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Agenda
• Introduction to Predictive Modeling
◦ Prediction, best estimate, expected value and confidence interval
◦ Parametric versus nonparametric models
• Linear Models and (Ordinary) Least Squares
◦ From least squares to the Gaussian model
◦ Smoothing continuous covariates
• From Linear Models to G.L.M.
• Modeling a TRUE-FALSE variable
◦ The logistic regression
◦ R.O.C. curve
◦ Classification tree (and random forests)
• From individual to functional data
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Prediction ? Best estimate ?

E.g. predicting someone’s weight (Y )
Consider a sample {y1, · · · , yn} −→
Model : Yi = β0 + εi

with E(ε) = 0 and Var(ε) = σ2

ε is some unpredictable noise

Ŷ = y is our ‘best guess’...
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Predicting means estimating E(Y ).

Recall that E(Y ) = argmin
y∈R

{‖Y − y‖L2} = argmin
y∈R

{E
(
[

ε︷ ︸︸ ︷
Y − y]2

)
}︸ ︷︷ ︸

least squares
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Best estimate with some confidence

E.g. predicting someone’s weight (Y )
Give an interval [y−, y+] such that

P(Y ∈ [y−, y+]) = 1− α

Confidence intervals can be derived if
we can estimate the distribution of Y

F (y) = P(Y ≤ y) or f(y) = dF (x)
dx

∣∣∣∣
x=y
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(related to the idea of “quantifying uncertainty” in our prediction...)
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Parametric inference

E.g. predicting someone’s weight (Y )
Assume that F ∈ F = {Fθ,θ ∈ Θ}
1. Provide an estimate θ̂
2. Compute bound estimates

ŷ− = F−1
θ̂

(α/2)

ŷ+ = F−1
θ̂

(1− α/2)

Standard estimation technique :
−→ maximum likelihood techniques
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θ̂ = argmax
θ∈Θ

{ n∑
i=1

log fθ(yi)︸ ︷︷ ︸
log likelihood

}  explicit (analytical) expression for θ̂
numerical optimization (Newton Raphson)
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Non-parametric inference

E.g. predicting someone’s weight (Y )
1. Empirical distribution function

F̂ (y) = 1
n

n∑
i=1

1(yi ≤ y)︸ ︷︷ ︸
#{i such that yi≤y}

natural estimator for P(Y ≤ y)
2. Compute bound estimates

ŷ− = F̂−1(α/2)
ŷ+ = F̂−1(1− α/2)
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Prediction using some covariates

E.g. predicting someone’s weight (Y )
based on his/her sex (X1)

Model : Yi =

 βF + εi if X1,i = F
βH + εi if X1,i = M

or Yi = β0︸︷︷︸
βM

+ β1︸︷︷︸
βF−βM

1(X1,i = F) + εi

with E(ε) = 0 and Var(ε) = σ2

Weight (lbs.)

D
en

si
ty

100 150 200 250

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Female

Male

7



Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using some (categorical) covariates
E.g. predicting someone’s weight (Y )

based on his/her sex (X1)
Conditional parametric model
assume that Y |X1 = x1 ∼ Fθ(x1)

i.e. Yi ∼

 FθF
if X1,i = F

FθM
if X1,i = M

−→ our prediction will be
conditional on the covariate Weight (lbs.)
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Prediction using some (categorical) covariates
Prediction of Y when X1 = F Prediction of Y when X1 = M
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Linear Models, and Ordinary Least Squares

E.g. predicting someone’s weight (Y )
based on his/her height (X2)

Linear Model : Yi = β0 + β2 X2,i + εi

with E(ε) = 0 and Var(ε) = σ2

Conditional parametric model
assume that Y |X2 = x2 ∼ Fθ(x2)

E.g. Gaussian Linear Model
Y |X2 = x2 ∼ N ( µ(x2)︸ ︷︷ ︸

β0+β2x2

, σ2(x2)︸ ︷︷ ︸
σ2
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Prediction using no covariates
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Prediction using a categorical covariates

E.g. predicting someone’s weight (Y )
based on his/her sex (X1)

E.g. Gaussian linear model
Y |X1 = M ∼ N (µM , σ2)

Ê(Y |X1 = M) = 1
nM

∑
i:X1,i=M

Yi = Ŷ (M)

Y ∈
[
Ŷ (M)± u1−α/2︸ ︷︷ ︸

1.96

· σ̂
]
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Remark In the linear model, Var(ε) = σ2 does not depend on X1.

12



Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using a categorical covariates

E.g. predicting someone’s weight (Y )
based on his/her sex (X1)

E.g. Gaussian linear model
Y |X1 = F ∼ N (µF , σ2)

Ê(Y |X1 = F) = 1
nF

∑
i:X1,i=F

Yi = Ŷ (F)

Y ∈
[
Ŷ (F)± u1−α/2︸ ︷︷ ︸

1.96

· σ̂
]
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Remark In the linear model, Var(ε) = σ2 does not depend on X1.
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Prediction using a continuous covariates

E.g. predicting someone’s weight (Y )
based on his/her height (X2)

E.g. Gaussian linear model
Y |X2 = x2 ∼ N (β0 + β1x2, σ

2)

Ê(Y |X2 = x2) = β̂0 + β̂1x2 = Ŷ (x2)

Y ∈
[
Ŷ (x2)± u1−α/2︸ ︷︷ ︸

1.96

· σ̂
]
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Improving our prediction ?

(Empirical) residuals, ε̂i = Yi−XT
i β̂︸ ︷︷ ︸
Ŷi

R2 or log-likelihood
parsimony principle ?
−→ penalizing the likelihood with

the number of covariates
Akaike (AIC) or
Schwarz (BIC) criteria

no covariates

height as

covariate

sex as

covariate
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−50 0 50 100
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Relaxing the linear assumption in predictions
Use of b-spline function basis to estimate µ(·) where µ(x) = E(Y |X = x)
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Relaxing the linear assumption in predictions

E.g. predicting someone’s weight (Y )
based on his/her height (X2)

E.g. Gaussian linear model
Y |X2 = x2 ∼ N (µ(x2), σ2)
Ê(Y |X2 = x2) = µ̂(x2) = Ŷ (x2)

Y ∈
[
Ŷ (x2)± u1−α/2︸ ︷︷ ︸

1.96

· σ̂
]

Gaussian model : E(Y |X = x) = µ(x) (e.g. xTβ) and Var(Y |X = x) = σ2.

17
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Nonlinearities and missing covariates

E.g. predicting someone’s weight (Y )
based on his/her height and sex

−→ nonlinearities can be related to
model mispecification

E.g. Gaussian linear model

Yi =

 β0,F + β2,FX2,i + εi if X1,i = F
β0,M + β2,MX2,i + εi if X1,i = M
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−→ local linear regression, β̂x = argmin
{

n∑
i=1

ωi(x) · [Yi −XT
i β]2

}
and set Ŷ (x) = xTβ̂x
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Local regression and smoothing techniques
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k-nearest neighbours and smoothing techniques
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Kernel regression and smoothing techniques
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Multiple linear regression

E.g. predicting someone’s misperception
of his/her weight (Y )
based on his/her height︸ ︷︷ ︸

X2

and weight︸ ︷︷ ︸
X3

−→ linear model
E(Y |X2, X3) = β0 + β2X2 + β3X3

Var(Y |X2, X3) = σ2

22
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Multiple non-linear regression

E.g. predicting someone’s misperception
of his/her weight (Y )
based on his/her height︸ ︷︷ ︸

X2

and weight︸ ︷︷ ︸
X3

−→ non-linear model
E(Y |X2, X3) = h(X2, X3)
Var(Y |X2, X3) = σ2
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Away from the Gaussian model

Y is not necessarily Gaussian
Y can be a counting variable,
E.g. Poisson Y ∼ P(λ(x))
Y can be a FALSE-TRUE variable,
E.g. Binomial Y ∼ B(p(x))

(see next section)
−→ Generalized Linear Model
E.g. Y |X2 = x2 ∼ P

(
eβ0+β2x2

)

Remark With a Poisson model, E(Y |X2 = x2) = Var(Y |X2 = x2).
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Logistic regression

E.g. predicting someone’s misperception
of his/her weight (Y )

Yi =

 1 if prediction > observed weight
0 if prediction ≤ observed weight

Bernoulli variable,
P(Y = y) = py(1− p)1−y, where y ∈ {0, 1}
−→ logistic regression
P(Y = y|X = x) = p(x)y(1− p(x))1−y,
where y ∈ {0, 1}
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Logistic regression

−→ logistic regression
P(Y = y|X = x) = p(x)y(1− p(x))1−y,
where y ∈ {0, 1}

Odds ratio P(Y = 1|X = x)
P(Y = 0|X = x) = exp

(
xTβ

)

E(Y |X = x) =
exp

(
xTβ

)
1 + exp (xTβ)

Estimation of β ?
−→ maximum likelihood β̂ (Newton - Raphson)
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Smoothed logistic regression

GLMs are linear since
P(Y = 1|X = x)
P(Y = 0|X = x) = exp

(
xTβ

)
−→ smooth nonlinear function instead
P(Y = 1|X = x)
P(Y = 0|X = x) = exp (h(x))

E(Y |X = x) = exp (h(x))
1 + exp (h(x))
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Smoothed logistic regression

−→ non linear logistic regression
P(Y = 1|X = x)
P(Y = 0|X = x) = exp (h(x))

E(Y|X = x) = exp (h(x))
1 + exp (h(x))

Remark we do not predict Y here,
but E(Y |X = x).
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Predictive modeling for a {0, 1} variable

What is a good {0, 1}-model ?

−→ decision theory

 if P(Y |X = x) ≤ s, then Ŷ = 0
if P(Y |X = x) > s, then Ŷ = 1

Ŷ = 0 Ŷ = 1

Y = 0 fine error
Y = 1 error fine
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R.O.C. curve

True positive rate
TP (s) = P(Ŷ (s) = 1|Y = 1)

=
n
Ŷ=1,Y=1

nY=1
False positive rate
FP (s) = P(Ŷ (s) = 1|Y = 0)

=
n
Ŷ=1,Y=1

nY=1

R.O.C. curve is
{FP (s), TP (s)), s ∈ (0, 1)}

(see also model gain curve)

30



Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Classification tree (CART)

If Y is a TRUE-FALSE variable
prediction is a classification problem.

E(Y |X = x) = pj if x ∈ Aj
where A1, · · · , Ak are disjoint
regions of the X-space.
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Classification tree (CART)

−→ iterative process
Step 1. Find two subset of indices
either A1 = {i,X1,i < s}

and A2 = {i,X1,i > s}
or A1 = {i,X2,i < s}

and A2 = {i,X2,i > s}

maximize homogeneity within subsets
& maximize heterogeneity between subsets
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Classification tree (CART)

Need an impurity criteria
E.g. Gini index

−
∑

x∈{A1,A2}
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Classification tree (CART)

Step k. Given partition A1, · · · , Ak
find which subset Aj will be divided,
either according to X1

or according to X2

maximize homogeneity within subsets
& maximize heterogeneity between subsets ●
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Visualizing classification trees (CART)

|Y < 124.561

X < 5.69226
0.2727

0.5231 0.3175

|Y < 124.561

X < 5.39698 X < 5.69226

X < 5.52822 Y < 162.04

0.3429 0.1500

0.4444 0.6207

0.1111 0.4722
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From trees to forests

Problem CART tree are not robust
−→ boosting and bagging
use bootstrap : resample in the data
and generate a classification tree
repeat this resampling strategy
Then aggregate all the trees
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A short word on functional data

Individual data, {Yi, (X1,i, · · · , Xk,i, · · · )}
Functional data, {Y i = (Yi,1, · · · , Yi,t, · · · )}
E.g. Winter temperature, in Montréal, QC
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A short word on functional data
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To go further...

forthcoming book entitled
Computational Actuarial Science with R
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