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Preliminaries
Keynote in 2014 at the Cass Business School (now Bayes Business School)...
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A little bit of history

McGrayne (2011), that mentioned Bailey (1950) (but not Whitney (1918))
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Uncertainty, insurance and economics III

insurer
premium ⇡

indemnity X

policyholder

for the policyholder, ⇡ � X (reservation price� ⇡)
formally, � is characterized by some utility function u and belifs Qp

for the insurer, X +
nX

i=1

Xi  ⇡ +
nX

i=1

⇡i

formally, that inequality holds on average, or on probability

based on some beliefs Qi , e.g. Qi

 
X +

nX

i=1

Xi  ⇡ +
nX

i=1

⇡i

!
= 90%
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Probabilities and random variables I
“Probability is the most important concept in modern science, especially as nobody
has the slightest notion what it means ”, Russell (1929), quoted in Bell (1945)
Probabily and statistics rely on the concept of probability spaces, (⌦,F ,P),
I ⌦ (or S in some textbooks) is the sample space, the set of all possible outcomes
I F a set of events on ⌦, A 2 F is an “event”
I P is a function F ! [0, 1] satisfying some properties

e.g. P(⌦) = 1; for disjoint events, an additiviy property: P(A [ B) = P(A) + P(B); aa
subset property, if A ⇢ B, P(A)  P(B), as inCardano (1564) or Bernoulli (1713), or
for multiple disjoint events as in Kolmogorov (1933), A1, · · · ,An, · · · ,

P(A1 [ · · · [ An [ · · · ) = P(A1) + · · ·+ P(An) + · · ·

inspired by Lebesgue (1918), etc. In this (mathematical) framework, we can finally
define random variables
I X is a function ⌦! R or more generally ⌦! X .
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Probabilities and random variables II
We have formal objects, mathematically well defined, but in a context of modeling
does one have a univocal sense of interpretation of the result of the calculation? cf "Is
the probability inherent to the event, or to our judgment? ” Martin (2009)

There are many philosophical paradoxes when we talk about probability (and chance),
e.g. I throw a coin, which falls back, out of my sight
I P(X = heads) = P(X = tails) = 1/2 ?
I P(X = heads) = 1 or P(X = tails) = 1 ?

Or in a legal context, Look, the guy either did it or he didn’t do it. If he did then he is
100% guilty and if he didn’t then he is 0% guilty; so giving the chances of guilt as a
probability somewhere in between makes no sense and has no place in the law , quoted
in Fenton and Neil (2018).
See also Hájek (2002) on the philosophical approach of “probability”.
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Probabilities and random variables III
As said by Martin (2009),
I "To attribute an objective meaning to the probability that an event will occur is to

admit that this event is not necessary, in other words, that it is not completely
determined,"

I "If we suppose an integral and universal determinism, the probability can only
receive a subjective meaning, and the probability depends on our knowledge and
our ignorance"

Too much importance is attributed to this supposedly objective probability P.
The (mathematical) probability was not born as a well defined concept within the
framework of a mathematical formalism mathematical formalism, but as a tool to
quantify and control situations of uncertainty, applied to the measurement of the
probability of life mortality tables (for the calculation of life annuities), the calculation
of the risks of error (in of error (in measurement operations), the study of the
probability of testimonies and judgments, etc.
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Probabilities and random variables IV
“The theory of probabilities is basically only common sense reduced to calculation: it
makes appreciate with exactitude, what the just minds feel by a kind of instinct,
without them often being able to realize it”, Laplace (1774)
Cournot (1843) thus distinguished a objective meaning of the probability (as measure
of the physical possibility of realization of a random event) and a subjective meaning
(the probability being a judgement made on an event, this judgement being linked to
the ignorance of judgment being linked to the ignorance of the conditions of the
realization of the event).

Note: a probability not defined in terms of frequency can
receive an objective meaning: :
There is no need to repeat throws of dice to a�rm that (with
a perfectly balanced die) the probability of obtaining 6 at the
time of a throw is equal to 1/6 (by symmetry of the cube)
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Probabilities and random variables V

But very often, the “physical” probabilities receive an objective value only posterior on
the basis of the law of large numbers, the empirical frequency converge towards the
probability (frequentist theory of probabilities)

1

n

nX

i=1

1(Xi 2 A)
| {z }
(empirical) frequency

a.s.! P(X 2 A)| {z }
probability

as n!1

(in some textbooks, there is a confusion between "probability" and "frequency”)

Law of large numbers :1n

nX

i=1

Xi
a.s.! E(X ) as n!1 or 1

n

nX

i=1

Xi ⇡ E(X )
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Probabilities and random variables VI

But this approach is unable to make sense of the probability of a "(single singular
event", as noted by von Mises (1928, 1939).
“When we speak of the ‘probability of death’, the exact meaning of this expression can
be defined in the following way only. We must not think of an individual, but of a
certain class as a whole, e.g., ‘all insured men forty-one years old living in a given
country and not engaged in certain dangerous occupations’. A probability of death is
attached to the class of men or to another class that can be defined in a similar way.
We can say nothing about the probability of death of an individual even if we know his
condition of life and health in detail. The phrase ‘probability of death’, when it refers
to a single person, has no meaning for us at all.”
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Probabilities and random variables VII
For Popper (1959), probabilities correspond to physical dispositions ("propensions”)
inherent to the system. This propensity has a physical existence, but it is not directly
observable.
The frequencies of occurrence are manifestations of these propensities. In the contrary
case, it is nevertheless possible to estimate the probability of realization of the singular
event, by considering this one as measured not by an "actual" frequency, but by a
"potential" (or "virtual") frequency.

Finally, when an individual makes a judgment, the degree of credibility or belief that he
or she gives it depends on the knowledge that the individual has (Pettigrew (2016)).
depends on the knowledge that this individual has (Pettigrew (2016)). This degree of
belief will be associated with a probability, which will then only have a subjective
meaning. "The probability of a diagnosis, a testimony, etc., does not measure the
conformity of this judgment to reality, but the degree to which one can hypothesize
this conformity. This conformity can be hypothesized", Martin (2009).
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Probabilities and random variables VIII

This subjectivity raises concerns about their use, especially in criminal matters,
“Sometimes the ‘balance of probability’ standard is expressed mathematically as
‘50+% probability’, but this can carry with it a danger of pseudo-mathematics, as the
argument in this case demonstrated. When judging whether a case for believing that
an event was caused in a particular way is stronger than the case for not so believing,
the process is not scientific (although it may obviously include evaluation of scientific
evidence) and to express the probability of some event having happened in percentage
terms is illusory, Nulty & Ors v Milton Keynes Borough Council cited in Hunt and
Mostyn (2020).
See also Jonakait (1983), Saini (2011) or Fenton et al. (2016).
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Probability ? Probability to win an election ?
@PedderSophie (The Economist), vs @Hu�Post or @tsrandall (Bloomberg)

How to interpret this "probability of winning" ?
How to interpret a "confidence interval"
on that probability ? (@AdamSinger)
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Probability ? Probability of precipitation ? I
How to interpret the ‘P.o.P.’ ("Probability of Precipitation") on weather websites ?

“Out of all the times you said there was a 40 percent chance of rain, how often did
rain actually occur? If, over the long run, it really did rain about 40 percent of the
time, that means your forecasts were well calibrated, Silver (2012)
Murphy and Epstein (1967), Roberts (1968)
Gneiting and Raftery (2005) on ensemble methods for weather forecasting.
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Probability ? Probability of precipitation ? II
More generally, we can think of the "probabilities"
mentioned by the IPCC, Mastrandrea et al. (2010)
discussed in Stoerk et al. (2020) or Kause et al. (2022)

(source Vogel et al. (2022))

@freakonometrics freakonometrics freakonometrics.hypotheses.org 18 / 167

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Probability ? Probability of precipitation ? III

Note : “Cromwell’s rule”: one should not give a probability of 1 to
an event that cannot logically be shown to be true, and one should
never give a probability of 0 to an event unless it can logically be
shown to be false,
Lindley (2013), Barclay et al. (1977) et Pherson and Pherson (2012).
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Probability ? Probability of precipitation ? IV
See also @zonination on "probability perceptions"
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Bayesian statistics ?
I Bayes formula (the “inverse problem"),

Bayes (1763), Laplace (1774)
Given two events A and B such that P(B) 6= 0,

P(A|B) =
P(B|A) · P(A)

P(B)

“If a person has an expectation depending on the happening
of an event, the probability of the event is [in the ratio] to the
probability of its failure as his loss if it fails [is in the ratio] to
his gain if it happens ", Proposition 2, Bayes (1763)

“The probability of any event is the ratio between the value at which an expectation
depending on the happening of the event ought to be computed, and the chance of the
thing expected upon its happening ", Bayes (1763)
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Bayesian statistics ?
I Bayes formula (the “inverse problem"),

Bayes (1763), Laplace (1774)
Given two events A and B such that P(B) 6= 0,

P(A|B) =
P(B|A) · P(A)

P(B)

I subjective probabilities,
De Finetti (1937), Anscombe et al. (1963), Kahneman
and Tversky (1972) Savage (1972), Je�rey (2004)

I Non-frequentist approach of probablities,
Neyman (1977), Bayarri and Berger (2004)

I Credibility and “experience rating”
Whitney (1918), Longley-Cook (1962), Bühlmann (1967), Klugman (1991)
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Bayesian statistics ?

I Bayes formula (the “inverse problem"),
Bayes (1763), Laplace (1774)

Given two events A and B such that P(B) 6= 0,

P(A|B) =
P(B|A) · P(A)

P(B)

I An inverse problem (we try to determine the causes of a
phenomenon of a phenomenon from the experimental
observation of its e�ects)

I An update of beliefs (from a prior distribution P(A) to a
posterior distribution P(A|B))
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Bayesian statistics ?

A person coughs (event B). Which hypothesis is the most credible?
(from Dehaene (2012))

8
><

>:

A1 : she has lung cancer
A2 : she has gastroenteritis
A3 : she has the flu

With Bayes’ rule P[disease|symptom] / P[symptom|disease] · P[disease]
8
><

>:

A1 : P[disease] ⇡ 0 (even if P[symptom|disease] ⇡ 1)

A2 : P[symptom|disease] ⇡ 0 (even if P[symptom|disease] high)
A3 : two reasonable probabilities
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The practice of conditional probabilities

"Monty Hall" problem
(from Let’s make a deal)

I strategy 1 : always switch the door
I strategy 2 : never switch the door

P(treasure behind the door)

=
1

3
P(treasure behind the other door)
P(treasure behind the other door| correct) · P( correct)
P(treasure behind the other door| false) · P( false)
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The practice of conditional probabilities

"Monty Hall" problem
(from Let’s make a deal)

I strategy 1 : always switch the door
I strategy 2 : never switch the door

P(treasure behind the door)

=
1

3
P(treasure behind the other door)
P(treasure behind the other door| correct) · P( correct)
P(treasure behind the other door| false) · P( false)
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The practice of conditional probabilities

"Monty Hall" problem
(from Let’s make a deal)

I strategy 1 : always switch the door
I strategy 2 : never switch the door

P(strategy 2 winning)
= P(treasure behind the door choisie initialement)

=
1

3
(making the goat appear behind the third door does not bring
no information on what’s behind the first door)
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The practice of conditional probabilities

"Monty Hall" problem
(from Let’s make a deal)

I strategy 1 : always switch the door
I strategy 2 : never switch the door

P(strategy 1 winning)
= P(treasure behind the other door)
= P(treasure behind the other door| correct ) · P( correct )

+ P(treasure behind the other door| false ) · P( false )

= 0 · 1
3
+ 1 · 2

3
=

2

3
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Practice of Bayesian Statistics

“Do doctors understand test results? ", Kremer (2014):
1 percent of adults have cancer. The vast majority of these cancers (90 percent) can
be detected by a test. There is a 9 percent chance that the test will be positive in a
person who does not have cancer. If the test is positive, what is the likelihood that the
person actually has cancer?

A) 9 out of 10
B) 8 out of 10
C) 1 out of 2
D) 1 out of 10
E) 1 out of 100
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Practice of Bayesian Statistics

“Do doctors understand test results? ", Kremer (2014):
1 percent of adults have cancer. The vast majority of these cancers (90 percent) can
be detected by a test. There is a 9 percent chance that the test will be positive in a
person who does not have cancer. If the test is positive, what is the likelihood that the
person actually has cancer?

A) 9 out of 10 (chosen by 50% gynecologists)
B) out of 10
C) 1 out of 2
D) 1 out of 10
E) 1 out of 100
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Practice of Bayesian Statistics
1 percent of adults have cancer. The vast majority of these cancers (90 percent) can
be detected by a test. There is a 9 percent chance that the test will be positive in a
person who does not have cancer. If the test is positive, what is the likelihood that the
person actually has cancer?
Answer: when formalizing

8
><

>:

P[cancer] = 1%
P[test positive|cancer] = 90%
P[test positive|no cancer] = 9%

then, using Bayes’ rule

P[cancer|test positive] = P[test positive|cancer] · P[cancer]
P[test positive] =

90%⇥ 1%
9%⇥ 99%+

=
9

9 + 89
' 1

10

valid answer is D, “1 out of 10”.
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Practice of Bayesian Statistics

For Gigerenzer and Ho�rage (1995), the Bayesian formulation is (too) complex.
Another presentation of the problem:
Out of 10,000 people, 100 have cancer. Of these 100, 90%, or 90, will test positive.
Of the remaining 9,900, 9 percent, or 899, will test positive. Of a sample of people
who test positive, what fraction actually have cancer?
Answer: 90 among (90+899), i.e. about “1 out of 10”.
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Axiomatic of beliefs I

Axioms of Bayesian approach, Titelbaum (2022a), (2022b), are
I step 1 : beliefs

Beliefs are quantified on a scale from 0 to 1
The "rationality of beliefs" means that beliefs are measures of probabilities (and verify
the associated axioms), Buehler (1976).
Note: a weaker version of coherence can be defined using capacities (in the sense of
Choquet (1954)), based on the axiom : if A ⇢ B, then Q[A]  Q[B] (and no longer
the additivity of disjoint events)
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Axiomatic of beliefs II
I step 2 : updating beliefs

For Popper (1955), an agent who believes A to the degree Q[A], if he learns B, he
then believes A to the degree Q[A|B]

Q[A] 7! Q[A|B] ·Q[B]|{z}
=1

+Q[A|¬B] ·Q[¬B]| {z }
=0

= Q[A|B] = QB[A]

Je�rey (1965) proposed a generalization if B is associated with a belief Q0[B],

Q[A] 7! Q0[A] = Q[A|B] ·Q0[B] +Q[A|¬B] ·Q0[¬B]

In other words, "reasoning consists of graduating one’s beliefs and revising one’s
degrees of belief by Bayesian conditionalization as new information becomes available",
Drouet (2016).

@freakonometrics freakonometrics freakonometrics.hypotheses.org 36 / 167

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Axiomatic of beliefs III

“La di�erenza essenziale da rilevare è nell’attribuzione del ‘perchè’: non cerco perchè
IL FATTO che io prevedo accadrà, ma perchè IO prevedo che il fatto accadrà. Non
sono più i fatti che hanno bisogno di una causa per prodursi : è il nostro pensiero che
trova comodo di immaginare dei rapporti di causalità per spiegarli, coordinarli, e
renderne possibile la previsione”, De Finetti (1931)

"I do not seek to know why the fact that I foresee will come true, but
why I foresee that the fact will come true. It is no longer the facts
that need a cause to happen: it is our mind that finds it convenient
to imagine causal relationships in order to explain them, to coordinate
them and to make the prediction possible"
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The Dutch book I

Ramsey (1926) and De Finetti (1937) suggested to understand the rationality of beliefs
with the help of bets (formalized by Lehman (1955) Kemeny (1955), Teller (1973),
Lindley et al. (1979) and Skyrms (1987)) and "arbitrage" (we speak of Subjective
Bayesianism).
We assign the belief q to a bet (lottery) associated to A, yielding a if A occurs and 0
otherwise if and only if the value of the lottery is qa, Hájek (2009)
The dutch book argument is that if an individual has beliefs that violate the
probabilities and if he bets based on those beliefs, then he is willing to accept a set of
bets that he is certain to lose, Pettigrew (2020).
Note: Lehman (1955) used the term "dutch book", but it corresponds to the notion of
"arbitrage" in financial mathematics.
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The Dutch book II
Lehman (1955) “if a set of betting prices violate the probability calculus, then there is
a Dutch Book consisting of bets at those prices."
Kemeny (1955), “if a set of betting prices obey the probability calculus, then there
does not exist a Dutch Book consisting of bets at those prices"
This characterization is also called Cox-Jaynes theorem, Cox (1946) taken up by
Jaynes (1988) and Jaynes (2003) : probabilities (characterized by Kolmogorov axioms)
are the only normative mechanism for plausibility induction
See also Good (1966)
or Eisenberg and Gale (1959) and Baron and Lange (2006), Chen and Pennock (2010)
on parimutuel, and predictive markets
Suppose that I payers bet on J horses. Each player bets bi , and normalize
(b1 + · · ·+ bI = 1).
Player i bets �i ,j on horse j (bi = �i ,1 + · · ·+ �i ,J).
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The Dutch book III

We note ⇡j the amount bet on the horse j (⇡j = �1,j + · · ·+ �I,j).
Since ⇡j 2 (0, 1) and ⇡1 + · · ·+ ⇡J = 1 is interpreted as a probability, describing a
"collective belief".
We can also add empirical constraints, and associate the beliefs to known frequencies)
(this is called Empirical Bayesianism)
Williamson (2004) introduced an objective Bayesianism, inspired by Jaynes (1957),
based on entropy maximization (maxmin approach), associated with a precautionary
principle.
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Non-boolean logic I
Note We can also find links with logic.
Classically, if we have the proposition "If A is true, then B is true"

(
If I observe that A is true, I conclude that B is true
If I observe that B is false, I conclude that A is false.

With boolean logic, these are the only equivalent assertions

(A =) B and ¬B =) ¬A)

But there may be some plausible reasoning, Pólya (1958)
(

If I observe that A is false, it seems to me that B becomes less plausible
If I observe that B is true, it seems to me that A becomes more plausible.

What means "plausible" here ?
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Bayesianism, statistics and calculus I

posterior = ⇡(✓|y) = ⇡(✓) · P(y |✓)
P(y) =

prior · likelihood
evidence

posterior = ⇡(✓|y) / ✓a�1(1� ✓)b�1

B(a, b) ·
✓

s
n

◆
✓s(1� ✓)n�s

I Conjugate distributions: Binomial - Beta

The likelihood for binomial (Bernoulli) variables
(

x 7! f (x; p) = ps(1� p)n�s where s = x>1 = x1 + · · ·+ xn
p 7! ps(1� p)n�s on [0, 1] is a Beta distribution

If
(

xi |✓ ⇠ B(✓)
✓ ⇠ Beta(a, b) prior

then ✓|x ⇠ Beta(a + s, b + n � s) posterior

(that can be extended to Multinomial - Dirichlet)
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Bayesianism, statistics and calculus II
I Conjugate distributions : Poisson - Gamma

The likelihood for Poisson variables is
8
<

:
x 7! f (x;�) = en��s

x1! · · · xn!
where s = x>1 = x1 + · · ·+ xn

� 7! en��s on R+ is a Gamma distribution

If
(

xi |� ⇠ P(�)

✓ ⇠ Gamma(a, b) a priori
then �|x ⇠ Gamma(a + s, b + n) a posteriori

Hence
a priori E(�) = a

b and a posteriori E(�|x) = a + s
b + n

intensively used in credibility theory Bühlmann (1967).
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Bayesianism, statistics and calculus III

I Conjugate distributions : Normal - Normal

If variance ⌃ is known
(

x i |µ ⇠ N (µ,⌃)

µ ⇠ N (µ0,⌃0)
then µ|x ⇠ N

�
µx ,⌃x

�

where
(
µx =

�
⌃�1

0 + n⌃�1
��1 �

⌃�1
0 µ0 + n⌃�1x̄

�

⌃x =
�
⌃�1

0 + n⌃�1
��1

used classically in Bayesian econometrics.
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Bayesianism, statistics and calculus IV

I Conjugate distributions : Normal - Inverse Wishart

If mean µ is known
(

x i |⌃ ⇠ N (µ,⌃)

⌃ ⇠ IW (⌫0, 0)
then ⌃|x ⇠ IW (⌫x , x )

where

8
><

>:

⌫x = n + ⌫

 x =  +
nX

i=1

(xi � µ)(xi � µ)>

Classically used in Bayesian econometrics, for VAR models, Adjemian and Pelgrin
(2008), or in portfolio management, Black and Litterman (1990, 1992) (see also
Satchell and Scowcroft (2000) for a perspective).
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Bayesianism, statistics and calculus V

Bayesian methods can be very powerful for estimating panel, hierarchical, or multilevel
models, Gelman and Hill (2006).
I Hierarchical model

When the individual i belongs to the group j ,

yi ,j = ↵j + x>
i �j + "i ,j , where

(
↵j = a0 + z>

j �1 + uj
�j = b0 + Z>

j B1 + uj

with constants and slopes depending on the groups.
(usually in a GLM model).
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Bayesianism, statistics and calculus VI
Otherwise, either simulations are used (see MCMC) or simplifying assumptions are
made.
Consider symptoms s1, · · · , sk and diseases m1, · · · ,mj (in {0, 1})

P
⇥
M = m

��S = s
⇤
=

P
⇥
M = m

⇤
· P
⇥
S = s

��M = m
⇤

X

x
P
⇥
M = x

⇤
· P
⇥
S = s

��M = x
⇤

“Naïve Bayes” relies on assumptions (Spiegelhalter et al. (1993))
I diseases are mutually exclusive P

⇥
M = m

��S = s
⇤
= 0 si m>1 > 1,

I the symptoms are conditionally independent

P
⇥
S = s

��Mi = mi
⇤
=

kY

j=1

P
⇥
Sj = sj

��Mi = mi
⇤
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Bayesianism, statistics and calculus VII

In that case

P
⇥
Mi = mi

��S = s
⇤
=

P
⇥
Mi = mi

⇤
·

kY

j=1

P
⇥
Sj = sj

��Mi = mi
⇤

P
⇥
Mi = 0

⇤
·

kY

j=1

P
⇥
Sj = sj

��Mi = 0
⇤
+ P

⇥
Mi = 1

⇤
·

kY

j=1

P
⇥
Sj = sj

��Mi = 1
⇤

We can improve the model by using a Bayesian network (we will talk about it later).
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Bayesianism, statistics and calculus VIII

To determine P
⇥
Mi = mi

��S = s
⇤
, we need to know

I prevalence of disease P
⇥
Mi = 1

⇤

I sensitivity P
⇥
Sj = 1|Mi = 1

⇤

I specificity P
⇥
Sj = 0|Mi = 0

⇤

for all symptoms Sj and all disease Mi .

Note that P
⇥
Sj = sj |Mi = mi

⇤
have a causal interpretation: it is the diseases that

cause the symptoms.

See Sadegh-Zadeh (1980) on Bayesian diagnostics, or Donnat et al. (2020).
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Bayesianism, statistics and calculus I
I Posterior distribution

Suppose x = {0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, B(✓)

Frequentist approach, b✓ ⇡ N
✓
✓,

✓(1� ✓)

n

◆
, P

 
✓ 2

h
x ± 1.64

r
x(1� x)

n

i!
⇡ 90%
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Bayesianism, statistics and calculus XVIII
I Posterior distribution

and finally x = {0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, B(✓)

Bayesian approach, b✓|x ⇠ Beta(↵0 + s,�0 + n � s), s =
nX

i=1

xi
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Bayesianism, statistics and calculus XIX
I Posterior distribution

What if x = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, B(✓) ?

Bayesian approach, b✓|x ⇠ Beta(↵0,�0 + n), since
nX

i=1

xi = 0
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Bayesianism, statistics and calculus XX
I Posterior distribution

Ministère de l’intérieur (2019) “A single threshold for qualifying a geotechnical drought
as abnormal: a return period greater than or equal to 25 years ” (probabilité 1/25)
(probability 1/25) No drought has been observed over 2 years ({0, 0}), what happens
to our belief about the return period?
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Bayesianism, statistics and calculus XXI

I Posterior distribution
As a comparison, if we have observed two major droughts ({1, 1}), our beliefs a
posteriori are very influenced by these unexpected events
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Bayesianism, statistics and calculus XXII

I From the distribution to the estimator
(

posterior average b✓ = E
⇥
✓|D

⇤

maximum a posteriori (MAP) b✓ = max
�
⇡(✓|D)

 
i.e. the mode

The average posterior is also the solution of the problem

b✓ = argmin
⌧

�
E
⇥
(✓ � ⌧)2|D

⇤ 
= argmin

⌧

⇢Z
(✓ � ⌧)2⇡(✓|D)d✓

�

I "confidence interval" or "credibility interval"
For the confidence interval, we look for [baD, bbD] such that P[✓ 2 [baD, bbD]] � 95%.
For the credibility interval, we look for [a, b] such that P[✓ 2 [a, b]|D] � 95%.
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Bayesianism, statistics and calculus XXIII

I "confidence interval"
Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
(here ✓ = 0)

Consider [a, b] =

x ± q↵

b�p
n

�

Si on génère D0 = {x 0
1, · · · , x 0

n} suivant N (✓,�2) on veut

P

✓ 62


x 0 ± q↵

b�p
n

��
⇡ ↵

interprété comme une fréquence, en répétant l’expérience.
Ici, ↵ = 5%: dans 5% des simulations, 0 n’est pas dans [a, b].
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Bayesianism, statistics and calculus XXIV

I "confidence interval"
Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
(here ✓ = 0)

Consider [a, b] =

x ± q↵

b�p
n

�

Si on génère D0 = {x 0
1, · · · , x 0

n} suivant N (✓,�2) on veut

P

✓ 62


x 0 ± q↵

b�
0
p

n
��
⇠ ↵

interprété comme une fréquence, en répétant l’expérience.
Ici, ↵ = 5%: dans 5% des simulations, 0 n’est pas dans [a, b].
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Bayesianism, statistics and calculus XXV

I "confidence interval"
Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
(here ✓ = 0)

Consider [a, b] =

x ± q↵

b�p
n

�

Generate D0 = {x 0
1, · · · , x 0

n} from N (✓,�2), we want

P

✓ 62


x 0 ± q↵

b�
0
p

n
��
⇡ ↵

interpreted as a frequency, and repeating the experience.
Here, ↵ = 5%: in 5% of the simulations, 0 is not in [a, b].
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Bayesianism, statistics and calculus XXVI
I "credibility interval"

Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
Consider some prior distribution ⇡(·) for ✓
and ⇡(·|D) is the posterior distribution (that can be compli-
cated)
Suppose that we can generate ✓̃1, · · · , ✓̃k based on ⇡(·|D).
Consider

(
a = b⇧�1(↵/2|D) quantile with level ↵/2
b = b⇧�1(1� ↵/2|D) quantile with level 1� ↵/2

then

P
h
✓ 62

h
b⇧�1(↵/2|D); b⇧�1(1� ↵/2|D)

ii
⇡ ↵
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Bayesianism, statistics and calculus XXVII
I "credibility interval"

Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
Consider some prior distribution ⇡(·) for ✓
and ⇡(·|D) is the posterior distribution
(potentially complicated)
On suppose qu’on peut générer ✓̃1, · · · , ✓̃k suivant ⇡(·|D).
On considère

(
a = b⇧�1(↵/2|D) quantile with level ↵/2
b = b⇧�1(1� ↵/2|D) quantile with level 1� ↵/2

then

P
h
✓ 62

h
b⇧�1(↵/2|D); b⇧�1(1� ↵/2|D)

ii
⇡ ↵
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Bayesianism, statistics and calculus XXVIII
I "credibility interval"

Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
Consider some prior distribution ⇡(·) for ✓
and ⇡(·|D) is the posterior distribution
(potentially complicated)
Suppose we generate ✓̃1, · · · , ✓̃k given ⇡(·|D).
On considère

(
a = b⇧�1(↵/2|D) quantile with level ↵/2
b = b⇧�1(1� ↵/2|D) quantile with level 1� ↵/2

then

P
h
✓ 62

h
b⇧�1(↵/2|D); b⇧�1(1� ↵/2|D)

ii
⇡ ↵
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Bayesianism, statistics and calculus XXIX
I "credibility interval"

Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
Consider some prior distribution ⇡(·) for ✓
and ⇡(·|D) is the posterior distribution
(potentially complicated)
Suppose we generate ✓̃1, · · · , ✓̃k given ⇡(·|D).
Consider

(
a = b⇧�1(↵/2|D) quantile with level ↵/2
b = b⇧�1(1� ↵/2|D) quantile with level 1� ↵/2

then

P
h
✓ 62

h
b⇧�1(↵/2|D); b⇧�1(1� ↵/2|D)

ii
⇡ ↵
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Bayesianism, statistics and calculus XXX
I "credibility interval"

Suppose D = {x1, · · · , xn}, Xi ⇠ N (✓,�2)
Consider some prior distribution ⇡(·) for ✓
and ⇡(·|D) is the posterior distribution
(potentially complicated)
Suppose we generate ✓̃1, · · · , ✓̃k given ⇡(·|D).
Consider

(
a = b⇧�1(↵/2|D) quantile with level ↵/2
b = b⇧�1(1� ↵/2|D) quantile with level 1� ↵/2

then

P
h
✓ 62

h
b⇧�1(↵/2|D); b⇧�1(1� ↵/2|D)

ii
⇡ ↵
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Bayesianism, statistics and calculus XXXI

We can also evoke the nonparametric Bayesian modeling, Ferguson (1973). Instead of
assuming Xi ⇠ f 2 F⇥ where F⇥ = {f✓ : ✓ 2 ⇥}, we consider a more general family,

Xi ⇠ f 2 F =

⇢
f :

Z

R
[f 00(y)]2dy <1

�

We can always compute a posterior law,

⇡(f 2 A|D) = P(X 2 A|D) =

R
A Ln(f )d⇡(f )R
F Ln(f )d⇡(f )

, where Ln(f ) =
nY

i=1

f (xi)

where ⇡ is an a prior distribution on F . Very close to the Pólya urn problems (infinite),
to the Chinese restaurant process and to the Dirichlet processes, Blackwell and
MacQueen (1973), Ghosh and Ramamoorthi (2003), Orbanz and Teh (2010).
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Bayesianism, statistics and calculus XXXII
For example, if X1, · · · ,Xn i.i.d. of distribution F . The a priori law ⇡ is a Dirichlet
process, D(↵,F0), where F0 2 F is a prior distribution for X , while ↵ indicates the
dispersion around F0.
To draw according to D(↵,F0),
I we draw z1, z2, · · · according to F0,
I we draw v1, v2, · · · according to a Beta law B(1,↵),
I we define iteratively weights, !1 = v1 and !j = vj(1� vj�1) · · · (1� v1)
I F (x) =

X

j�1

!j1(x  zj)

If prior ⇡ ⇠ D(↵,F0), then the posterior is, ⇡|D ⇠ D(↵+ n,Fn) where

Fn =
n

n + ↵
bFn +

↵

n + ↵
F0, where bFn(x) =

1

n

nX

j=1

1(x  xj)
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Bayes and Markov property I
I Markov property

This property allows to simplify the writing (and the calculation) of the posterior
distribution

P
⇥
Xt+1 = xt+1

��Xt = xt ,Xt�1 = xt�1, · · ·
⇤
= P

⇥
Xt+1 = xt+1

��Xt = xt
⇤

X1 X2 X3 X4 X5 X6 X7 X8

As a reminder, under some technical assumptions, the transition kernel p(xt+1|xt)
converges (t !1) to a stationary measure p⇤(x).
If xt 2 X of finite cardinal, p(·|·) reads in a (stochastic) matrix P.

P
⇥
Xt+k = j

��Xt = i
⇤
= [Pk ]ij (Chapman Kolmogorov)
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Bayes and Markov property II
Example bonus-malus schemes Lemaire (1995),

If claims frequency is N ⇠ P(0.225),
P(N = 0) = 20%.

●

●

●

●

●

●

t+1 vs. t

1 2 3 4 5 6

6
5

4
3

2
1 0.8

0.8

0.8

0.178

0.8

0.178

0.8

0.8

0.021

0.021

0.199

0.199

0.199

0.199
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Bayes and Markov property XI
Example bonus malus schemes Lemaire (1995),

If claims frequency is N ⇠ P(0.225),
P(N = 0) = 20%.

●

●

●

●

●

●

t+100 vs. t

1 2 3 4 5 6

6
5

4
3

2
1 0.481

0.481

0.481

0.481

0.481

0.481

0.12

0.12

0.12

0.12

0.12

0.12

0.15

0.15

0.15

0.15

0.15

0.15

0.08

0.08

0.08

0.08

0.08

0.08

0.073

0.073

0.073

0.073

0.073

0.073

0.092

0.092

0.092

0.092

0.092

0.092
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Bayes and Markov property XII

I Expected values and MCMC
Law of large numbers

if X1, · · · ,Xn, · · · i.i.d. with law p⇤,
1

n

nX

i=1

Xi
a.s.! Ep⇤(X ) =

Z
xdp⇤(x)

Ergodic theorem (if p(·|·) has invariant distribution p⇤)

if X1, · · · ,Xt ,Xt+1, · · · is generated from p(·|·), 1n

t0+nX

t=t0+1

Xt
a.s.! Ep⇤(X ) =

Z
xdp⇤(x)

where (Xt) is generated from p(·|·) using either d’Hasting-Metropolis or Gibbs sampler,
Andrieu et al. (2003) or Kruschke (2014).
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Bayes and Markov property XIII
Using Markov property

P(x) =
pY

i=2

P(xi |xi�1) · P(x1)

That can be extended on a DAG for the p variables.
I Directed acyclic graph (DAG)

X1

X2 X3

X4

X1

X2 X3

X4

X1

X2 X3

X4 X5
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Bayes and Markov property XIV
I Bayesian Network

A couple {G ,P} is a Bayesian network, if G = {V ,E} is a DAG and if it satisfies the
Markov property : each variable X in V is independent from its non-descendants, in G ,
conditional on its parents,

X1

X2 X3

X4 X5

P(x) =
pY

i=1

P(xi |xparentsi )

8
>>>><

>>>>:

X2 ?? {X3,X4} | X1

X3 ?? X2 | X1

X4 ?? {X1,X5} | {X2,X3}
X5 ?? {X1,X2,X4} | X3

P(x) = P(x5|x3)P(x4|x2, x3)P(x3|x1)P(x2|x1)P(x1)
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Bayes and Markov property XV
I Bayesian Network and Medical Diagnostics

via Lauritzen and Spiegelhalter (1988) and Højsgaard et al. (2012)

trip in Asia

tuberculosis cancer
poumon

bronchitis

smoker

tuberculosis or
lung cancer

dyspnea

x-rays

We have network (DAG)
and conditional probabilities
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Bayesianism and statistical learning I

Econometrics is based on a probabilistic model, unlike most machine learning
approaches, see Charpentier et al. (2018)
I in SVMs, the distance to the separation line is used as a score which can then be

interpreted as a probability - Platt scaling, Platt et al. (1999) or isotonic
regression Zadrozny and Elkan (2001, 2002) (see also Niculescu-Mizil and
Caruana (2005) “good probabilities")

I GLM models (under additional conditions) satisfy the autocalibration property,
Denuit et al. (2021), not machine learning models, i.e.

E[Y |bY = y ] = y , 8y

Lichtenstein et al. (1977), Dawid (1982) or Oakes (1985), Gneiting et al. (2007)
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Bayesianism and statistical learning II

As mentioned on Scikit-learn’s methodological page, “Well calibrated classifiers are
probabilistic classifiers for which the output can be directly interpreted as a confidence
level. For instance, a well calibrated (binary) classifier should classify the samples such
that among the samples to which it gave a [predicted probability] value close to 0.8,
approximately 80% actually belong to the positive class."
Very close to what exists to quantify uncertainty in weather models,
“Suppose that a forecaster sequentially assigns probabilities to events. He is well
calibrated if, for example, of those events to which he assigns a probability 30 percent,
the long-run proportion that actually occurs turns out to be 30 percent", Dawid (1982)
ou “we desire that the estimated class probabilities are reflective of the true underlying
probability of the sample, Kuhn et al. (2013)

@freakonometrics freakonometrics freakonometrics.hypotheses.org 98 / 167

https://scikit-learn.org/stable/modules/calibration.html
https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Bayesianism and statistical learning III

As explained in Van Calster et al. (2019), "among patients
with an estimated risk of 20%, we expect 20 in 100 to have
or to develop the event",
I if 40 out of 100 in this group are found to have the

disease, the risk is underestimated
I If we observe that in this group, 10 out of 100 have the

disease, we have overestimated the risk.

Hosmer-Lemeshow test (Hosmer Jr et al. (2013)) for the
logistic model.
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Bayesianism and statistical learning IV
I Ridge estimate, Hoerl and Kennard (1970) (linear model)

We look for b�� = argmin
�2Rp

n
(y � X�)>(y � X�) + �k�k22

o
, "equivalent" to the

constrained optimization problem argmin
�2Rp :k�k2c

n
(y � X�)>(y � X�)

o
.

Consider (
y = X� + " or y |X ,� ⇠ N (X�,�2I)
� ⇠ N (0, ⌧2I) posterior

Maximum a posteriori (MAP) satisfies

b�MAP = argmin
�2Rp

⇢
(y � X�)>(y � X�) +

�2

⌧2
k�k22

�
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Bayesianism and statistical learning V
I LASSO estimate, Tibshirani (1996) (linear regression)

We look for b�� = argmin
�2Rp

n
(y � X�)>(y � X�) + �k�k1

o
, "equivalent" (Gill et al.

(2019)) to the constrained optimization problem argmin
�2Rp :k�k1c

n
(y � X�)>(y � X�)

o
.

Consider (Tibshirani (1996) and Park and Casella (2008))
(

y = X� + " ou y |X ,� ⇠ N (X�,�2I)
� ⇠ L(⌧) posterior, i.e. ⇡(�) = (⌧/2)p exp

⇥
� ⌧k�k1

⇤

Maximum a posteriori (MAP) satisfies

b�MAP = argmin
�2Rp

n
(y � X�)>(y � X�) + �2⌧k�k1

o
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Bayesianism and statistical learning VI

Tibshirani (1996) suggested that Lasso estimates can be interpreted as posterior mode
estimates when the regression parameters have independent and identical Laplace (i.e.,
double-exponential) priors
I Neural nets

Rumelhart et al. (1985), Rumelhart et al. (1986) Hertz et al. (1991) and Buntine and
Weigend (1991) proposed to formalize back-propagation in a Bayesian context, taken
up by MacKay (1992) and Neal (1992).
State of the art in Neal (2012), more than 25 years ago (or more recently Neal (2012)
Theodoridis (2015), Gal and Ghahramani (2016) and Goulet et al. (2021))
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Bayesianism as a learning process I

Old topic, see
Shepard (1987) or Tenenbaum (1998).
“How does abstract knowledge guide learn-
ing and reasoning from sparse data? How
does the mind get so much from so little?,
Tenenbaum et al. (2011)
Discussed in Dehaene (2012),
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Bayesianism as a learning process II

The simplifications managed by the brain are known since a long time, Goodman
(1955).
We have an urn containing 100 balls, a person draws a blue ball, what can we say ?
A priori not much... except if in the past, we observed that all the urns always
contained balls of the same color. A single observation can then be very informative
Allows to learn how to learn, Kemp and Tenenbaum (2008), Kemp et al. (2010),
Tenenbaum et al. (2011)
Language learning, Stolcke (1994), Watanabe and Chien (2015), Duh (2018) or
Murawaki (2019).
Since Shepard (1992), many experiences on vision
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Bayesianism as a learning process III
Von Helmholtz (1867) defined “unbewusste Schluss”, or unconscious inference.
The view is constructed (more or less) as a projection, but (see linear algebra course)
projections are not invertible: several images could have the same projection. Our
brain looks for the most likely image

Sensory inputs are always ambiguous, so our perceptual system must select, among an
infinite number of possible solutions, the one that is most plausible, Ernst and Banks
(2002).
On vision as a Bayesian learning process Yuille and Kersten (2006), Clark (2013)
Moreno-Bote et al. (2011)
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Bayesianism as a learning process IV
Classic example on "biases" of image perception, for example the forms.

Consider the image above, what do we see?
Classically, we see 5 "holes" and 1 "bump" Classiquement, on voit 5 “bosses” et 1
“trou” Classiquement, on voit 5 “bosses” et 1 “trou” Classiquement, on voit 5
“bosses” et 1 “trou” Classiquement, on voit 5 “bosses” et 1 “trou”
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Bayesianism as a learning process V
Classic example on "biases" of image perception, for example the forms.

Consider the picture above, what do you see ?
Classically, 5 "bumps" et 1 "hole" Classiquement, on voit 5 “bosses” et 1 “trou”
Classiquement, on voit 5 “bosses” et 1 “trou” Classiquement, on voit 5 “bosses” et 1
“trou” Classiquement, on voit 5 “bosses” et 1 “trou”
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Bayesianism as a learning process VI
Classic example on "biases" of image perception, for example the forms.

It is however the same figure (having undergone a rotation of 180�. (grey rectangle
with 6 disks with a black/white gradient). Ambiguous problem, Ramachandran (1988).
Note: our eye makes an inference about the light source (comes from above, without
any other information - a priori assumption) to infer the shape.
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Bayesianism as a learning process VII

Classic example on "biases" of image perception, for example the lenghts

Among red and blue lines,
which one is the longuest?

Comme le souligne “linférence Bayésienne rend bien compte des processus de
perception: étant donné des entrées ambigües, notre cerveau en reconstruit
linterprétation la plus probable.
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Bayesianism as a learning process VIII

Classic example on "biases" of image perception, for example the lenghts

Among red and blue lines,
which one is the longuest?

As mentioned by Dehaene (2012), “Bayesian inference gives a good account of
perception processes: given ambiguous inputs, our brain reconstructs the most likely
interpretation.
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Bayesianism as a learning process IX

Classic example on "biases" of image perception, for example the lenghts

Among red and blue lines,
which one is the longuest?

Generally, all strokes red are seen as larger than the stroke blue.
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Bayesianism as a learning process X

Which of the lines red and blue
is larger?

Several studies on the perception of the size of an object,
according to its orientation (angle ✓)
Shipley et al. (1949), Pollock and Chapanis (1952), Cor-
mack and Cormack (1974) and Purves et al. (2008) noted
that the vertical line appears 10% larger than the hori-
zontal line.
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Bayesianism as a learning process XI
The deformation made by the brain corresponds to a priori distributions that can be
observed on images in nature, Howe and Purves (2002), Purves (2009), Girshick et al.
(2011) or Purves et al. (2011) (based on (real) distances measured, by laser telemetry
and compared to the measurement on the retina)

In other words, our retina has learned to correct the perceived distances according to
the angle of inclination, in an everyday environment (3d), but continues to reproduce it
for a drawing on a sheet (2d).
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Bayesianism as a learning process XII

One can also learn from Ensemble methods and by aggregation
of opinions. For example, guess the weight of a cow, Cornwall,
England, 1906, Galton (1907).
787 participants, x1, · · · , xn.
Unique prediction xj v.s average x ,

E
⇥
(xj � t)2

⇤
] = (x � t)2 + 1

n

nX

i=1

(xi � x)2

where t is the truth (“ambiguity decomposition”).
“Bayesian methods are sometimes proposed as mathematical
aggregations of expert judgements”, Hanea et al. (2021)
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Bayesianism as a learning process XIII
“I have approximate answers and possible beliefs and di�erent degrees of certainty
about di�erent things”, Feynman (2005)
“Diversity and independence are important because the best collective decisions are the
product of disagreement and contest, not consensus or compromise”, Surowiecki
(2005)
Merrick (2008), Karvetski et al. (2013) on model aggregation m1, · · · ,mk ,

m(x) =
kX

i=1

✓imi(x,↵i)

with weights ✓ = (✓1, · · · , ✓k) in the simplex Sk . We assume a prior Dirichlet
distribution.
See also Mongin (1995, 2001), inspired by Karni et al. (1983).

@freakonometrics freakonometrics freakonometrics.hypotheses.org 115 / 167

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Bayesianism as a learning process
Thompson sampling (or posterior sampling and probability matching), by Thompson
(1933, 1935), and Beta-Bernoulli bandits.
We have to choose among K alternatives, that yield X = (X1, · · · ,XK ), with
Xk ⇠ B(✓k).
Assume (prior) ✓k ⇠ Beta(↵k ,�k). At time t, draw K Beta variables (independents)
Bk ⇠ Beta(↵k ,�k), and select k? = argmin

k=1,··· ,K
{Bk}.

Consider updating (↵k⇤ ,�k⇤) (↵k⇤ + xk⇤ ,�k⇤ + (1� xk⇤)),

I simulated data, i.i.d., X1 ⇠ B(72%)

I simulated data, i.i.d., X2 ⇠ B(24%)
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Bayesianism as a learning process

We can use that approach in the context
of Monty Hall

I strategy 1 : always switch the door
I strategy 2 : never switch the door
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"Conclusion" or wrap-up

I the Bayesian approach is interesting to describe
beliefs in front of uncertain events, in particular if
the events will occur only once

I Bayesian computation can be interpreted as a belief
update or as an inverse problem

I is very strongly linked to causal graphs
I allows to take into account expert opinions, and

proposes an ensemble method modeling describes
both human and machine learning
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"Conclusion" or wrap-up

(via https://xkcd.com/2059/)
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