Pictures

Arthur Charpentier

UQAM

Actuarial Summer School 2019
Very popular for pictures...
Picture x_i is
- a $n \times n$ matrix in $\{0, 1\}^{n^2}$ for black & white
- a $n \times n$ matrix in $[0, 1]^{n^2}$ for grey-scale
- a $3 \times n \times n$ array in $([0, 1]^3)^{n^2}$ for color
- a $T \times 3 \times n \times n$ tensor in $((([0, 1]^3)^T)^{n^2}$ for video

y here is the label ("8", "9", "6", etc)

Suppose we want to recognize a "6" on a picture

$$m(x) = \begin{cases} +1 & \text{if } x \text{ is a "6"} \\ -1 & \text{otherwise} \end{cases}$$
Consider some specifics pixels, and associate weights ω such that

$$\hat{m}(x) = \text{sign} \left(\sum_{i,j} \omega_{i,j} x_{i,j} \right)$$

where

$$x_{i,j} = \begin{cases} +1 & \text{if pixel } x_{i,j} \text{ is black} \\ -1 & \text{if pixel } x_{i,j} \text{ is white} \end{cases}$$

for some weights $\omega_{i,j}$ (that can be negative...)
A deep network is a network with a lot of layers

\[\hat{m}(x) = \text{sign} \left(\sum_i \omega_i \hat{m}_i(x) \right) \]

where \(\hat{m}_i \)'s are outputs of previous neural nets. Those layers can capture shapes in some areas nonlinearities, cross-dependence, etc.
Detection & Recognition

can be complicated... see Marr (1982, Vision)
Convolutional Network

source: Hastie et al. (2009, The Elements of Statistical Learning)

Neural Nets fails to recognize '8' when the digit is not centered translation, scale and (small) rotation invariances are needed.
Rotation, Scaling, Mixing, etc

See also http://scs.ryerson.ca/~aharley/vis/conv
Convolutional Network

Break the image into overlapping image tiles and, feed each image tile into a small neural network with the same weights (and the same activation function)

1. **ConvNets** exploit spatially local correlation: each neuron is locally-connected (to only a small region of the input volume)
2. Reduce the size of the array, using a pooling algorithm. (pooling step reduces the dimensionality of each feature)
Convolutional Network pooling:
- makes the input representations smaller and more manageable
- reduces the number of weights and links in the network, therefore, controlling overfitting
- makes the network invariant to small transformations, distortions and translations in the input image
- helps us arrive at an almost scale invariant representation of our image

(via yolo for objects detection)
Convolutional Network
Convolutional Network

Can be used to detect faces on a picture

via LeCun (2016, Leçon inaugurale)
Convolutional Network

and for object detection (even on a video)

via LeCun (2016, *Leçon inaugurale*)
Convolutional Network via LeCun (2016, Leçon inaugurale)
Convolutional Network

In some application, need to find scale invariant transformations via LeCun (2016, Leçon inaugurale)
Mid-2000s caltech101 dataset, with 101 categories, 30 pictures per category (training sample)
2012 ImageNet dataset, 1.2 million (training) pictures, 20,000 categories see Li Fei-Fei’s page

OverFeat 2012 13.8% error,
GoogLeNet 2014 6.6% (22 layers),
ResNet 2015 3.6% (152 layers) see @sidereal’s post
From Pictures to Videos

A picture is a $w \times h \times 3$ tensor
A video is a $w \times h \times 3 \times t$ tensor
One can use RNN recurrent neural nets (or LSTM)
Can also be use to identify objects
see https://towardsdatascience.com
Which Pictures? Satellite

From https://unequalscenes.com/, Hout Bay, about 15km south of Cape Town, South Africa and Dar es Salaam, Tanzania.
Which Pictures? Satellite

From https://nytimes.com/, Chennai (Madras) in India, 2018 and 2019
Which Pictures? Satellite

via https://geoweb.iau-idf.fr/ (1949 on the left, 2019 on the right)
Which Pictures? Satellite

Possible use for crop insurance:
- To assess crop share (relative proportions) in a large area (no georeference available of the fields)
- To estimate yield of a specific crop/season in a large area (no georeference available of the fields)
- To detect and to georeference fields with specific crops
- To detect kind-of-crop info from specific fields

Various sources can be used:
- **MODIS** (Moderate Resolution Imaging Spectroradiometer) 250m × 250m, 2 images per day
- **LANDSAT**, 15m × 15m, 1 image every 16 days
 (see also https://landsat.visibleearth.nasa.gov)
Which Pictures? Satellite

Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite of the Camp Fire on November 12, 2018. [Photo: NASA Earth Observatory vs Nov. 8, 2018, by Landsat 8, shows short-wave infrared (red), which gives the full extent of the actively burning area of the Camp Fire]
Which Pictures? Satellite

Landsat picture = 17,500px × 14,500, 950Mb
Landsat 8 to cover China: 530 tiles, 23 per year ~ 11Tb per year
Which Pictures? Satellite

Satellite pictures are more than visible colors
TIRS (Thermal Infrared Sensor)

Practical problem: clouds
(see https://forestthreats.org/
or https://harrisgeospatial.com/)
Which Pictures? Satellite

Elowitz (2013, *What is Imaging Spectroscopy (Hyperspectral Imaging)*?)
Infrareds used to produce (e.g.) some Normalized Difference Vegetation Index (NDVI)
3d picture : lat, long, index (ndvi)

Practicals with Ewen Gallic on wildfires and natural disasters
Convolutional Network

The light blue grid is called the input feature map. A kernel (shaded area) of value

\[
\begin{pmatrix}
0 & 1 & 2 \\
2 & 2 & 0 \\
0 & 1 & 2
\end{pmatrix}
\]

slides across the input feature map. (see http://deeplearning.net/)
Extracting Shapes & Contours

See Sobel Operator,

$$ \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} $$

horizontal

$$ \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} $$

vertical
Extracting Shapes & Contours

One can also compute gradients to extract contours
use https://github.com/bnosac/image to extract contours

```r
install.packages("image.LineSegmentDetector", repos = "https://bnosac.github.io/drat")
library(image.LineSegmentDetector)
library(imager)
img_path <- ".\grey-lausanne.png"
im <- load.image(img_path)[,,1,1]
linesegments <- image_line_segment Detector(im*255)
plot(linesegments)

or

library(image.ContourDetector)
contourlines <- image_contour_detector(im*255)
plot(contourlines)
```
Picture Classifier

Classical \{0, 1, \cdots, 9\} handwritten digit recognition

\[\mathbf{x}_i \in \mathcal{M}_{28,28}, \quad y_i \in \{0, 1, \cdots, 9\} \]

see tensorflow (Google) and keras.
See https://www.tensorflow.org/install

```r
library(tensorflow)
install_tensorflow(method = "conda")
library(keras)
install_keras(method = "conda")

mnist <- dataset_mnist()
idx123 = which(mnist$train$y %in% c(1,2,3))
V <- mnist$train$x[idx123[1:800],,]
MV = NULL
for (i in 1:800) MV= cbind(MV,as.vector(V[i,,]))
MV=t(MV)
df=data.frame(y=mnist$train$y[idx123[1:800]],x=MV)
reg=glm((y==1)~.,data=df,family=binomial)
```

Here $x_i \in \mathbb{R}^{784}$ (for a small greyscale picture).
Still with those handwritten digit pictures, from the mnist dataset. Here \(\{(y_i, x_i)\} \) with \(y_i = "3" \) and \(x_i \in [0, 1]^{28 \times 28} \)

One can define a multilinear principal component analysis see also Tucker decomposition, from Hitchcock (1927, The expression of a tensor or a polyadic as a sum of products)
We can use those decompositions to derive a simple classifier.
To reduce dimension use (classical) PCA

```r
V <- (mnist$train$x[1:1000,,])
MV <- NULL
for(i in 1:1000) MV <- cbind(MV,as.vector(V[i,,]))
pca <- prcomp(t(MV))
```

or **Multivariate PCA**

```r
library(rTensor)
T <- as.tensor(mnist$train$x[1:1000,,])
tensor_svd <- hosvd(T)
tucker_decomp <- tucker(T, ranks = c(100, 3, 3))
T_approx <- ttl(tucker_decomp$Z, tucker_decomp$U, 1:3)
pca <- T_approx@data
```

or directly

```r
pca <- mpca(T)
```
Picture Classifier

with the (classical) PCA

```r
library(factoextra)
res.ind <- get_pca_ind(pca)
PTS <- res.ind$coord
value <- mnist$train$y[idx123][1:1000]

k <- 10
df <- data.frame(y=as.factor(value), x=PTS[,1:k])
library(nnet)
reg <- multinom(y~., data=df, trace=FALSE)
df$pred <- predict(reg, type="probs")
```

Consider a multinomial logistic regression, on the first k components
Consider a dataset with only three labels, \(y_i \in \{1, 2, 3\} \) and the \(k \) principal components obtained by PCA,

\[
\{x_1, \cdots, x_{784}\} \rightarrow \{\tilde{x}_1, \cdots, \tilde{x}_k\}
\]

E.g. scatterplot \(\{\tilde{x}_{1,i}, \tilde{x}_{2,i}\} \)

with • when \(y_i = 1 \), • \(y_i = 2 \) and • \(y_i = 3 \),

Let \(m_k \) denote the multinomial logistic regression

on \(\tilde{x}_1, \cdots, \tilde{x}_k \) and visualize the misclassification rate

But one can also use some neural network model,
see Nielsen (2018, Neural Networks and Deep Learning)
Neural Nets

Consider optimization problem

$$\min_{x \in X} \{ f(x) \}$$

solved by gradient descent,

$$x_{n+1} = x_n - \gamma_n \nabla f(x_n), \ n \geq 0$$

with starting point $$x_0$$

$$\gamma_n$$ is called learning rate

Sometime the dimension of the dataset can be really big: we can’t pass all the data to the computer at once to compute $$f(x)$$ we need to divide the data into smaller sizes and give it to our computer one by one
Neural Nets

Batches

The Batch size is a hyperparameter that defines the number of sub-samples we use to compute quantities (e.g. the gradient).

Epoch

One Epoch is when the dataset is passed forward and backward through the neural network (only once).

We can divide the dataset of 2,000 examples into batches of 400 then it will take 5 iterations to complete 1 epoch. The number of epochs is the hyperparameter that defines the number times that the learning algorithm will work through the entire training dataset.
Picture Classifier

The algorithm is trained on tagged picture, i.e. \((x_i, y_i)\) where here \(y_i\) is some class of fruits (banana, apple, kiwi, tomatoe, lime, cherry, pear, lychee, papaya, etc)

The challenge is to provide a new picture \((x_{n+1}\) and to see the prediction \(\hat{y}_{n+1}\)

See fruits-360/Training, e.g. the banana (118)
library(keras)
library(lime)
library(magick)

model <- application_vgg16(weights = "imagenet", include_top = TRUE)

test_image_files_path <- "/fruits-360/Test"

img_path <- file.path(test_image_files_path, "Banana", 'banana.jpg')

image_write(img, img_path)

plot(as.raster(img))

plot_superpixels(img_path, n_superpixels = 35, weight = 10)

Our testing picture is from https://upload.wikimedia.org/
We use here (pre-trained) VGG16 and VGG19 models for Keras, see Simonyan & Zisserman (2014, *Very Deep Convolutional Networks for Large-Scale Image Recognition*)

```r
image_prep <- function(x) {
  arrays <- lapply(x, function(path) {
    img <- image_load(path, target_size = c(224,224))
    x <- image_to_array(img)
    x <- array_reshape(x, c(1, dim(x)))
    x <- imagenet_preprocess_input(x)
  })
  do.call(abind::abind, c(arrays, list(along = 1)))
}
res <- predict(model, image_prep(img_path))
```

To create our own model, see Chollet & Allaire (2018, *Deep Learning with R*) [github]
with 99.29% chance, the wikipedia picture of a banana is a *banana*
Picture Classifier

With the lime package - Local Interpretable Model-Agnostic Explanations we can also get some explanation of why

```r
model_labels <- readRDS(system.file('extdata', 'imagenet_labels.rds', package = 'lime'))
explaner <- lime(img_path, as_classifier(model, model_labels), image_prep)
explanation <- explain(img_path, explainer,
  n_labels = 2, n_features = 35,
  n_superpixels = 35, weight = 10,
  background = "white")
plot_image_explanation(explanation)
```

(see also the vignette or the kitten example)
We can build a class activation map, see Selvaraju et al. (2016, Visual Explanations from Deep Networks via Gradient-based Localization)

Compute the gradient of the score for class c, y_c (before softmax), with respect to feature maps A^k of convolutional layer, $\frac{\partial y_c}{\partial A^k}$

Define the importance weights as an average of gradients

$$\alpha_{c,k} = \frac{1}{n_x n_y \sum_i \sum_j \frac{\partial y_c}{\partial A_{i,j}^k}}$$

and define

$$\text{relu} \left(\sum_k \alpha_{c,k} A^k \right)$$

On a 14×14 grid, we obtain the picture on the right
```r
img_path <- "car-accident.png"
img <- image_load(img_path, 
  target_size = c(224,224)) %>%
  image_to_array() %>%
  array_reshape(dim =
    c(1,224,224,3)) %>%
  imagenet_preprocess_input()
```

Training pictures are $224 \times 224 \times 3$ tensors
Convert to $224 \times 224 \times 3$ size
```r
model <- application_vgg16(weights = "imagenet")
preds <- model %>% predict(img)

Using the pre-trained VGG16 network on imagenet dataset (55,346,7096 pictures)

imagenet_decode_predictions(preds)

<table>
<thead>
<tr>
<th>class_name</th>
<th>class_desc</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>n03594945</td>
<td>jeep</td>
<td>0.336</td>
</tr>
<tr>
<td>n02814533</td>
<td>beach_wagon</td>
<td>0.197</td>
</tr>
<tr>
<td>n03100240</td>
<td>convertible</td>
<td>0.153</td>
</tr>
<tr>
<td>n03930630</td>
<td>pickup</td>
<td>0.062</td>
</tr>
<tr>
<td>n03770679</td>
<td>minivan</td>
<td>0.041</td>
</tr>
</tbody>
</table>
```
```r
img_path <- "house-fire.png"

Using the pre-trained **VGG16** network on imagenet dataset (55,3467,096 pictures)

imagenet_decode_predictions(preds)

<table>
<thead>
<tr>
<th>class_name</th>
<th>class_description</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>n09472597</td>
<td>volcano</td>
<td>0.414</td>
</tr>
<tr>
<td>n09288635</td>
<td>geyser</td>
<td>0.320</td>
</tr>
<tr>
<td>n03773504</td>
<td>missile</td>
<td>0.104</td>
</tr>
<tr>
<td>n04310018</td>
<td>steam_locomotive</td>
<td>0.051</td>
</tr>
<tr>
<td>n04008634</td>
<td>projectile</td>
<td>0.045</td>
</tr>
</tbody>
</table>
```
Using the pre-trained VGG16 network on imagenet dataset (55,3467,096 pictures)
Picture Classifier

Note that \(x_{n+1} \) can be something that was not in the training dataset (here yellow zucchini)

or some invented one (here a blue banana)

see also pyimagesearch for food/no food classifier
To train our own neural networks, use Chollet & Allaire (2018, Deep Learning with R) [github]'s code (with keras)

```r
channels <- 3
img_width <- 20
img_height <- 20
target_size <- c(img_width, img_height)
train_image_files_path <- "./fruits-360/Training/
valid_image_files_path <- "./fruits-360/Validation/
library(keras)
library(lime)
library(magick)
library(ggplot2)
train_samples <- train_image_array_gen$n
valid_samples <- valid_image_array_gen$n
```
train_data_gen = image_data_generator(
 rescale = 1/255
 # rotation_range = 40,
 # width_shift_range = 0.2,
 # height_shift_range = 0.2,
 # shear_range = 0.2,
 # zoom_range = 0.2,
 # horizontal_flip = TRUE
)
batch_size <- 32
epochs <- 10
train_image_array_gen <- flow_images_from_directory(
 train_image_files_path,
 train_data_gen,
 target_size = target_size,
 class_mode = "categorical",
 classes = fruit_list)

valid_data_gen <- image_data_generator(rescale = 1/255)

valid_image_array_gen <- flow_images_from_directory(
 valid_image_files_path,
 valid_data_gen,
 target_size = target_size,
 class_mode = "categorical",
 classes = fruit_list)
```r
model <- keras_model_sequential()

# add layers
model %>%
  layer_conv_2d(filter = 32, kernel_size = c(3,3),
                 padding = "same", input_shape = c(img_width,
                                           img_height, channels)) %>%
  layer_activation("relu") %>%

  # Second hidden layer
  layer_conv_2d(filter = 16, kernel_size = c(3,3),
                 padding = "same") %>%
  layer_activation_leaky_relu(0.5) %>%
  layer_batch_normalization() %>%

  # Use max pooling
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_dropout(0.25) %>%
```
Flatten max filtered output into feature vector
and feed into dense layer
layer_flatten() %>%
layer_dense(100) %>%
layer_activation("relu") %>%
layer_dropout(0.5) %>%

Outputs from dense layer are projected onto output layer
layer_dense(output_n) %>%
layer_activation("softmax")

compile
model %>% compile(
 loss = "categorical_crossentropy",
 optimizer = optimizer_rmsprop(lr = 0.0001, decay = 1e-6),
 metrics = "accuracy"
)
hist <- model %>% fit_generator(
 # training data
 train_image_array_gen,
 # epochs
 steps_per_epoch = as.integer(train_samples / batch_size),
 epochs = epochs,
 # validation data
 validation_data = valid_image_array_gen,
 validation_steps = as.integer(valid_samples / batch_size),
 # print progress
 verbose = 2,
 callbacks = list(
 # save best model after every epoch
 callback_model_checkpoint("fruits_checkpoints.h5", save_best_only = TRUE),
 # only needed for visualising with TensorBoard
 callback_tensorboard(log_dir = "logs")))
Facial Recognition

For facial recognition, see Schwemmer (2018, facerec: An interface for face recognition in R), based on kairos

or https://github.com/bnosac/image for various R functions (Corner Dor Edges etection, etc).
install.packages("image.darknet", repos = "https://bnosac.github.io/drat")
library(image.darknet)
yolo_tiny_voc <- image_darknet_model(
 type = 'detect',
 model = "tiny-yolo-voc.cfg",
 weights = system.file(
 package = "image.darknet","models","tiny-yolo-voc.weights"),
image_darknet_detect(file = "lausanne-d-1.png",
 object = yolo_tiny_voc)
Loading weights from /Library/Frameworks/R.framework/Versions/3.5/Resources/library/image.darknet/models/tiny-yolo-voc.weights...
Picture Classifier

<table>
<thead>
<tr>
<th>Layer</th>
<th>Filters</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>conv</td>
<td>16 416 x 416 x 3</td>
<td>416 x 416 x 16</td>
</tr>
<tr>
<td>1</td>
<td>max</td>
<td>416 x 416 x 16</td>
<td>208 x 208 x 16</td>
</tr>
<tr>
<td>2</td>
<td>conv</td>
<td>32 208 x 208 x 16</td>
<td>208 x 208 x 32</td>
</tr>
<tr>
<td>3</td>
<td>max</td>
<td>208 x 208 x 32</td>
<td>104 x 104 x 32</td>
</tr>
<tr>
<td>4</td>
<td>conv</td>
<td>64 104 x 104 x 32</td>
<td>104 x 104 x 64</td>
</tr>
<tr>
<td>5</td>
<td>max</td>
<td>104 x 104 x 64</td>
<td>52 x 52 x 64</td>
</tr>
<tr>
<td>6</td>
<td>conv</td>
<td>128 52 x 52 x 64</td>
<td>52 x 52 x 128</td>
</tr>
<tr>
<td>7</td>
<td>max</td>
<td>52 x 52 x 128</td>
<td>26 x 26 x 128</td>
</tr>
<tr>
<td>8</td>
<td>conv</td>
<td>256 26 x 26 x 128</td>
<td>26 x 26 x 256</td>
</tr>
<tr>
<td>9</td>
<td>max</td>
<td>26 x 26 x 256</td>
<td>13 x 13 x 256</td>
</tr>
<tr>
<td>10</td>
<td>conv</td>
<td>512 13 x 13 x 256</td>
<td>13 x 13 x 512</td>
</tr>
<tr>
<td>11</td>
<td>max</td>
<td>13 x 13 x 512</td>
<td>13 x 13 x 512</td>
</tr>
<tr>
<td>12</td>
<td>conv</td>
<td>1024 13 x 13 x 512</td>
<td>13 x 13 x1024</td>
</tr>
<tr>
<td>13</td>
<td>conv</td>
<td>1024 13 x 13 x1024</td>
<td>13 x 13 x1024</td>
</tr>
<tr>
<td>14</td>
<td>conv</td>
<td>125 13 x 13 x1024</td>
<td>13 x 13 x 125</td>
</tr>
<tr>
<td>15</td>
<td>detection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Done!
lausanne-d-1.png: Predicted in 0.904149 seconds.
Boxes: 845 of which 6 above the threshold.

person: 82%
person: 47%
person: 61%
person: 60%
person: 54%
person: 40%

see http://i-learn-machine-learning.science/
Picture (Video) Classifier

You only look once
can be used also on videos
Picture Classifier

via https://cloud.google.com/vision/
Picture Classifier

via https://cloud.google.com/vision/
Picture Classifier

via https://cloud.google.com/vision/
Picture Classifier

via https://cloud.google.com/vision/

where is the leopard?
via https://cloud.google.com/vision/, with OCR option (and doctor handwriting)
Picture Classifier

via https://cloud.google.com/vision/,
Noisy Pictures

Problem of distorting pictures with random noise,
http://karpathy.github.io/
Noisy Pictures

also called adversarial phenomena

original image
prediction: giant_panda

the perturbation,
enhanced 127 times

perturbed image
prediction: bucket

using an algorithm trained on ImageNet