Perspectives of Predictive Modeling

Arthur Charpentier
charpentier.arthur@uqam.ca
http ://freakonometrics.hypotheses.org/
Université du Québec à Montréal

(SOA Webcast, November 2013)

Agenda

- Introduction to Predictive Modeling
- Prediction, best estimate, expected value and confidence interval
- Parametric versus nonparametric models
- Linear Models and (Ordinary) Least Squares
- From least squares to the Gaussian model
- Smoothing continuous covariates
- From Linear Models to G.L.M.
- Modeling a TRUE-FALSE variable
- The logistic regression
- R.O.C. curve
- Classification tree (and random forests)
- From individual to functional data

Prediction? Best estimate?

E.g. predicting someone's weight (Y)

Consider a sample $\left\{y_{1}, \cdots, y_{n}\right\}$

Model : $Y_{i}=\beta_{0}+\varepsilon_{i}$
with $\mathbb{E}(\varepsilon)=0$ and $\operatorname{Var}(\varepsilon)=\sigma^{2}$
ε is some unpredictable noise
$\widehat{Y}=\bar{y}$ is our 'best guess'...

Predicting means estimating $\mathbb{E}(Y)$.
Recall that $\mathbb{E}(Y)=\underset{y \in \mathbb{R}}{\operatorname{argmin}}\left\{\|Y-y\|_{L_{2}}\right\}=\underbrace{\underset{y \in \mathbb{R}}{\operatorname{argmin}}\{\mathbb{E}([\overbrace{Y-y}^{\varepsilon}]^{2})\}}_{\text {least squares }}$

Best estimate with some confidence

E.g. predicting someone's weight (Y)

Give an interval $\left[y_{-}, y_{+}\right]$such that

$$
\mathbb{P}\left(Y \in\left[y_{-}, y_{+}\right]\right)=1-\alpha
$$

Confidence intervals can be derived if we can estimate the distribution of Y

$$
F(y)=\mathbb{P}(Y \leq y) \text { or } f(y)=\left.\frac{d F(x)}{d x}\right|_{x=y}
$$

(related to the idea of "quantifying uncertainty" in our prediction...)

Parametric inference

E.g. predicting someone's weight (Y)

Assume that $F \in \mathcal{F}=\left\{F_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta\right\}$

1. Provide an estimate $\widehat{\boldsymbol{\theta}}$
2. Compute bound estimates

$$
\begin{aligned}
& \widehat{y}_{-}=F_{\widehat{\boldsymbol{\theta}}}^{-1}(\alpha / 2) \\
& \widehat{y}_{+}=F_{\widehat{\boldsymbol{\theta}}}^{-1}(1-\alpha / 2)
\end{aligned}
$$

Standard estimation technique :
\longrightarrow maximum likelihood techniques

$\widehat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}}\{\underbrace{\left.\sum_{i=1}^{n} \log f_{\boldsymbol{\theta}}\left(y_{i}\right)\right\}}_{\text {log likelihood }}\left\{\begin{array}{l}\text { explicit (analytical) expression for } \widehat{\boldsymbol{\theta}} \\ \text { numerical optimization (Newton Raphson) }\end{array}\right.$

Non-parametric inference

E.g. predicting someone's weight (Y)

1. Empirical distribution function

$$
\widehat{F}(y)=\frac{1}{n} \underbrace{\sum_{i=1}^{n} \mathbf{1}\left(y_{i} \leq y\right)}_{\#\left\{i \text { such that } y_{i} \leq y\right\}}
$$

natural estimator for $\mathbb{P}(Y \leq y)$
2. Compute bound estimates

$$
\begin{aligned}
\widehat{y}_{-} & =\widehat{F}^{-1}(\alpha / 2) \\
\widehat{y}_{+} & =\widehat{F}^{-1}(1-\alpha / 2)
\end{aligned}
$$

Prediction using some covariates

E.g. predicting someone's weight (Y) based on his/her sex $\left(X_{1}\right)$
Model $: Y_{i}=\left\{\begin{array}{l}\beta_{F}+\varepsilon_{i} \text { if } X_{1, i}=\mathrm{F} \\ \beta_{H}+\varepsilon_{i} \text { if } X_{1, i}=\mathrm{M}\end{array}\right.$
or $Y_{i}=\underbrace{\beta_{0}}_{\beta_{M}}+\underbrace{\beta_{1}}_{\beta_{F}-\beta_{M}} \mathbf{1}\left(X_{1, i}=\mathrm{F}\right)+\varepsilon_{i}$
with $\mathbb{E}(\varepsilon)=0$ and $\operatorname{Var}(\varepsilon)=\sigma^{2}$

Prediction using some (categorical) covariates

E.g. predicting someone's weight (Y)
based on his/her sex $\left(X_{1}\right)$
Conditional parametric model
assume that $Y \mid X_{1}=x_{1} \sim F_{\boldsymbol{\theta}\left(x_{1}\right)}$
i.e. $Y_{i} \sim\left\{\begin{array}{l}F_{\boldsymbol{\theta}_{F}} \text { if } X_{1, i}=\mathrm{F} \\ F_{\boldsymbol{\theta}_{M}} \text { if } X_{1, i}=\mathrm{M}\end{array}\right.$
\longrightarrow our prediction will be
conditional on the covariate

Prediction using some (categorical) covariates

Prediction of Y when $X_{1}=\mathrm{F} \quad$ Prediction of Y when $X_{1}=\mathrm{M}$

Linear Models, and Ordinary Least Squares

E.g. predicting someone's weight (Y)
based on his/her height (X_{2})
Linear Model : $Y_{i}=\beta_{0}+\beta_{2} X_{2, i}+\varepsilon_{i}$
with $\mathbb{E}(\varepsilon)=0$ and $\operatorname{Var}(\varepsilon)=\sigma^{2}$
Conditional parametric model
assume that $Y \mid X_{2}=x_{2} \sim F_{\boldsymbol{\theta}\left(x_{2}\right)}$
E.g. Gaussian Linear Model
$Y \mid X_{2}=x_{2} \sim \mathcal{N}(\underbrace{\mu\left(x_{2}\right)}_{\beta_{0}+\beta_{2} x_{2}}, \underbrace{\sigma^{2}\left(x_{2}\right)}_{\sigma^{2}})$

\longrightarrow ordinary least squares, $\widehat{\boldsymbol{\beta}}=\operatorname{argmin}\left\{\sum_{i=1}^{n}\left[Y_{i}-\boldsymbol{X}_{i}^{\boldsymbol{\top}} \boldsymbol{\beta}\right]^{2}\right\}$
$\widehat{\boldsymbol{\beta}}$ is also the M.L. estimator of $\boldsymbol{\beta}$

Prediction using no covariates

Prediction using a categorical covariates

E.g. predicting someone's weight (Y) based on his/her sex $\left(X_{1}\right)$
E.g. Gaussian linear model

$$
\begin{aligned}
& Y \mid X_{1}=\mathrm{M} \sim \mathcal{N}\left(\mu_{M}, \sigma^{2}\right) \\
& \widehat{\mathbb{E}}\left(Y \mid X_{1}=\mathrm{M}\right)=\frac{1}{n_{M}} \sum_{i: X_{1, i}=\mathrm{M}} Y_{i}=\widehat{Y}(\mathrm{M}) \\
& Y \in[\widehat{Y}(\mathrm{M}) \pm \underbrace{u_{1-\alpha / 2}}_{1.96} \cdot \widehat{\sigma}]
\end{aligned}
$$

Remark In the linear model, $\operatorname{Var}(\varepsilon)=\sigma^{2}$ does not depend on X_{1}.

Prediction using a categorical covariates

E.g. predicting someone's weight (Y)

$$
\text { based on his/her sex }\left(X_{1}\right)
$$

E.g. Gaussian linear model

$$
\begin{aligned}
& Y \mid X_{1}=\mathrm{F} \sim \mathcal{N}\left(\mu_{F}, \sigma^{2}\right) \\
& \widehat{\mathbb{E}}\left(Y \mid X_{1}=\mathrm{F}\right)=\frac{1}{n_{F}} \sum_{i: X_{1, i}=\mathrm{F}} Y_{i}=\widehat{Y}(\mathrm{~F}) \\
& Y \in[\widehat{Y}(\mathrm{~F}) \pm \underbrace{u_{1-\alpha / 2}}_{1.96} \cdot \widehat{\sigma}]
\end{aligned}
$$

Remark In the linear model, $\operatorname{Var}(\varepsilon)=\sigma^{2}$ does not depend on X_{1}.

Prediction using a continuous covariates

E.g. predicting someone's weight (Y)
based on his/her height (X_{2})
E.g. Gaussian linear model

$$
\begin{aligned}
& Y \mid X_{2}=x_{2} \sim \mathcal{N}\left(\beta_{0}+\beta_{1} x_{2}, \sigma^{2}\right) \\
& \widehat{\mathbb{E}}\left(Y \mid X_{2}=x_{2}\right)=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{2}=\widehat{Y}\left(x_{2}\right) \\
& Y \in[\widehat{Y}\left(x_{2}\right) \pm \underbrace{u_{1-\alpha / 2}}_{1.96} \cdot \widehat{\sigma}]
\end{aligned}
$$

Improving our prediction?

(Empirical) residuals, $\widehat{\varepsilon}_{i}=Y_{i}-\underbrace{\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}}_{\widehat{Y}_{i}}$
R^{2} or log-likelihood
parsimony principle?
\longrightarrow penalizing the likelihood with the number of covariates

Akaike (AIC) or
Schwarz (BIC) criteria

Relaxing the linear assumption in predictions

Use of b-spline function basis to estimate $\mu(\cdot)$ where $\mu(\boldsymbol{x})=\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})$

Relaxing the linear assumption in predictions

E.g. predicting someone's weight (Y)
based on his/her height $\left(X_{2}\right)$
E.g. Gaussian linear model

$$
\begin{aligned}
& Y \mid X_{2}=x_{2} \sim \mathcal{N}\left(\mu\left(x_{2}\right), \sigma^{2}\right) \\
& \widehat{\mathbb{E}}\left(Y \mid X_{2}=x_{2}\right)=\widehat{\mu}\left(x_{2}\right)=\widehat{Y}\left(x_{2}\right) \\
& Y \in[\widehat{Y}\left(x_{2}\right) \pm \underbrace{u_{1-\alpha / 2}}_{1.96} \cdot \widehat{\sigma}]
\end{aligned}
$$

Gaussian model : $\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})=\mu(\boldsymbol{x})\left(\right.$ e.g. $\left.\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}\right)$ and $\operatorname{Var}(Y \mid \boldsymbol{X}=\boldsymbol{x})=\sigma^{2}$.

Nonlinearities and missing covariates

E.g. predicting someone's weight (Y) based on his/her height and sex
\longrightarrow nonlinearities can be related to model mispecification
E.g. Gaussian linear model

$$
Y_{i}=\left\{\begin{array}{l}
\beta_{0, F}+\beta_{2, F} X_{2, i}+\varepsilon_{i} \text { if } X_{1, i}=\mathrm{F} \\
\beta_{0, M}+\beta_{2, M} X_{2, i}+\varepsilon_{i} \text { if } X_{1, i}=\mathrm{M}
\end{array}\right.
$$

\longrightarrow local linear regression, $\widehat{\boldsymbol{\beta}}_{\boldsymbol{x}}=\operatorname{argmin}\left\{\sum_{i=1}^{n} \omega_{i}(\boldsymbol{x}) \cdot\left[Y_{i}-\boldsymbol{X}_{i}^{\boldsymbol{\top}} \boldsymbol{\beta}\right]^{2}\right\}$ and set $\widehat{Y}(\boldsymbol{x})=\boldsymbol{x}^{\top} \widehat{\boldsymbol{\beta}}_{\boldsymbol{x}}$

Local regression and smoothing techniques

k-nearest neighbours and smoothing techniques

Kernel regression and smoothing techniques

Multiple linear regression

E.g. predicting someone's misperception of his/her weight (Y)
based on his/her height and weight

\longrightarrow linear model
$\mathbb{E}\left(Y \mid X_{2}, X_{3}\right)=\beta_{0}+\beta_{2} X_{2}+\beta_{3} X_{3}$
$\operatorname{Var}\left(Y \mid X_{2}, X_{3}\right)=\sigma^{2}$

Multiple non-linear regression

E.g. predicting someone's misperception of his/her weight (Y)
based on his/her $\underbrace{\text { height }}_{X_{2}}$ and $\underbrace{\text { weight }}_{X_{3}}$
\longrightarrow non-linear model
$\mathbb{E}\left(Y \mid X_{2}, X_{3}\right)=h\left(X_{2}, X_{3}\right)$
$\operatorname{Var}\left(Y \mid X_{2}, X_{3}\right)=\sigma^{2}$

Away from the Gaussian model

Y is not necessarily Gaussian Y can be a counting variable, E.g. Poisson $Y \sim \mathcal{P}(\lambda(\boldsymbol{x}))$ Y can be a FALSE-TRUE variable, E.g. Binomial $Y \sim \mathcal{B}(p(\boldsymbol{x}))$
(see next section)
\longrightarrow Generalized Linear Model
E.g. $Y \mid X_{2}=x_{2} \sim \mathcal{P}\left(e^{\beta_{0}+\beta_{2} x_{2}}\right)$

Remark With a Poisson model, $\mathbb{E}\left(Y \mid X_{2}=x_{2}\right)=\operatorname{Var}\left(Y \mid X_{2}=x_{2}\right)$.

Logistic regression

E.g. predicting someone's misperception of his/her weight (Y)
$Y_{i}=\left\{\begin{array}{l}1 \text { if prediction }>\text { observed weight } \\ 0 \text { if prediction } \leq \text { observed weight }\end{array}\right.$

Bernoulli variable,
$\mathbb{P}(Y=y)=p^{y}(1-p)^{1-y}$, where $y \in\{0,1\}$
\longrightarrow logistic regression
$\mathbb{P}(Y=y \mid \boldsymbol{X}=\boldsymbol{x})=p(\boldsymbol{x})^{y}(1-p(\boldsymbol{x}))^{1-y}$,
where $y \in\{0,1\}$

Logistic regression

\longrightarrow logistic regression
$\mathbb{P}(Y=y \mid \boldsymbol{X}=\boldsymbol{x})=p(\boldsymbol{x})^{y}(1-p(\boldsymbol{x}))^{1-y}$,
where $y \in\{0,1\}$
Odds ratio $\frac{\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})}{\mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})}=\exp \left(\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}\right)$
$\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})=\frac{\exp \left(\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}\right)}{1+\exp \left(\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{\beta}\right)}$
Estimation of $\boldsymbol{\beta}$?

\longrightarrow maximum likelihood $\widehat{\boldsymbol{\beta}}$ (Newton - Raphson)

Smoothed logistic regression

GLMs are linear since
$\frac{\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})}{\mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})}=\exp \left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)$

\longrightarrow smooth nonlinear function instead

$$
\begin{aligned}
& \frac{\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})}{\mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})}=\exp (h(\boldsymbol{x})) \\
& \mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})=\frac{\exp (h(\boldsymbol{x}))}{1+\exp (h(\boldsymbol{x}))}
\end{aligned}
$$

Smoothed logistic regression

\longrightarrow non linear logistic regression
$\frac{\mathbb{P}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})}{\mathbb{P}(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})}=\exp (h(\boldsymbol{x}))$
$\mathrm{E}(\mathrm{Y} \mid \boldsymbol{X}=\boldsymbol{x})=\frac{\exp (h(\boldsymbol{x}))}{1+\exp (h(\boldsymbol{x}))}$

Remark we do not predict Y here,
but $\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})$.

Predictive modeling for a $\{0,1\}$ variable

What is a good $\{0,1\}$-model ?
\longrightarrow decision theory

$\left\{\begin{array}{l}\text { if } \mathbb{P}(Y \mid \boldsymbol{X}=\boldsymbol{x}) \leq s, \text { then } \widehat{Y}=0 \\ \text { if } \mathbb{P}(Y \mid \boldsymbol{X}=\boldsymbol{x})>s, \text { then } \widehat{Y}=1\end{array}\right.$

	$\widehat{Y}=0$	$\widehat{Y}=1$
$Y=0$	fine	error
$Y=1$	error	fine

R.O.C. curve

True positive rate

$$
\begin{aligned}
T P(s) & =\mathbb{P}(\widehat{Y}(s)=1 \mid Y=1) \\
& =\frac{n_{\widehat{Y}=1, Y=1}}{n_{Y=1}}
\end{aligned}
$$

False positive rate

$$
\begin{aligned}
F P(s) & =\mathbb{P}(\widehat{Y}(s)=1 \mid Y=0) \\
& =\frac{n_{\widehat{Y}=1, Y=1}}{n_{Y=1}}
\end{aligned}
$$

R.O.C. curve is

$$
\{F P(s), T P(s)), s \in(0,1)\}
$$

(see also model gain curve)

Classification tree (CART)

If Y is a TRUE-FALSE variable

 prediction is a classification problem.$$
\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})=p_{j} \text { if } \boldsymbol{x} \in A_{j}
$$

where A_{1}, \cdots, A_{k} are disjoint regions of the \boldsymbol{X}-space.

Classification tree (CART)

\longrightarrow iterative process
Step 1. Find two subset of indices
either $A_{1}=\left\{i, X_{1, i}<s\right\}$
and $A_{2}=\left\{i, X_{1, i}>s\right\}$
or $A_{1}=\left\{i, X_{2, i}<s\right\}$
and $A_{2}=\left\{i, X_{2, i}>s\right\}$
maximize homogeneity within subsets
\& maximize heterogeneity between subsets

Classification tree (CART)

Need an impurity criteria
E.g. Gini index

Classification tree (CART)

Step k. Given partition A_{1}, \cdots, A_{k} find which subset A_{j} will be divided, either according to X_{1} or according to X_{2}
maximize homogeneity within subsets
\& maximize heterogeneity between subsets

Visualizing classification trees (CART)

From trees to forests

Problem CART tree are not robust \longrightarrow boosting and bagging use bootstrap : resample in the data and generate a classification tree repeat this resampling strategy

Then aggregate all the trees

A short word on functional data

Individual data, $\left\{Y_{i},\left(X_{1, i}, \cdots, X_{k, i}, \cdots\right)\right\}$

Functional data, $\left\{\boldsymbol{Y}_{i}=\left(Y_{i, 1}, \cdots, Y_{i, t}, \cdots\right)\right\}$
E.g. Winter temperature, in Montréal, QC

A short word on functional data

To go further...

The R Series
 Computational
 Actuarial Science
 with R
 Edited by
 Arthur Charpentier
 (act) CRC Press
 C Mhemen \& tat book

forthcoming book entitled
Computational Actuarial Science with R

