory inputs are always ambiguous, so our perceptual system must select, among an infinite number of possible solutions, the one that is most plausible, Ernst and Banks (2002).

On vision as a Bayesian learning process Yuille and Kersten (2006), Clark (2013) Moreno-Bote et al. (2011)

Bayesianism as a learning process IV

Classic example on "biases" of image perception, for example the forms.

Consider the image above, what do we see? Classically, we see 5 "holes" and 1 "bump"

Bayesianism as a learning process V

Classic example on "biases" of image perception, for example the forms.

Consider the picture above, what do you see ?
Classically, 5 "bumps" et 1 "hole"

Bayesianism as a learning process VI

Classic example on "biases" of image perception, for example the forms.

It is however the same figure (having undergone a rotation of 180°. (grey rectangle with 6 disks with a black/white gradient). Ambiguous problem, Ramachandran (1988).
Note: our eye makes an inference about the light source (comes from above, without any other information - a priori assumption) to infer the shape.

Bayesianism as a learning process VII

Classic example on "biases" of image perception, for example the lenghts

Among red and blue lines, which one is the longuest?

Bayesianism as a learning process VIII

Classic example on "biases" of image perception, for example the lenghts

Among red and blue lines, which one is the longuest?

As mentioned by Dehaene (2012), "Bayesian inference gives a good account of perception processes: given ambiguous inputs, our brain reconstructs the most likely interpretation.

Bayesianism as a learning process IX

Classic example on "biases" of image perception, for example the lenghts

Among red and blue lines, which one is the longuest?

Generally, all strokes red are seen as larger than the stroke blue.

Bayesianism as a learning process X

Which of the lines red and blue is larger?

Several studies on the perception of the size of an object, according to its orientation (angle θ)
Shipley et al. (1949), Pollock and Chapanis (1952), Cormack and Cormack (1974) and Purves et al. (2008) noted that the vertical line appears 10% larger than the horizontal line.

Bayesianism as a learning process XI

The deformation made by the brain corresponds to a priori distributions that can be observed on images in nature, Howe and Purves (2002), Purves (2009), Girshick et al. (2011) or Purves et al. (2011) (based on (real) distances measured, by laser telemetry and compared to the measurement on the retina)

In other words, our retina has learned to correct the perceived distances according to the angle of inclination, in an everyday environment (3d), but continues to reproduce it for a drawing on a sheet (2d).

Bayesianism as a learning process XII

One can also learn from Ensemble methods and by aggregation of opinions. For example, guess the weight of a cow, Cornwall, England, 1906, Galton (1907).

787 participants, x_{1}, \cdots, x_{n}.
Unique prediction x_{j} v.s average \bar{x},

$$
\left.\mathbb{E}\left[\left(x_{j}-t\right)^{2}\right]\right]=(\bar{x}-t)^{2}+\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

where t is the truth ("ambiguity decomposition").
"Bayesian methods are sometimes proposed as mathematical aggregations of expert judgements", Hanea et al. (2021)

Bayesianism as a learning process XIII

"I have approximate answers and possible beliefs and different degrees of certainty about different things", Feynman (2005)
"Diversity and independence are important because the best collective decisions are the product of disagreement and contest, not consensus or compromise", Surowiecki (2005)

Merrick (2008), Karvetski et al. (2013) on model aggregation m_{1}, \cdots, m_{k},

$$
m(\boldsymbol{x})=\sum_{i=1}^{k} \theta_{i} m_{i}\left(\boldsymbol{x}, \alpha_{i}\right)
$$

with weights $\boldsymbol{\theta}=\left(\theta_{1}, \cdots, \theta_{k}\right)$ in the simplex \mathcal{S}_{k}. We assume a prior Dirichlet distribution.

See also Mongin (1995, 2001), inspired by Karni et al. (1983).

Bayesianism as a learning process

Thompson sampling (or posterior sampling and probability matching), by Thompson (1933, 1935), and Beta-Bernoulli bandits.

We have to choose among K alternatives, that yield $\boldsymbol{X}=\left(X_{1}, \cdots, X_{K}\right)$, with $X_{k} \sim \mathcal{B}\left(\theta_{k}\right)$.
Assume (prior) $\theta_{k} \sim \mathcal{B e t a}\left(\alpha_{k}, \beta_{k}\right)$. At time t, draw K Beta variables (independents) $B_{k} \sim \mathcal{B e t a}\left(\alpha_{k}, \beta_{k}\right)$, and select $k^{\star}=\underset{k=1, \cdots, K}{\operatorname{argmin}}\left\{B_{k}\right\}$.
Consider updating $\left(\alpha_{k^{*}}, \beta_{k^{*}}\right) \leftarrow\left(\alpha_{k^{*}}+x_{k^{*}}, \beta_{k^{*}}+\left(1-x_{k^{*}}\right)\right)$,

- simulated data, i.i.d., $X_{1} \sim \mathcal{B}(72 \%)$
- simulated data, i.i.d., $X_{2} \sim \mathcal{B}(24 \%)$

Bayesianism as a learning process

We can use that approach in the context of Monty Hall

- strategy 1: always switch the door
- strategy 2 : never switch the door

"Conclusion" or wrap-up

- the Bayesian approach is interesting to describe beliefs in front of uncertain events, in particular if the events will occur only once
- Bayesian computation can be interpreted as a belief update or as an inverse problem
- is very strongly linked to causal graphs
- allows to take into account expert opinions, and proposes an ensemble method modeling describes both human and machine learning

I USED TO BE TNDECISIVE BUT NOW IM NOT SO SURE

"Conclusion" or wrap-up

$$
\begin{gathered}
\text { MODIFIED BAYES' THEOREM: } \\
P(H \mid X)=P(H) \times\left(1+P(C) \times\left(\frac{P(x \mid H)}{P(x)}-1\right)\right) \\
H: \text { HYPOTHESIS } \\
x: \text { OBSERVATION } \\
P(H): \text { PRIOR PROBABILITY THAT H ISTRUE } \\
P(X): \text { PRIOR PROBABILITY OF OBSERVING } x \\
P(C): \text { PROBABILITY THAT YOURE USING } \\
\text { BAYESIAN STATISTICS CORRECTYY }
\end{gathered}
$$

(via https://xkcd.com/2059/)

