EXAMEN INTRA (3/4), ACT 2121

ARTHUR CHARPENTIER

Les calculatrices sont autorisées. Les documents sont en revanche interdits.

Il y a 25 questions. Sur la feuille jointe, veuillez reporter vos réponses (une unique réponse par question)

- vous gagnez 1 points par bonne réponse
- vous gagnez 0 point par mauvaise réponse

Aucune justification n'est demandée.

Votre note finale est le total des points (sur 25).

Il y a 9 pages dans cet énoncé, merci de vérifier que le nombre de pages correspond, avant de débuter.

- 1 La fonction de densité de la loi marginale X est $f_X(x) = x + \frac{1}{2}$, 0 < x < 1. La fonction de densité de la loi conditionnelle Y|X=x est $f_{Y|X=x}(Y|X=x)=\frac{x+y}{x+\frac{1}{2}}$, 0 < y < 1. Trouver la fonction de densité de la loi marginale Y.

 - A) $\frac{1}{2} + y$ B) $\frac{x+y}{y+\frac{1}{2}}$ C) 1+y D) y E) $3y^2$

- $\boxed{2}$ Soit X et Y des variables aléatoires continues de loi conjointe :

$$f_{X,Y}(x,y) = \begin{cases} e^{-y} & \text{si } 0 < x < 1, \ y > 0 \\ 0 & \text{sinon.} \end{cases}$$

Trouver Var[X|Y = y].

- A) $\frac{1}{12}$ B) y^2 C) 1 D) $\frac{y}{12}$ E) e^{-y}

- 3 Soit X et Y deux variables aléatoires continues de fonction de densité conjointe :

$$f_{X,Y}(x,y) = \begin{cases} (0.32) e^{-(0.8)x - (0.4)y} & \text{pour } 0 \le x \text{ et } 0 \le y \\ 0 & \text{sinon.} \end{cases}$$

Trouver E[Y - X].

- A) -0.4 B) -1.25 C) 1.25 D) 0.32
- E) 0.4

- |4| Soit X et Y des variables aléatoires continues de fonction de densité conjointe $f_{X,Y}(x,y) = 4x$ pour $0 < x < \sqrt{y} < 1$. Trouver la fonction de densité de la marginale Y.

- A) 2y B) $2y^2$ C) y^2 D) \sqrt{y} E) $4\sqrt{y}$
- |5| Soit X une variable aléatoire telle que :

$$M_X(t) = \frac{1}{5} \left(e^{-2t} + e^{-t} + 1 + e^t + e^{2t} \right).$$

Trouver $P(X \ge 0 \mid X \ne 1 \text{ ou} - 1)$.

- A) $\frac{3}{5}$ B) $\frac{1}{2}$ C) $\frac{1}{3}$ D) $\frac{2}{5}$ E) $\frac{2}{3}$

- $\boxed{6}$ Soit X,Y,Z trois variables aléatoires discrètes de distribution simultanée :

$$f_{X,Y,Z}(x,y,z) = \frac{xyz}{108}$$
 pour $x = 1, 2, 3;$ $y = 1, 2, 3;$ $z = 1, 2.$

Trouver la distribution conjointe de Y, Z sachant X = 3.

- A) $\frac{yz}{108}$ B) $\frac{yz}{36}$ C) $\frac{yz}{18}$ D) $\frac{yz}{9}$ E) $\frac{yz}{3}$

4

7 Soit X et Y deux v.a. discrètes dont la distribution conjointe est donnée par le tableau:

		X		
		0	1	2
Y	0	0.3	0.2	0.1
	1	0.2	0.1	0.1

Trouver le coefficient de corrélation $\rho_{X,Y}$.

- A) 0.02
- B) 0.052
- C) 0.092
- D) 0.151
- E) 0.252

8 Soit X et Y des variables aléatoires continues ayant la fonction de densité conjointe:

$$f_{X,Y}(x,y) = \begin{cases} 15y & \text{pour } 0 \le x^2 \le y \le x \le 1\\ 0 & \text{sinon.} \end{cases}$$

Déterminer la fonction de densité de la variable conditionnée $X|Y=\frac{1}{2}$ pour les valeurs possibles de x.

- A) $5(1-\sqrt{x})$ B) $15(x-\sqrt{x})$ C) 1 D) 2x E) $\frac{2}{\sqrt{2}-1}$

9 Soit X et Y deux variables aléatoires telles que pour tout y > 0 on a :

$$f_Y(y) = e^{-y}$$
, $E[X|Y = y] = 3y$ et $Var[X|Y = y] = 2$

Trouver Var[X].

- A) 20

- B) 11 C) 9 D) 5 E) 3

- 10 Pour une assurance, la perte X (en milliers de dollars) suit une loi de fonction de densité $f_X(x) = \frac{3x^2}{8}$ pour $0 \le x \le 2$. Si le temps (en heures) pour traiter la réclamation pour une perte $0 \le x \le 2$ est uniformément distribué entre xet 2x, calculer la probabilité que ça prenne plus de 3 heures pour traiter une réclamation aléatoire.
 - A) $\frac{29}{64}$ B) $\frac{23}{64}$ C) $\frac{17}{64}$ D) $\frac{11}{64}$ E) $\frac{5}{64}$
- 11 Soit X et Y des variables aléatoires continues de loi de densité conjointe :

$$f_{X,Y}(x,y) = \begin{cases} \frac{3}{4}x & \text{pour } 0 < x < 2 \text{ et } 0 < y < 2 - x \\ 0 & \text{sinon.} \end{cases}$$

Trouver P(X < 1).

- A) $\frac{7}{8}$ B) $\frac{3}{4}$ C) $\frac{5}{8}$ D) $\frac{1}{2}$ E) $\frac{1}{4}$

- 12 Soit X et Y deux variables aléatoires indépendantes telles que $M_X(t) = e^{t^2+2t}$ et $M_Y(t) = e^{3t^2+t}$. Trouver la série génératrice des moments de 3X + Y.
- A) e^{12t^2+7t} B) $3e^{4t^2+3t}$ C) $3e^{t^2+2t}+e^{3t^2+t}$ D) $e^{9t^2+6t}+e^{3t^2+t}$
- Soit X une variable aléatoire de type exponentielle de moyenne m et Y une variable aléatoire uniforme sur l'intervalle [0, m]. En supposant X et Y indépendantes, trouver la série génératrice des moments de X + Y.

 - A) $\frac{e^{mt} 1}{1 m^2 t^2}$ B) $\frac{e^{mt} 1}{mt(1 mt)}$ C) $\frac{e^{mt}}{mt m^2 t^2}$ D) $\frac{e^{mt}}{1 mt}$ E) $\frac{1 mt}{e^{mt}}$

 $\overline{14}$ Soit X et Y deux variables aléatoires continues de fonction de densité conjointe :

$$f_{X,Y}(x,y) = \begin{cases} \frac{3}{4}(2-x-y) & \text{pour } 0 < x < 2, \ 0 < y < 2, \ x+y < 2 \\ 0 & \text{sinon.} \end{cases}$$

Trouver la probabilité conditionnelle $P(X < 1 \mid Y < 1)$.

- A) $\frac{1}{2}$ B) $\frac{3}{4}$ C) $\frac{49}{64}$ D) $\frac{6}{7}$ E) $\frac{7}{8}$

15 Toutes les réclamations sont de montants égaux à 2 et le nombre N de réclamations suit une loi de Poisson de paramètre Λ . Cependant Λ est lui-même aléatoire et suit une loi exponentielle de moyenne 2.

Trouver la variance de la réclamation totale $S = X_1 + X_2 + \cdots + X_N$.

- A) 24
- B) 12
- C) 8
- D) 6

Soit $F_X(x) = 1 - e^{-x}/3$ pour $x \ge 0$ et $F_X(x) = 0$ pour x < 0. Trouver la série génératrice des moments $M_X(t)$ de X.

$$A) \frac{1}{1-t}$$

$$B) \frac{1}{3-3t}$$

C)
$$\frac{3-t}{3-3t}$$

A)
$$\frac{1}{1-t}$$
 B) $\frac{1}{3-3t}$ C) $\frac{3-t}{3-3t}$ D) $\frac{2}{3t} + \frac{1}{3(1+t)}$ E) $\frac{3-2t}{3-3t}$

E)
$$\frac{3-2t}{3-3t}$$

|17| Soit X et Y des variables aléatoires de fonction de densité conjointe :

$$f_{X,Y}(x,y) = \begin{cases} \frac{3}{2}(x^2 + y^2) & \text{pour } 0 < x < 1 \text{ et } 0 < y < 1 \\ 0 & \text{sinon.} \end{cases}$$

Trouver $E[X^2 + Y^2]$.

- A) $\frac{13}{15}$ B) $\frac{14}{15}$ C) $\frac{4}{5}$ D) $\frac{11}{15}$ E) $\frac{2}{3}$

18 Les durées de vie future (en années) d'un homme et de son épouse sont des variables aléatoires continues, indépendantes et uniformément distribuées sur l'intervalle [0, 50]. Trouver la probabilité que l'épouse survivra d'au moins 5 ans à son mari.

- A) 0.35
- B) 0.405
- C) 0.435
- D) 0.475
- E) 0.49

19 Pour une police d'assurance le nombre de réclamations est N=0,1 ou 2 avec probabilités communes de $\frac{1}{3}$. On connaît, à propos de la somme des 0,1 ou 2 réclamations, l'information suivante : E[S|N=0]=0, Var[S|N=0]=0, $E[S|N=1]=10, \, \mathrm{Var}[S|N=1]=5, \, E[S|N=2]=20 \,\, \mathrm{et} \,\, \mathrm{Var}[S|N=2]=8$ Trouver la variance de S.

- A) $\frac{13}{3}$ B) $\frac{13}{2}$ C) 13 D) $\frac{200}{3}$ E) 71

8

- $\overline{20}$ Soit X et Y des variables aléatoires continues, indépendantes et de loi uniforme sur l'intervalle [0, 1]. Trouver $P(X^2 \ge 2Y)$.

- A) $\frac{1}{6}$ B) $\frac{1}{3}$ C) $\frac{3}{5}$ D) $\frac{2}{3}$ E) $\frac{5}{6}$
- 21 Dans une urne il y a des boules numérotées 1, 2, 3. On pige au hasard, sans remplacement, une première boule puis une seconde. Soit X le numéro sur la première boule et Y le numéro sur la seconde. Trouver $\rho_{X,Y}$, le coefficient de corrélation entre X et Y.
 - A) $-\frac{1}{2}$ B) $-\frac{1}{3}$ C) 0 D) $\frac{1}{3}$ E) $\frac{1}{2}$

- 22 Soit X une variable aléatoire dont la série génératrice des moments est $M_X(t) =$ $e^{3t}(1-t^2)^{-1}$. Trouver $\sigma_X/E[X]$.
 - A) 0.125
- B) 0.333
- C) 0.471
- D) 0.500
- E) 0.667
- 23 | Soit X et Y deux variables aléatoires continues de fonction de densité conjointe :

$$f_{X,Y}(x,y) = \begin{cases} x+y & \text{pour } 0 < x < 1 \text{ et } 0 < y < 1 \\ 0 & \text{sinon.} \end{cases}$$

Trouver Cov(X, Y), la covariance de X et Y.

A)
$$-\frac{1}{144}$$
 B) $-\frac{1}{12}$ C) 0 D) $\frac{1}{12}$ E) $\frac{1}{144}$

B)
$$-\frac{1}{12}$$

D)
$$\frac{1}{12}$$

E)
$$\frac{1}{144}$$

- 24 Vous choisissez un nombre X = x entre 0 et 1 selon la loi uniforme. Vous choisissez ensuite un second nombre Y entre x et 1 toujours selon une loi uniforme. Trouver $P(X + Y \le 1)$.
 - A) ln 2
- B) $1 \ln 2$ C) e^{-1} D) 1/2
- E) 1/4
- 25 Le nombre N de réclamations pour une compagnie d'assurance suit une loi de Poisson de paramètre λ . Le montant X de chaque réclamation suit une loi exponentielle également de paramètre λ . Soit T le montant total de toutes les réclamations. Trouver Var[T].

- A) λ B) $\frac{1}{\lambda}$ C) $\frac{2}{\lambda}$ D) $\frac{1}{\lambda^2}$ E) $1 + \frac{1}{\lambda}$